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Abstract

Reinforcement learning enables a robot to learn behav-
ior through trial-and-error. However, knowledge is usu-
ally built from scratch and learning may take a long
time. Many approaches have been proposed to transfer
the knowledge learned in one task and reuse it in an-
other new similar task to speed up learning in the target
task. A very effective knowledge to be transferred is an
abstract policy, which generalizes the learned policies
in source tasks to extend the domain of tasks that can
reuse them. There are inductive and deductive methods
to generate abstract policies. However, there is a lack
of deeper analysis to assess not only the effectiveness
of each type of policy, but also the way in which each
policy is used to accelerate the learning in a new task.
In this paper we propose two simple inductive methods
and we use a deductive method to generate stochastic
abstract policies from source tasks. We also propose two
strategies to use the abstract policy during learning in a
new task: the hard and the soft strategy. We make a com-
parative analysis between the three types of policies and
the two strategies of use in a robotic navigation domain.
We show that these techniques are effective in improv-
ing the agent learning performance, especially during
the early stages of the learning process, when the agent
is completely unaware of the new task.

Introduction
Reinforcement Learning (RL) is a very powerful technique
for autonomous and lifelong learning. RL allows an agent
to learn behaviors by the acquisition of experience through
interactions with a dynamic environment, on the basis of
trial and error. However, this learning is usually built from
scratch, taking a long time for the agent to learn to behave
appropriately.

Seeking to reduce learning time in RL, many works have
focused on transfer of knowledge between tasks. The deter-
mination of the knowledge to be transferred from one task
to another has often been treated with techniques of trans-
fer learning (Taylor and Stone 2009; Torrey and Shavlik
2009). Transfer learning allows knowledge to be achieved
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not only within tasks, but also across tasks. The goal is that
the knowledge gained in source tasks helps in learning a new
target task. The work reported in the literature can be orga-
nized in basically three different aspects: (i) the restriction
they use about the similarity that must be respected between
the source and target tasks, (ii) the use of one or more source
tasks, and (iii) the type of knowledge to be transferred be-
tween tasks.

Regarding the first aspect, while some approaches are
quite restrictive and require equal representation of states
for all tasks, others are more flexible, but may require the
designer to hand code a mapping between different task rep-
resentations. The approaches from Fernandez and Veloso
(Fernández and Veloso 2006) and Lazaric et al. (Lazaric,
Restelli, and Bonarini 2008) requires that source and target
tasks have the same state and action spaces, i.e., only the re-
ward function can change from one task to another. On the
other hand, the approaches from Torrey et al. (Torrey 2009),
Taylor and Stone (Taylor, Stone, and Liu 2007), and Fachan-
tidis et al. (Fachantidis et al. 2013) have need for mapping
between tasks. As for the representation, in general the mod-
els are simple and with little semantics (e.g. enumerated
states). This complicates knowledge transfer across tasks.
An alternative is to use a factored state representation (as we
do here), which allows agents to share experiences among
similar states (Boutilier, Dearden, and Goldszmidt 2000;
Konidaris, Scheidwasser, and Barto 2012), or even by us-
ing a more powerful representation such as relational rep-
resentations (Koga, Freire, and Costa 2014; Croonenborghs,
Driessens, and Bruynooghe 2007; Dzeroski, De Raedt, and
Driessens 2001)

