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Abstract 
Systems biology, the study of the intricate, ramified, com-
plex and interacting mechanisms underlying life, often 
proves too complex for unaided human understanding, even 
by groups of people working together. This difficulty is ex-
acerbated by the high volume of publications in molecular 
biology. The Big C (‘C’ for Cyc) is a system designed to 
(semi-)automatically acquire, integrate, and use complex 
mechanism models, specifically related to cancer biology, 
via automated reading and a hyper-detailed refinement pro-
cess resting on Cyc’s logical representations and powerful 
inference mechanisms. We aim to assist cancer research and 
treatment by achieving elements of biologist-level reason-
ing, but with the scale and attention to detail that only com-
puter implementations can provide. 

 Reading about Complex Mechanisms   
While the current state of the art provides shared vocabu-
laries and curated facts about complex mechanisms such as 
systems biology at enormous scale and with enormous 
utility, the representations used do not approach the level 
of detail (or the expressive power) found in a scientific 
paper. Manual curation of an expressive detailed 
knowledge base at that level of detail is infeasible, espe-
cially given the combined volume of the relevant literature. 
Moreover, the current state of automatic relationship ex-
traction (Cohen and Hersch, 2005) and inference, within 
systems biology, does not provide models with the power 
to answer complex questions about biological pathways’ 
functions and dynamics, or to automatically suggest model 
extensions and abstractions. In this paper, we present our 
plan for, and early experience constructing, The Big C (‘C’ 
for Cyc), a system that, as part of DARPA’s Big Mecha-
nism effort (DARPA, 2014), will enable the construction, 
maintenance and use of cancer mechanism models of un-
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precedented complexity via a hyper-detailed reading and 
refinement process resting on Cyc’s uniquely faithful con-
textual higher-order logic representations, and its uniquely 
powerful inference mechanisms (Lenat, 1995)(Lenat et al., 
2010). We believe formation of such detailed explicit 
models from textual big data, allowing for automated rea-
soning, will become an increasingly powerful alternative 
and adjunct to the currently widespread use of statistical 
inference to form implicit models. The data scale for The 
Big C is daunting – PubMed adds more than 160,000 can-
cer-related papers per year (Corlan, 2004) and the UniProt 
protein database alone has more than half a million curated 
entries. 
 Figure 1 outlines the architecture of The Big C.  Schol-
arly Big Data of two kinds are processed: research publica-
tions and structured biomedical data.  Once a paper is part-
ly read, Cyc forms biological hypotheses; these hypotheses 
are subsequently independently verified using Cyc’s exist-
ing knowledge and loaded data-sources, or by additional 
system-initiated reading. 

We illustrate in this paper examples of how these mech-
anisms can support biologist-level reasoning, but with the 
scale and attention to detail only computer implementa-
tions can provide. We hope to accelerate cancer research 
by:  

� moving from text search and link graphs towards 
full question answering; 

� holistic analysis across papers, including automat-
ed detection of contrary evidence, including for 
example: detecting claims made in a publication, 
giving a citation which does not actually make 
that claim; 

� notifying researchers when there is a new finding 
relevant to some of their own models. 
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Because The Big C is a uniform mechanism, straightfor-
ward extensions could incorporate drug effects and indi-
vidual patient (and cancer) genome information, working 
towards the promise of personalized medicine based on all 
current research. Moreover, the same modeling techniques 
can be applied to other fields in biology and beyond. 

 Use Case: Modeling Tumor Virus Pathways 
The Big C system will read material like the 1988 paper 

of Whyte et al., “Association between an oncogene and an 
anti-oncogene: the adenovirus E1A proteins bind to the 
retinoblastoma gene product”, the abstract of which is 
reproduced in Figure 2 (Whyte et al., 1988). This paper 
was, perhaps, the initial triggering evidence for under-
standing the tumor virus mechanism in some detail (via co-
precipitation of cellular and viral proteins); it demonstrated 
that an oncoprotein synthesized by cells infected with ade-
novirus binds directly to pRb, the protein encoded by the 
Rb gene. Implication of this protein, pRb, in tumor for-
mation, the fact that the oncoprotein binds preferentially to 
minimally phosphorylated pRb, and the fact that pRb 
phosphorylation is greater in the late “G1” phase of the cell 
cycle, when the cell is committed to reproducing, than in 
the earlier stages of G1, led to the discovery that pRb gates 
cellular reproduction by sequestering E2F transcription 
factors. When these E2F factors are released as a result of 

phosphorylation or by pRB forming a complex with an 
oncoprotein, they enable transcription of genes leading to 
late G1 and S-Phase resulting in cellular reproduction. 
Normal phosphorylation is reversed after this point, but 
pRb sequestration by the oncogene is not, leading to unre-
stricted cellular reproduction: the R-point G1 gate has been 
disabled. 

