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Abstract
The timely detection of leaks in water distribution systems
is critical to the sustainable provision of clean water to con-
sumers. Increasingly, water companies are deploying remote
sensors to measure water flow in real-time in order to detect
such leaks. However, in practice, for typical District Meter-
ing Zones (DMZ), financial constraints limit the number of
deployable real time flow sensors/meters to one or two, thus
constraining leak detection to be based on the aggregated
flow being monitored at these point. Such aggregated flow
data typically exhibits input signal dependence whereby both
noise and leaks are dependent on the flow being measured.
This limited monitoring and input signal dependance make
conventional approaches based on simple thresholds unreli-
able for real time leak detection. To address this, we propose a
Gaussian process (GP) model with an additive diagonal noise
covariance that is able to handle the input dependant noise
observed in this setting. A parameterised mean step change
function is used to detect leaks and to estimate their size. Us-
ing prior water distribution systems (WDS) knowledge we
dynamically bound and discretize the detection parameters of
the step change mean function, reducing and pruning the pa-
rameter search space considerably. We evaluate the proposed
noise scaled GP (NSGP) against both the latest research work
on GP based fault detection methods and the current state of
the art and applied leak detection approaches in water distri-
bution systems. We show that our proposed method out per-
forms other approaches, on real water network data with syn-
thetically generated time varying leaks, with a detection ac-
curacy of 99%, almost zero false positive detections and the
lowest root mean squared error in leak magnitude estimation
(0.065 l/s).

1 Introduction
The provision of clean water has been a primary source of
concern for civilisations since ancient times. Despite major
advances in science and technology over the centuries, many
parts of the world still suffer from clean water shortages. The
World Health Organisation estimates that 783 million peo-
ple (i.e. one in ten) in the world are deprived of safe wa-
ter. In light of this scarcity, the efficient use and conserva-
tion of water resources is of utmost importance. Leaks are
a major cause of water loss. In urban areas leakage in wa-
ter distribution networks can be as high as 70% (SWAN
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2011), thus early detection of leaks is critical to maintain-
ing water supplies. In the context of water utility compa-
nies, leaks result in revenue loss. An obvious solution is
to install sensors at every location within a District Meter-
ing Zones (DMZ) - an isolated monitoring area consisting
of a few 100 to 2000 properties, which would facilitate the
rapid detection of leaks at street level. However, this is of-
ten financially infeasible. Therefore typically, just one flow
meter is installed at the point where the DMZ connects to
the rest of the network. The aggregated flow readings at
this point represent the current water demand/consumption
within the DMZ. Detecting leaks at this point is challenging,
particularly small leaks, as they do not produce a significant
increase in the aggregated DMZ level flow. Also, because
flow and pressure within the DMZ are not only correlated
but also affect the noise levels associated with the readings
being taken, such that - an increase in the demand/flow de-
creases pressure and an increase in the supplied pressure in-
creases the flow within the pipes, in turn not only increasing
the noise levels associated with the readings being taken but
also the leak magnitude (if a leak is present in the system
at that time), both leaks and the noise in the observed flow
readings in the system are dependent on the inputs. This in-
put dependent and time varying noise is often referred to
as heteroscedasticity). Besides leaks, genuine customer con-
sumption can also cause an unexpected increase in the flow
e.g. fire fighting, or high demand during a festival. Thus the
duration of the unexpected increase must be taken into ac-
count before attributing it to a leak. For financial account-
ability, quantification of the water loss during a leak, is of
equal importance for the water companies. Given the nature
of the leaks and monitoring requirements in a DMZ we can
list the requirements for a practical leak detection solution:

1. Timely detection of leaks when only limited water net-
work data is available i.e using only aggregated DMZ
level flow/pressure measurements.