The second aspect deals primarily with the fact of whether
using several previous solutions to source tasks as knowl-
edge to transfer or using just one case, even if it is a gen-
eralization of a set of source tasks. Examples of case-based
reasoning are the use of options (Sutton, Precup, and Singh
1999), which are a set of policies able to solve small subtasks
that the agent might use when facing a similar situation, and
analogical model formulation (Klenk, Aha, and Molineaux
2011), which uses a set of solutions to different problems
to retrieve an analogous solution to the new problem. Ce-
liberto Jr. et al. (Celiberto et al. 2011) also used cases as
heuristics to achieve transfer learning combining case-based
reasoning with heuristically accelerated RL. Fernández and
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Veloso (Fernández and Veloso 2006) proposed an RL algo-
rithm with the reuse of a policy library, which contains con-
crete policies of previous tasks. Then, during the learning
process, the probabilities of reusing a policy in the library
are adjusted according to their usefulness. On the knowl-
edge generalization side, the focus is on how to combine and
to represent the solutions of a number of past experiences,
extracting their similarities and hence generalizing previous
knowledge. One example is the TILDE algorithm (Blockeel
and De Raedt 1998), which induces a first-order logical deci-
sion tree (that represents a policy) from examples of solved
tasks. Martı́n and Geffner (Martı́n and Geffner 2004) also
explored this kind of approach by creating generalized poli-
cies, which are policies that, based on a number of solved
problem instances, are suitable to solve any problem in a
domain.

Finally, regarding the type of knowledge to be transferred
between tasks, most methods provide the transfer of value
functions (Liu and Stone 2006; Taylor, Stone, and Liu
2007), features extracted from the value functions (Baner-
jee and Stone 2007; Konidaris, Scheidwasser, and Barto
2012), heuristics (Bianchi et al. 2013), and policies (Ramon,
Driessens, and Croonenborghs 2007; Koga et al. 2013) or
partial policies (Mehta et al. 2008; Konidaris, Scheidwasser,
and Barto 2012).

The idea here is to learn actuation policies in source tasks
and, after abstracting the knowledge embedded in these poli-
cies, to transfer them to assist learning a new target task, thus
speeding up the RL learning. We focus on methods which
are policy-based, i.e., all the transferred knowledge is en-
coded by policies, since policies encompass better proper-
ties of generalization than value functions (Littman 1994).
However, there are several ways to abstract the knowledge
embedded in a policy. It is an open question how to define
the best approach for abstraction and the best strategy to ap-
ply this abstracted knowledge in a new problem. Based on
previous work, we use a single generalization of solutions of
source tasks as knowledge to be transferred between tasks,
since this generalization is more effective than the use of
policies libraries (Koga, Freire, and Costa 2014). Thus, the
aim of this paper is to evaluate the effectiveness of policies
generated by different abstraction approaches for accelera-
tion of new learning in a simulated robotic navigation do-
main. We also propose two strategies to use the abstract pol-
icy during learning in a new task: the hard and the soft strat-
egy. We use a simulated robotic navigation domain for the
experiments, and we evaluate how a single abstract policy
obtained from a set of source tasks using different abstrac-
tion methods can effectively guide and accelerate learning
onto a new target task.

Reinforcement Learning and Abstraction
Our robot uses RL to refine behavior through interactions
with an environment (Sutton and Barto 1998). An elegant
and very used formalism to model problems is Markov De-
cision Process, MDP. In this section we first formalize MDP
and present a very popular RL algorithm for solving them,
the Q-learning algorithm, which is the basis of our experi-
mental evaluations. The reader familiar with these concepts

can skip this section. Then, we describe the concepts in-
volved in abstract policies.

Markov Decision Process
Our problem is modeled as a Markov Decision Pro-
cess (MDP). A finite discrete-time fully observable MDP is
a tuple 〈S,A, T ,R〉 (Puterman 1994), where:
• S is a finite set of fully observable states of the process;
• A is a finite set of all the possible actions to be executed

at each state;
• T : S × A × S → [0, 1] is a transition function that

specifies the probability T (s, a, s′) that the system moves
to state s′ when action a is executed in state s;
• R : S → R is a reward function that produces a finite

numerical value r = R(s) when state s is reached.
An MDP agent is continuously in a cycle of perception

and action: at each time t the agent observes state s ∈ S and
decides which action a ∈ A to perform, the execution of this
action causes the transition to a new state s′ according to the
transition probability function T and the agent receives a
reward r. This cycle is repeated until a stopping criterion is
met; for example: when a goal state is reached.