Given a scientific paper, The Big C will assemble the 
evidence into a model, like that in the previous paragraph, 
summarize, explain, and answer questions about that mod-
el, and form hypotheses, some of them scientifically inter-
esting like the two hypotheses italicized in: 

“One of the most important – and most curious – dis-
coveries of the 1990s was that virtually all DNA tumor 
viruses [...] encode proteins that inactivate both Rb and 
p53. [...] why should these have been singled out for inac-
tivation [...]? The answer may be that it is almost impossi-
ble for a tumor of epithelial origin to form unless the p53 
and Rb tumor-suppressor pathways have been inactivat-
ed. We predict that most of the cancers that now appear to 
be devoid of mutations in these two pathways will eventu-
ally be shown to contain them.” (Vogelstein and Kinzler, 
2004)  

The Big C offers the promise of greatly reducing re-
searcher effort in forming hypotheses. The passage shown 
in bold above generalizes over the contents of a great many 

Phase 2: 
Hypothesis Generation for Pathway extension 

CYC 

Research Publications 
(millions of papers) 

Structured Biology Data 
(billions of facts) 

H1 H3 H2 

Test the hypothesis against what Cyc knows and 
what it gets from Big Data sources 

Phase 1:  
Read into Cyc 

Figure 1: Basic architecture of The Big C; the hypothesis cycle builds connected models from papers and facts 

Figure 2: Big C will read, assemble, and explain the cancer pathway literature, like this example from White et al. (1988). 

Semantic index 
Parallel Big C Driver based on Apache Spark: 
Organizes parallel parsing and hypothesis formation for model 
extension. Maintains semantic index for active reading. 
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oncogenesis pathways, and then, based on the nature of 
identified commonalities, gives rise to a hypothesis, which 
may be supported or refuted by further evidence in the lit-
erature or specific research. The current state of the art in 
biomedical information extraction cannot read relation-
ships of sufficient complexity to represent the pRb model, 
and the representations used are not inferentially powerful 
enough to enable either the generalization in bold or the 
consequent hypothesis in italics1. We aim to read to formal 
representations with expressivity close to English, but sup-
porting the maintenance and elaboration of a network of 
inferentially productive mechanism models, supporting 
active hypothesizing and confirmation of extensions, and 
supporting rich question answering and model description.   

Background Knowledge and Curated Fact Sets 
A significant fraction of the knowledge that The Big C will 
assemble into mechanisms will be found in existing formal 
biological knowledge sources, including the sources com-
prising the 3.5x109 RDF triples of Bio2RDF (e.g., Go, 
OBO, iProClass, etc.) (Belleau et al., 2008) (Callahan et 
al., 2013). These can be mapped into the KB using the Cyc 
SKSI facility, which, after the schemata of databases and 
SPARQL endpoints have been described using a schema 
mapping tool, allows their content to be used in inference 
as if it were represented directly (Masters and Güngördü, 
2003). However, the simplicity of the knowledge represen-
tation language used in these existing sources limits both 
their scope for fully representing the content of a scientific 
paper, and the complexity of the reasoning that can be di-
rectly performed with them, even when integrated with a 
single ontology (Callahan et al., 2013). For this reason, 
while we will map such sources for use by Cyc, we will 
also use the Cyc Semantic Construction Grammar (SCG) 
language-to-logic system to actively read model-salient 
material into the highly expressive CycL language. SCG 
coverage will be critically dependent on the use of gene 
and protein identifiers and types from external curated 
sources. 

Reading with Semantic Construction Grammar 
The Cyc SCG parser actively uses existing knowledge 
when extracting usable semantics expressed in natural lan-
guage. We enable this by describing SCG constructions: 
semantically constrained structures in a natural language 
(like English), for which logically composable logical rep-
resentations can be produced. The approach, which was 
inspired both by work in the 1970s by Charles Fillmore 
that lead to FrameNet (Fillmore, 1976), and by Carnegie 
Mellon University researchers on Example Based Machine 
Translation (Brown, 1996), is, in its first implementation, 

                                                 
1 For a survey of recent related research in biomedical information extrac-
tion, c.f. Pyysalo et al. (2013), Preiss (2014).  

non-syntactic; it relies on recursively finding sequences of 
semantically understood elements and surface word forms 
for which a precise semantics can be assigned. In SCG, 
precise semantics are assigned to sentence elements using 
the CycL language, which offers a good combination of 
representational power and vocabulary, and is directly usa-
ble in inference.  