2. Distinction of legitimate short term increase in water con-
sumption from leaks.

3. Estimation of the leak magnitude to quantify water loss.
Now, there is a large collection of research work from
various domains applied to, both the general area of
fault/anomaly detection and the specialised area of leak de-
tection in water networks (Zhang and Ding 2008; Chandola,
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Banerjee, and Kumar 2009; Hwang et al. 2010; Verde et al.
2008; Colombo, Lee, and Karney 2009; Puust et al. 2010;
De Silva et al. 2011). However, these approaches are un-
suitable and generally perform poorly as suffer from one or
more of the following shortcomings:

1. Gaussian noise assumptions: Given the heteroscedasticity
of this setting, detection approaches that assume the ob-
servation noise to be a constant Gaussian result in false
positive detections at times of high variations in the con-
sumption (water flow rate).

2. Assumption of leak independence: Most approaches in
the literature assume the leak at time t to be indepen-
dent of leaks at other times. Thus, they perform a point
estimate of the leak at every new observed flow reading
independent of the historic data. However, leaks in real-
ity remain in the system until they are fixed. Given our
requirements, point estimation of leaks can result in legit-
imate short term increase in consumption being flagged as
a leak (false positives) or non-detection for small leaks at
times of high flow variance (false negatives).

3. Timely/online leak detection: Leaks must be detected and
reported in realtime. Some approaches only use a sub-
set of data (e.g. one minimum variance point per day) to
detect leaks or cannot be run in an online setting (batch
mode detection approaches). These approaches normally
result in unacceptable large leak detection/reporting times
e.g. 24 hour or more.

Now, leak detection from flow data is a form of time se-
ries analysis and in this space Gaussian processes (GP) are
gaining much attention, as they facilitate flexible and an-
alytic inference in a fully Bayesian nonparametric setting.
Recent works on fault/change point detection using GPs,
have tried to address problems similar to leak detection
(Garnett et al. 2010; Osborne, Garnett, and Roberts 2010;
Osborne et al. 2012). However, these approaches, when ap-
plied to leak detection, again suffer due to the Gaussian noise
and leak independence assumptions discussed above.

To address these shortcomings, in this paper, we propose
an alternate GP based model which exploits the fact that
water consumption (within a DMZ) follows a deterministic
pattern which is periodic at seasonal, monthly and weekly
scales. To incorporate this, we firstly use a weekly moving
window on the data being modelled. Secondly we define two
vectors, the weekly mean and weekly variance which are
computed from the historic aggregate flow data. We then use
the weekly mean vector as a GP prior mean. This method-
ology intrinsically incorporates seasonal and monthly vari-
ations in to the GP. Now, in a standard GP, the observa-
tion noise is assumed to have a constant Gaussian vari-
ance. Modelling heteroscedastic noise in a GP results in a
non-closed form likelihood expression and intractable inte-
grals for the posterior. To address this approximate meth-
ods to incorporate heteroscedastic noise have been proposed
(Goldberg, Williams, and Bishop 1997; Kersting et al. 2007;
Lazaro-Gredilla and Titsias 2011). However, it has been
shown that these approximations and/or variational based
approaches in GP result in under estimation of the poste-
rior variance, which in case of leak detection would result in

false positives (Kuss and Rasmussen 2005; Consonni and
Marin 2007). To avoid this problem, we model the noise
variance in the GP as an additive diagonal noise covariance
kernel (Venanzi, Rogers, and Jennings 2013). This not only
allows us to model the input dependent noise more accu-
rately but also results in a closed form likelihood expression
and tractable inference. Subsequently, leak detection is done
via an additive parameterized step change mean function.
The parameterization captures the properties of the leak we
are interested in learning e.g. leak start time and leak mag-
nitude, which allows us to not only detect a leak, but also,
quantify the leak magnitude. The resulting model has the ad-
vantage of modelling a leak as being independent of the un-
derlying normal operational model. This leads to a more ac-
curate depiction of the physical leak process, since leaks re-
sult in sudden sustained additions uncorrelated to the origi-
nal underlying consumption patterns. For each new observed
flow reading, based on our knowledge of the WDS, we place
dynamic bounds and then discretize the leak magnitude pa-
rameter (details in Section 5). This allows us to automati-
cally prune our leak parameters search space resulting in a
robust and fast detection approach that can be used in an on-
line setting. Given this, we extend the state of the art in the
following way

• We propose a novel GP based model, the Noise Scaled
GP (NSGP), for water distribution systems that can han-
dle heteroscedasticity and has a closed form likelihood
expression resulting in tractable inference.