Q-Learning
To solve an MDP is to find an optimal policy π∗ that max-
imizes a function Rt of future rewards. Here we use Rt =∑∞
t=0 γ

trt, where 0 ≤ γ < 1 is the discount factor. In RL
tasks the agent does not know the transition probabilities T
and the reward function R, and a series of RL algorithms
can be used to find a policy.

We use the very popular Q-learning algorithm (Sutton and
Barto 1998) to find π, in which at time step t the experience
〈st, at, st+1, rt〉 is used to update the Q-value estimate Qt
of applying at in st, and receiving reward rt:

Qt+1(st, at)← (1− α)Qt(st, at)
+α (rt + γmaxa∈AQt(st+1, a)),

(1)

where γ is the discount factor, and 0 ≤ α ≤ 1 is the
learning rate. The greedy deterministic policy π(st) =
arg maxa∈AQt(st, a) assigns the best action a to state st.

State Abstraction
So far nothing has been said about state representation in
MDPs. We propose a robotic system that consists of two
levels: a concrete level, in which interactions actually occur
of the robot with the environment, and an abstract level, in
which generalizations of past solutions are used by the robot
to speed up the learning of a new problem. At the concrete
level the states are represented by enumeration, while at the
abstract level we consider special sensors, which encode se-
mantic information. Here, we consider a concrete level un-
der which the Markov property is guaranteed, i.e., the state
transition depends only on the current state and current ac-
tion, P (st+1|at, st, st−1, . . . , s1, s0) = P (st+1|at, st). Al-
though the Markov property is difficult to guarantee in con-
tinuous environments, if appropriate discretization is consid-
ered, Q-learning can converge to near optimal policies. In a
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robotic navigation environment, such concrete level can be
obtained through a global metric sensor such as GPS system
or SLAM. Different approaches, based on semantic maps
and qualitative navigation (Toro et al. 2014) can also be
used. In our experiment, we consider a simulated discrete
environment, which guarantees Markov property.

The abstract level considers a set of sensors that provide
semantic information directly related to the concrete level,
but adds the ability of generalization if the same meaning
can be shared between tasks, environments or states. Then,
in the abstract level, states are represent by a vector of k
measurable features in the environment given by such sen-
sors. Let µ be the function µ : S →

∏k
i=1 Xi, where Xi

is the set of values of the domain of feature i. Then, a state
becomes an instantiation of features and can be written as
a vector s = (x1, · · · , xk) such that ∀xi ∈ Xi. Without
loss of generality, here we consider only binary features, i.e.,
Xi = {0, 1}. Our state in the abstract level is then a conjunc-
tion of binary features, s = x1 ∧ x2 · · · ∧ xk.

By using feature conjunctions to represent states, two ma-
jor aspects appear. First, each feature usually has an associ-
ated semantics, which allows the generalization of acquired
knowledge from one task to be used in another task with the
same semantics. Second, if features describe the states par-
tially, i.e., there exist s, s′ ∈ S such that µ(s) = µ(s′), then
the set of features itself already represents an abstraction of
the states that share the same description.

A state space abstraction consists in partitioning the state
space by a function σ : S → SAbs, where SAbs is the
set of abstract states. If a feature conjunction describes a
state partially, a natural abstraction consists in: (i) if µ(s) =
µ(s′), then σ(s) = σ(s′); and (ii) if µ(s) 6= µ(s′), then
σ(s) 6= σ(s′). We define ρ ∈ SAbs as an abstract state, i.e.,
σ(s) = ρ, with s ∈ S and ρ ∈ SAbs. Sρ ⊆ S is the set of
concrete states s that are mapped into the same abstract state
ρ, i.e., if σ(s) = σ(s′) = ρ, then s, s′ ∈ Sρ.