The SCG system relies on three reasoning processes: 
lexical matching, taxonomic generalization, and semantic 
verification. First, it matches terms and phrases in the natu-
ral language input to logical symbols, from the Cyc vocab-
ulary2 and curated data-sources, yielding a sequence of 
uninterpreted lexical items (mostly closed class “structur-
al” terms) and perhaps several hypothesized semantic in-
terpretations of each recognized term. Unknown words 
(such as new proteins) can also be assigned semantics by 
specialized “unknown word” constructions. Each alterna-
tive semantic term is then generalized using the Cyc “isa” 
and “genls” taxonomies. The Cyc KB is very large and 
detailed, so this generalization may go through tens of lev-
els before terminating at “Thing”. Each path through these 
generalized partial interpretations is then matched against 
the full set of templates. When a match is found, the tem-
plate semantic roles are replaced by the logically interpret-
ed terms in the matching language, and the resulting typed 
logical expression becomes a hypothesized interpretation 
for the covered section of language. This process continues 
until no new matches are possible, resulting in one or more 
logically consistent full interpretations of the input text, or 
in islands of such interpretations within the text. This pro-
cess can be applied in parallel across all papers, or on de-
mand, based on hypothesis-driven search in a semantically 
tagged index. While the resulting interpretations are always 
syntactically correct logical strings, some of them are 
meaningless, and can be eliminated by inference; that is, 
by Cyc proving that either there is no possible world in 
which the logical statement can be true, or that there can-
not be the sort of thing, in the universe, that the sentence 
describes, or merely that what is described is extremely 
unlikely to exist.3 SCG’s recursive matching and powerful 
use of reasoning for verification are significant advances 
on template techniques previously applied successfully to 
biomedical IE, e.g., Yu and Agitchen (2003). As well as 
using local text, the current SCG parser can also instantiate 
meanings in the logic from anaphoric referents. 

                                                 
2 The Cyc vocabulary contains logical symbols for hundreds of thousands 
of concepts, and is available under a CC-by license as OpenCyc, meaning 
that the results of The Big C reading can be reused without hindrance. 
3 These proofs are done by incomplete inference over the whole KB, and 
may, of course, be incorrect. As a practical matter, though, they are usual-
ly correct, and are extremely useful for eliminating incorrect interpreta-
tions. 
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Figure 3 shows the inferentially productive logical output 
of the SCG parser for the first sentence in the abstract in 
Figure 2. Similarly, the italicized portion of (Sent. 2) “Pre-
viously, this protein has been shown to form stable pro-
tein/protein complexes with the E1A polypeptides, but its 
identity was unknown.” is parsed (including a semantic 
anaphor search) to:  

while (Sent 3.) “Here we demonstrate that it is the product 
of the retinoblastoma gene,” is translated to: 

These three sentences read together are sufficient to ex-
plain the title of the paper, which supports their correctness 
for assembly into a cancer mechanism model, as we shall 
see later. The sentence that starts “The interaction between 
E1A and the retinoblastoma gene product…” illustrates the 
utility of inference during parsing: although “the reti-
noblastoma gene product” here clearly refers to a protein, 
due to its interaction with E1A (itself ambiguous between a 
gene and a protein), on the syntactic face of it, this refer-
ence could have, incorrectly, been to (ProductFn RB1-
Human-GIS), a version of the genetic information itself 
offered for sale. This implausible interpretation can only be 
removed on semantic grounds, either because such prod-
ucts are unlikely (by virtue of any Gene-GIS being an im-
plausible product) or because a product interacting with a 

gene or a protein is unlikely, if not logically impossible. 
Similarly, a syntactically tempting partial parse of “the 
process of transformation […] is a 105K cellular protein” 
is blocked because it can be proved that no process is a 
protein. The Big C is, in this sense, uniform: reasoning 
about combining components of interpretations during 
reading uses the same inference methods as assembly, and 
those methods, in turn, are used to support explanation.  

Major Challenges 

Extending and Improving SCG Reading 
We envision evaluation-driven extensions to the SCG 
reader in The Big C, including:  
(1) Where available, incorporating biomedical NER and 

shallow relation extraction to provide soft type and re-
lation hypotheses4;  

(2) Incorporating syntactic as well as semantic features as 
constraints on some constructions whose purely se-
mantic selectivity is too low;  

(3) Incorporating The Big C’s assembly model theory (Mt 
– see below) into reading, so that interpretations track 
which models support them;  

(4) At least partially automating the discovery of semantic 
constructions by extending the generalization and pat-
tern induction techniques that have been previously 
applied for shallow fact extraction. 