• By parameterizing the proposed GP, we model the physi-
cal leak process in a way that allows us to use WDS do-
main knowledge to dynamically bound the leak detection
parameters, at each step, resulting in a fast leak detec-
tion and quantification method that can manage sustained
leaks with high detection accuracy.

• By comparing the performance of our NSGP with both
state of the art in GP based fault detection algorithms and
current applied leak detection approaches in the water in-
dustry, on real data with simulated time varying leaks, we
show that our proposed NSGP outperforms the state-of-
the-art by achieving detection accuracies of 99%.

The remainder of the paper is arranged as follows. In Sec-
tion 2 we introduce GP and briefly discuss hyper-parameter
learning. Section 3 describes our Noise Scaled GP model
for modelling water network data. In Section 4 we de-
tail how the proposed model can be parameterized to de-
tect leaks. Section 5 describes the hyper parameter learning
schemes we use. Our results and comparison with selected
approaches is presented in Section 6.

2 Gaussian Processes
Formally a GP can be defined as a stochastic process defin-
ing a distribution over functions H → R such that the GP
evaluated at any finite subset F ⊂ H is a multivariate Gaus-
sian distribution. A GP can be completely defined by a mean
function, m(.) and a positive semi-definite covariance func-
tion, k(., .). Given the observed values, y = y1 . . . yn, of a
function f at a set on inputs x1 . . . xn, the observed sample
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Figure 1: (a) Four week flow data showing similarity in weekly consumption patterns and the calculated weekly mean. Flow
measured in litres per second (l/s). (b) Showing consumption patterns on Monday across four weeks and the computation of
weekly mean and variance vectors.

can be thought as being drawn from a multivariate Gaussian
distribution. Assuming a GP prior on f the prior distribution
can be given as:

p( f |x, θ) = N (m(x; θ), k(x, x; θ))

where k(x, x; θ) is the positive semi-definite covariance ma-
trix and θ is the set of hyper-parameters that characterise the
mean and covariance functions. However, often the observed
data, y, is a noise corrupted version of the true underlying
function f which is not known. In such cases, if the noise is
assumed to be zero mean Gaussian i.i.d, ε ∼ N(0, σ2), then
the prior distribution can be written as:

p(y|x, θ) = N
(
m(x; θ), k(x, x; θ) + σ2I

)
(1)

It can be shown (Rasmussen and Williams 2005) that the
posterior predictive density given a set of test points x∗ can
be given as:

p(y∗|x∗, x, y, θ) = N (y∗; m(x∗|y, x, θ),Σ(x∗|y, x, θ)) (2)

m(x∗|y, x, θ) = m(x∗) + K(x∗, x)K−1
y (y − m(x)) (3)

Σ(x∗|y, x, θ) = K(x∗, x∗) − K(x∗, x)T K−1
y K(x∗, x) (4)

Ky , K(x, x) + σ2I (5)

The hyper-parameters, θ, can be optimised by maximising
the log marginal likelihood given as (Murphy 2012):

log p(y|x) = logN (y|m,K))

= −
1
2

(
(y − m)K−1(y − m) + log |K| + N log (2π)

)
(6)

With the expression for the marginal likelihood (6) any stan-
dard gradient-based optimiser can be used to estimate the
kernel parameters. Having defined the basic GP structure,
we now proceed to elaborating our GP based model for wa-
ter distribution system.

3 Noise Scaled GP for Leak Detection
Within a DMZ the consumption between consecutive weeks
tends to follow a very similar periodic pattern (see Figure
1(a)). On a weekly scale the consumption at a particular time

in a day can be modelled as a function of the historic read-
ings at the same time in the previous week/s. Similarly the
variations in the readings at a particular time in the week
can also be modelled as a function of the historic variations
(see Figure 1(b)). To incorporate this in the GP framework,
we firstly define a weekly moving window on the data be-
ing modelled. Secondly, we define two vectors, the weekly
mean (mw) and weekly variance (σ2

w). Assuming sensor data
is discrete (with readings taken at fixed time intervals), the
weekly means and variances vectors consist of a mean and
variance value for each reading time slot, t, in a week i.e.
mw(t) and σ2

w(t), where each mean and variance value is
computed from the historic flow data using a moving av-
erage window of four weeks (see Figure 1(b)) as:

mw(t) =
1
4

4∑
i=1

yi(t)