Stochastic Abstract Policies
Let S1 and S2 be the set of concrete states for two problems,
MDP1 andMDP2. In our approach, we transfer knowledge
across problems that not only have the same state space, i.e.,
S1 = S2, but also across those that are different, S1 6= S2,
but maintain the property of being described by the same
subset of k features associated with the same semantics. In
both problems, concrete states are described in the abstract
level by a set of k features with the same associated seman-
tics, therefore defining a space of abstract states equivalent
for both problems, i.e., S1Abs = S2Abs = SAbs. Here every
task uses of the same action space, i.e., A1 = A2 = A.
Then, transfer is done by defining a stochastic abstract pol-
icy in the source tasks and somehow using such a policy in
the target task. We explore two paradigms: induced and de-
duced policies to build abstract policies.

Induced Policies
Induced policies are obtained by inducing an abstract pol-
icy from a set of optimal concrete deterministic policies

Π = {π1, π2, . . . , πN}, πi : Si → A, associated to a set
of source tasks; in the limit Π may contain only one policy.

We propose the induction of two types of abstract poli-
cies: a probabilistic induced policy and a non-deterministic
induced policy. The former defines a probabilistic abstract
policy πAbsProb

: SAbs × A → [0, 1], whereas the latter
defines a policy that maps abstracts states into a subset of
actions, i.e., πAbsND

: SAbs → 2A.
For every ρ ∈ SAbs, a ∈ A, the probabilistic induced

policy is defined by:

πAbsProb
(ρ, a) =

∑N
i=1 |{s:s∈S

i∧σ(s)=ρ∧πi(s)=a}|∑N
i=1 |{s:s∈Si∧σ(s)=ρ}| ,

where Si is the set of states in the i-th task and πi is the
optimal policy for task i. Therefore, the probabilistic policy
takes into account every state in every task which is repre-
sented by the abstract state ρ ∈ SAbs, and averages equally
over the policy of such states.

The non-deterministic induced policy does not consider
the number of states that choose a certain action as opti-
mal; given an action a and abstract states ρ, it only consid-
ers if there exists a concrete states s which is represented
abstractly by ρ and has a as optimal policy, i.e., σ(s) = ρ
and π∗(s) = a. Therefore, for every ρ ∈ SAbs, a ∈ A, the
non-deterministic induced policy is defined by:

πAbsND (ρ) = {a : ∃πi ∈ Π, ∃s ∈ Si|σ(s) = ρ ∧ πi(s) = a},

i.e., a ∈ πAbsND
(ρ) iff a is optimal in any task for a state s

so that σ(s) = ρ, i.e., s ∈ Sρ.

Deduced Policy
Although the induced policies are built from optimal con-
crete policies, the quality of such induced policies can not
be assured, since they represent combinations of different
solutions for different states that are represented by the same
abstract state in the abstract level.

An alternative to the induced policies is to search directly
in the space of abstract policies to find the best one. It is
easy to define a gradient such that a local optimal policy
can be found; for example, the AbsProb-PI algorithm (da
Silva, Pereira, and Costa 2012) and its extension AbsProb-
PI-multiple (Koga, Freire, and Costa 2014) can find such a
local optimal policy, named here πAbsGrad

.
Remember that we are interested in maximizing the ex-

pected sum of rewards V π(s) = E[
∑∞
t=0 γ

trt|π, s0 = s].
Given a probabilistic policy π, V π can be defined by:

V π(s) = r(s) + γ
∑
s′∈S

∑
a∈A

T (s, a, s′)π(s, a)V π(s′).