To support hypothesis driven reading, we will build an 
index based both on document text and on the relatively 
inexpensive part of the parsing process: lexical tagging of 
the terms currently represented in The Big C’s KB, fol-
lowed by generalization. This will allow us to find, for 
                                                 
4 By soft hypotheses we mean hypotheses that can be over-ridden by SCG 
constraints – a “peptide” NER tag for EA1, for example, could be over-
ridden by a construction that required a gene. 

Figure 3: SCG applies the construction in “Provenance” to recursively combine other interpretations, completing the sentence. 

(proteinMoleculeTypesFormComplexOfType 
  (GeneProductTypeFn E1A-HumanAdenovirus5-GIS) 
  (InstanceWithRelationFromFn  
    PeptideMoleculeTypeBySourceGene objectActedOn-TypeType 
      (ViralTransformationSubprocessTypeByGISTypeFn  
         E1A-HumanAdenovirus5-GIS)) 

(coExtensional  
  (GeneProductTypeFn RB1-Human-GIS) 
  (InstanceWithRelationFromFn PeptideMoleculeTypeBySourceGene 
     objectActedOn-TypeType  
     (ViralTransformationSubprocessTypeByGISTypeFn  
        E1A-HumanAdenovirus5-GIS))) 
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example, any reference to HumanAdenovirus5 if an as-
sembly task is seeking knowledge about tumor viruses. 

Maintaining Interpretations and Hypotheses 
Our aim is to combine curated facts and entities from ex-
ternal sources, detailed knowledge read by SCG, extracted 
relationships (perhaps with associated probabilities) from 
other IE techniques, and both supported and unconfirmed 
hypotheses into a set of connected, compact, and locally 
consistent theories about mechanisms. Previous work has 
approached assembly by attachment to a simple ontology 
(Coulet et al., 2011), but the representation language used 
has limited the detail and inferential power of the resulting 
models.  

Our approach rests on maintaining a set of Cyc mi-
crotheories representing consistent possible mechanisms 
(Mechanism Theories based on Cyc Microtheories, or 
Mts), and on active extension via hypothesis of those theo-
ries. When a newly read fact-candidate, such as those 
above, becomes available, it will be considered for incor-
poration into theories to which it is relevant and with 
which it is consistent: Mts that have “binding sites” for the 
new assertion. Forward chaining inference based on each 
addition and the content of the theory may enrich the mod-
el directly (for example, confirming a causal link may ena-
ble the conclusion that a particular gene gates an entire 
cellular process), or allow the establishment of a mecha-
nism hypothesis later confirmed by active reading. This 
notion originates with Swanson’s ABC model (Swanson 
and Smalheiser, 1996): A influences B, B influences C, 
therefore A might influence C; we will greatly extend and 
specialize such rules for hypothesis formation. Resulting 
hypotheses will be stored in hypothesis microtheories (Ht) 
associated with each Mt, and will generally be maintained 
by Cyc forward inference with truth maintenance.  

As an example, a statement that protein A affects the ac-
tivity of protein B supports a (weak) hypothesis that pro-
tein A initiates inactivation by phosphorylation of protein 
B. However, it certainly does not entail such involvement. 

An example hypothesis formation rule, whose conclu-
sion provides possible targets for confirmatory reading, 
follows: (1) If a cellular protein X is affected by a process 
caused in part by protein Y, hypothesize that X is inactivat-
ed by hyperphosphorylation in a pathway initiated by Y 
(this rule is expressed in logic in Figure 4) 

Other hypothesis rules (directly relevant to our reading 
example) include: (2) If a cellular protein X forms a stable 
complex with a viral protein, hypothesize that X is inacti-
vated by phosphorylation within some pathway; and: (3) If 
a cellular protein X is affected by a sub-process of a viral 
transformation caused by the viral protein Y, hypothesize 
that X is inactivated by forming a stable protein/protein 
complex with the viral protein. Making use of background 
knowledge about the viral origin of E1A, rule 2’s conclu-

sion would raise the hypothesis that pRb is inactivated by 
phosphorylation. If that hypothetical conclusion is already 
part of or provable from the Mt, then applicability scores 
can be raised for the Mt itself, the conclusion, the trigger-
ing facts, and the SCG patterns (or external data sources) 
that produced them. In the case of the Mt, this will raise the 
likelihood that new facts that share terms with it (e.g. fur-
ther facts read or retrieved about E1A or pRb) will be test-
ed as possible extensions. Similarly, searching for and suc-
cessfully performing active reading on material that vali-
dates the hypothesis would raise these scores. More simp-
ly, non-hypothesizing rules (such as the existing Cyc rule 
that S-Phase follows G1-Phase) will increasingly often 
entail what is read with respect to an accurate model; at-
tempts to elaborate an Mt with a read or ingested assertion 
that is already provable in that Mt can cause similar 
rescoring. In this way, The Big C can learn to do more ef-
fective reading and more effective inference, and can main-
tain focus on expanding a set of most promising models. 