While the optimization problem is well defined when con-
sidering concrete policies by maximizing uniformly V π(s)
for all s ∈ S; when abstract policies are considered the op-
timization problem is well defined only if an initial state
distribution β : S → [0, 1] is considered by maximiz-
ing Vπ =

∑
s′∈S β(s)V π(s) (da Silva, Pereira, and Costa

2012).
The algorithms AbsProb-PI and AbsProb-PI-multiple de-

fine the policy gradient of Vπ and move in the direction of
that gradient to find a local-optimal policy. To find an ab-
stract policy that generalizes a set of tasks {1, 2, . . . , N},
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the MDP of each task is grouped in a bigger MDP, where:
(i) S =

⋃N
i=1 Si, (ii) if s ∈ Si, then β(s) = βi(s)

N ;
and (iii) the set of actions, reward function and transi-
tion function are the same of the original tasks. Despite
AbsProb-PI iand AbsProb-PI-multiple are planning algo-
rithms, learning RL algorithms that makes use of policy
gradient is also found in the literature (Sehnke et al. 2008;
Bhatnagar et al. 2009).

Transferring policies among tasks
If the source tasks and target tasks make use of the same
set of features to describe abstract states, then the abstract
policies obtained by the solution of source tasks can be used
directly in the target tasks. It is important to notice that such
abstract policy may not be optimal in the target task, and,
more than that, might even worsen the behavior of the robot
in the target task. Thus, one should only use it as an ad-
vise at the beginning of the robot learning in the new task,
since at the beginning of learning nothing is known about
the new task, and it is better to follow an advice than acting
randomly. Although a transfer policy may not always helps,
we consider it does so on average.

Clearly only concrete states are visited by the real sys-
tem. Learning must proceed by processing, at time t, the ex-
perience 〈st, at, rt, st+1〉 that is used to update the Q-value
estimate in the concrete level. The concrete state st is re-
lated to the abstract state σ(st) = ρ. Here we propose to
use the abstract policy obtained from similar source tasks in
the ε−greedy choice that the Q-Learning algorithm makes
about the action to be performed.

We propose the following scheme to apply an abstract pol-
icy in a concrete problem. Given a probabilistic abstract pol-
icy πAbsProb

: SAbs×A → [0, 1], an observed concrete state
st ∈ S and its corresponding abstract state σ(st) = ρ ∈
SAbs, the robot selects an action a ∈ A according to these
probabilities, and then applies it in the concrete state st. If,
on the other hand, the robot is given a non-deterministic ab-
stract policy πAbsND

: SAbs → 2A, and it observes a con-
crete state st and determines its corresponding abstract state
σ(st) = ρ ∈ SAbs, then the robot selects with uniform dis-
tribution in πAbsND

(ρ) ⊆ A the action a ∈ πAbsND
(ρ) to be

performed.
We make use of Q-Learning algorithm to learn in the con-

crete level, whereas making use of the abstract policy to
guide exploration. Given a time horizon τ to make use of the
abstract policy, we consider two approaches: hard and soft.
Algorithm 1 shows the hard approach, where before time τ
only the abstract policy is used, while learning within Q-
Learning. After time τ , an ε-greedy strategy is used: the best
action aBest = arg maxaQt(st, a) is selected for a propor-
tion 1 − ε of the trials, and an action is selected at random
(with uniform probability) for a proportion ε. Algorithm 2
shows the soft approach, in which before time τ the abstract
policy is used in combination with an ε-greedy strategy; such
a combination is given by λ that starts with rate 1 for the ab-
stract policy, and decays linearly until rate 0. After this time
τ , only the ε-greedy strategy is used in the Q-learning algo-
rithm.

Algorithm 1 Hard Strategy to Transfer Policy.

Require: Given an abstract policy πAbs, a maximum num-
ber of time steps τ , an exploration rate ε, a learning rate
α

1: Q(s, a) = 0 for all s ∈ S, a ∈ A
2: for each time step t ≤ τ do
3: observe state st
4: execute action at by following policy πAbs
5: observe reward rt and state st+1

6: update Q(st, at) according to Eq.1
7: end for
8: for each time step t > τ do
9: observe state st

10: choose action at by following ε-greedy strategy
11: execute action at
12: observe reward rt and state st+1

13: update Q(st, at) according to Eq.1
14: end for return Q-function

corridord

d

d

d

d

d

d dd

d

d

Figure 1: The simulated source environment.

Experiments
To evaluate each type of policy for the knowledge transfer
process we conducted experiments in two simulated robotic-
navigation environments (Figures 1 and 2). The agent learns
in the source tasks (environment in Figure 1) and transfer
the knowledge to the target tasks (environment in Figure 2).

For each environment we define a number of goals, which
represent different tasks, i.e., different MDPs to the agent.
To analyze and compare the performances of different types
of policies and transfer learning strategies, we evaluate the
three versions of abstract policies: πAbsProb

, πAbsND
and

πAbsGrad
.

Environments
The environment is composed of three types of objects:
rooms, doors (d) and a corridor. While the agent accesses
some rooms immediately from the hall, others can only be
reached through a predecessor room.

The first environment (Figure 1) is composed of: 135 con-
crete states; 11 rooms; and 11 goals positions (symbol ⊕).
The second environment (Figure 2) which represents a larger
MDP problem (four times larger than the learning environ-
ment) and will be used as the target environment for the
knowledge transfer is composed of: 540 discrete concrete
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Algorithm 2 Soft Strategy to Transfer Policy.

Require: Given an abstract policy πAbs, a maximum num-
ber of time steps τ , an exploration rate ε, a learning rate
α

1: Q(s, a) = 0 for all s ∈ S, a ∈ A
2: for each time step t ≤ τ do
3: observe state st
4: define rate λ = τ−t

τ
5: with probability λ, choose action at by following

policy πAbs
6: with probability 1−λ, choose action at by following
ε-greedy strategy

7: execute action at
8: observe reward rt and state st+1

9: update Q(st, at) according to Eq.1
10: end for
11: for each time step t > τ do
12: observe state st
13: choose action at by following ε-greedy strategy
14: execute action at
15: observe reward rt and state st+1

16: update Q(st, at) according to Eq.1
17: end for return Q-function

d

d d
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d

d

d d

d

d

d

d

d d d d d

d d

d

d

ddd
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d

d
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corridor

corridor

corridor

Figure 2: The simulated target environment.

states; 35 rooms; and 35 goal positions. We represent differ-
ent tasks by simply choosing different goal positions; then,
there exists 11 source tasks (Figure 1), and 35 target tasks
(Figure 2).

For the abstract state description we consider features
related to local observations and the goal position. The
local observation feature set is represented by FL =
{see empty space, see door far, see room, see corridor}
and the features related to the goal position are represented
by FG = {near goal, almost near goal}. The features in
FG describe the distance of a state to the goal position. A
state is near goal if it is at least a Manhattan distance of 5
to the goal, and a state is almost near goal if it is at least a
Manhattan distance of 8 and is not near goal.

From the set FL we define the feature sets FhL and FopL ,
which represent features of the current state that are or
not toward the goal. The set FhL is defined by consider-
ing the set FL, but adding the suffix ‘head to goal’ to
the original feature notation, and in the same way, the set

Table 1: Performance of each type of policy.

source environment target environment

πrand -88.97 -97.07
πAbsND

-44.61 -80.41
πAbsProb

-36.91 -70.03
πAbsGrad

-30.65 -70.34
π∗ -14.86 -29.13

FopL is defined by considering the suffix ‘opposite to goal’.
The final set that will be used to describe a state is F =
(FhL∪F

op
L ∪FG∪{in room}) totalizing 11 features, where

in room is a local observation feature without goal rela-
tion and indicates that the agent is in one of the rooms
(or in the corridor). As an example of the state descrip-
tion defined previously, consider the robot to be the red cir-
cle in the environment shown in Figure 1, and the goal in
green to be the current goal state. Then, the agent observes
the following abstract state: see door far head to goal ∧
see empty space opposite to goal ∧ almost near goal.