While these general molecular biology rules will often 
have to be manually generated (in consultation with our 
Mayo Clinic SMEs) and while the inference process may 
be complex, using as it does the full current state of The 
Big C’s KB, the basic process of maintaining mechanism 
theories (Mts) could sound straightforward as stated, but it 
is not. Uncertainty in both the reading process and in the 
nature of the scientific claims being made means that it 
will frequently be necessary to frame several competing 
interpretation hypotheses or predictions. This, combined 
with the sheer bulk of the cancer pathway literature sug-
gests that a very large number of candidate mechanisms 
may have to be maintained on the path to finding those that 
comprehensively and consistently integrate what is known. 
This model explosion is mitigated in part by Cyc’s treat-
ment of theories as first class objects – theories about larg-
er mechanisms can inherit and share claims from theories 
about sub-mechanisms, and vice versa. Alternative theories 
then need only explicitly represent their differences, while 
retaining their full inferential scope. Despite this ad-
vantage, we expect that research will be required to miti-
gate model-assembly cost.  

Figure 4: Rules like this form hypotheses from read material 

(implies  
 (and (ist ?MODEL-EXT  (and   
    (genls ?CELLP CellularProteinMolecule) 
    (genls ?PROTEIN-TYPE ProteinMolecule) 
    (someTypePlaysRoleInSituationType ?PROC ?CELLP objectActedOn) 
    (someTypePlaysRoleInSituationType ?PROC ?PROTEIN causalActors))) 
  (hypothesisContextForModelExtension ?MODEL-EXT ?HYPOTH-MT)) 
 (ist ?HYPOTH-MT (thereExists ?PATHWAY  (and  
  (biochemicalPathwayTypeInitiatedByType ?PATHWAY ?PROTEIN) 
  (biochemicalPathwayTypeStepTypes ?PATHWAY  
    (HyperphosphorylationOfTypeFn ?CELLP)) 
  (causes-SitTypeSitType   (HyperphosphorylationOfTypeFn ?CELLP)) 
   (InactivationOfProteinMoleculeTypeFn ?CELLP)))))) 
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Conclusion 
A researcher reading about the viral cancer mechanisms for 
Adenovirus, HPV, and SV40 can see that they share a 
common form. From that, it is reasonable to hypothesize, 
as Vogelstein and Kinzler (2004) did, that all viral cancer 
pathways share this form. The goal of The Big C is to form 
such mechanism summaries, and such scientifically mean-
ingful hypotheses. The Big C’s use of a mechanism theory 
(Mt) graph makes this possible. Repeated assertions from 
these mechanisms will have been moved to a shared gener-
alization Mt during assembly, leaving three sibling graphs 
with only the differences (the virus, the viral protein, and, 
in the case of HPV only, the subsequent pRb degradation). 
This sibling status is important, as is the separation of dif-
ferences into their own Mts: it makes generalization tracta-
ble. Similar to the Semantic Construction Grammar's 
search in generalization space for a matching semantic 
pattern, The Big C will generalize predicates and terms in 
sibling Mts until it finds a common theory or a generaliza-
tion threshold is reached. We expect that subject matter 
experts will be able to make use of the English translation 
(i.e., an automatically generated English version of the 
formal logical representation within The Big C) of both (1) 
the general theory, added to the mechanism (Mt) graph, 
and (2) the generalization pattern (what had to be general-
ized, and how), represented as a universal hypothesis. As 
more data is read, the number of these sibling models 
which logically agree (which differ only in the specific 
provenance of some of their facts) is likely to increase; the 
existence of multiple supports with varying provenance, of 
this type, will be recorded during abstraction, and will in-
crease the score of the resulting model. Similarly, we hope 
for useful integrative results that could not easily be 
tracked by people, for example, alerting researchers when a 
new result is reported which calls into question a whole 
"ripple" of earlier research which depended on an earlier, 
now-questionable hypothesis or, worse, what appeared to 
be a well-known result. Our plan is for The Big C to effec-
tively perform a useful "first pass" over large collections of 
scientific papers, providing crucial visibility into otherwise 
disparate literature and information stores. Our hope is that 
this will result in novel and effective personalized cancer 
treatments. 
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