Setup
Initially we solve the 11 tasks in the source environment and
generate the three types of policies for them: probabilistic
induced policy (πAbsProb

), non-deterministic induced policy
(πAbsND

) and probabilistic deduced policy (πAbsGrad
). To

find the policy πAbsGrad
and to evaluate the performance of

the policies, we consider a uniform probability distribution
for the initial state. We set r(s) = 0 if state s is the goal in
the current task, and r(s) = −1 otherwise, and we consider
γ = 0.99 in every policy.

In the transfer learning experiment, we consider the target
environment and the 34 tasks together. In every episode, the
agent starts with a random task and in an initial state, us-
ing a uniform distribution; the episode ends when the agent
reaches the goal position or if 5,000 steps elapse, which one
occurs first. Then, in fact, the agent faces a bigger task in-
volving a total of 540× 35 = 18, 900 states.

Learning is conducted during 30 × 106 steps, with fixed
ε = 0.1, γ = 0.9 and α = 0.1. The parameter τ was
tuned for each pair of abstract policy and transfer strategy:
(i) πrand; τ = 9 × 106 (hard) and τ = 19 × 106 (soft);
(ii) πAbsND

; τ = 3.5× 106 (hard) and τ = 11× 106 (soft);
(iii) πAbsProb

; τ = 3.5× 106 (hard) and τ = 6× 106 (soft);
(iv) πAbsGrad

; τ = 3.5× 106 (hard) and τ = 6× 106 (soft);
Each experiment was reproduced 50 times.

Results
Table 1 shows the performance of each policy in the source
tasks, where they were induced or deduced, and in the target
tasks, where they were executed (without learning). Table 1
also shows the performance of the random policy (πrand)
and the optimal policy (π∗) as a reference.

As it was expected, policy πAbsGrad
presented the best

performance among all abstract policies in the source envi-
ronment; however, πAbsGrad

and πAbsProb
have similar per-
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Figure 3: Box plot of accumulated goals occurrence for 50 executions within each pair of abstract policy and transfer strategy,
and Q-learning (without learning).

formance in the target environment. Policy πAbsND
is the

worst abstract policy, but still much better than the random
policy. Figure 3 shows the box plot for each pair of abstract
policy and transfer strategy over accumulated number of
goals in the whole experiment. Some interesting points can
be noted in these results. First, despite the policy πAbsND

has shown the worst performance when executed in the en-
vironment (without learning – see Table 1), it proved better
than the other policies when it was used for transfer learning,
which was a surprising result. Second, among abstract poli-
cies, the soft strategy is better than the hard strategy; but not
for random policy. Third, usually ε-greedy is considered a
good strategy for the exploration-exploitation dilemma for
learning, but our experiments show that the hard strategy
was a better option. Fourth, abstract policies πAbsGrad

and
πAbsProb

did not prove to be better than random policy for
transfer learning. Fifth, all of the policies transfered proved
to be better than Q-Learning with fixed ε.

Figure 4 shows the performance of each transfer pair
〈abstract policy,transfer strategy〉 averaged over 50 execu-
tions and 500,000 steps. All of the experiments show the
same learning behavior: there is a critical point, when perfor-
mance improves faster. Excepting random policy, the earlier
the critical point, the better the performance in the final steps
of the experiment. Even if the critical point occurs late when
transferring random policy, the final performance competes
with the best final performance.

Conclusion
Non-deterministic induced policies showed to be the best
policy to transfer learning, even if they are not the best
choice when executed directly and without learning in the
target environment. They work like an improved version of
random policies, since only actions that proved to be optimal
once are taken into account in the learning exploration. Sur-
prisingly, deduced policies did not show good performance;
which was not expected, since they are built under an opti-
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Figure 4: Performance in time. The average over 50 execu-
tions and 500,000 time steps for each pair of abstract policy
and transfer strategy.

mality criterion.
Despite the experiments have been done in a unique type

of problem, conclusions demand transfer learning to be
made carefully, since policies can be ranked differently de-
pending on whether policy is used only for execution or to
transfer learning. Our experiments may stimulate further re-
search to explain why we got such results. There is still much
to be explored in the exploitation-exploration dilemma.
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