σ2
w(t) =

1
4

4∑
i=1

(yi(t) − mw(t))2

The weekly mean vector can be easily modelled as a GP
prior mean (Rasmussen and Williams 2005). However, het-
eroscedastic noise, in GP models results in a non-closed
form likelihood expression. A tractable exception can be de-
rived with the assumption of independence between noise
variances (Venanzi, Rogers, and Jennings 2013). Given our
model, we assume that the observed noise variance at time
t is independent of the noise variance at t

′

i.e the values in
the weekly variance vector are independent. This allows us
to assume the noise at each time slot, t, to be Gaussian. The
weekly variance, σ2

w, is incorporated in our GP model as a
diagonal noise matrix, Θ = σ2

wI, which is added to the GP
covariance structure k(t, t; θcov) parameterised by θcov. Hav-
ing defined the mean and covariance structure for the GP,
the prior (1) and posterior predictive distribution (2) can be
re-written as:

p(y|t, θcov) = N
(
y; mw(t), k(t, t; θcov) + σ2

w(t)I
)

(7)

p(y∗|t∗, t, y, θcov) = N (y∗; m(t∗|y, t),Σ(t∗|y, t, θcov)) (8)
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where

m(t∗|y, t) = mw(t∗) + K(t∗, t)K−1
y (y − mw(t)) (9)

Σ(t∗|y, t, θcov) = K(t∗, t∗) − K(t∗, t)T K−1
y K(t∗, t) (10)

Ky , K(t, t) + Θ (11)

Θ = σ2
w(t)I (12)

Using diagonal noise matrix, Θ, inherently adds a bias to the
diagonal of the covariance structure that reflects the actual
variations in data and thus providing better handling of the
input dependent noise in the underlying system.

4 Leak Detection and Quantification by
Parameterizing the GP

We now return to the problem of leak detection and quan-
tification. Leaks are non-deterministic and cause an increase
in the measured flow thus changing the characteristic of the
underlying system for the duration of the leak. This devia-
tion from normal behaviour can be used to detect leaks in the
system. Recent works on GP based fault/change-point detec-
tion (Garnett et al. 2010) propose various kernels to detect
different types of faults. Out of these, of particular relevance
to leak detection problem is the bias fault kernel (Garnett
et al. 2010) which models faulty readings as a simple offset
from the true values by some constant amount. We use the
same approach to model a step change mean function, ml,
parameterized by θl = {θloc; θmag}; where θmag models the
magnitude of the leak and θloc represents the starting loca-
tion of the leak, as:

ml(t; θl) =

{
zero if t < θloc
θmag if t ≥ θloc

}
We incorporate this in our GP model by defining the GP
prior mean as a composite mean function, mc, which is a sum
of the weekly mean and the step change mean function re-
sulting in a semi-parametric GP (Murphy 2012). Given this
equation (9) can be rewritten as:

m(t∗|y, t) = mc(t∗) + K(t∗, t)K−1
y (y − mc(t)) (13)

Since mc(t) = mw(t) + ml(t; θl), we can train the GP on data
without leaks by setting ml(t; θl) to zero.

5 Hyperparameter Management
In this section we describe how the two sets of hyperparam-
eters i.e. the covariance hyperparameters, θcov, and the mean
hyperparameters, θl, are learned and how the two learn-
ing schemes are interwoven. In our model θcov represents
the correlations in the DMZ flow/demand when there is no
leak in the system. We use a squared exponential kernel,
kse(t, t

′

) = σ2
out exp(−(t − t

′

)2/2l2), to model these correla-
tions (for a discussion of kernel types see Rasmussen and
Williams 2005). Thus in our model the hyperparameters in
θcov are the length scale l and the output variance σ2

out. We
find the optimal values for these by setting ml(t; θl) to zero
and then using gradient decent search to train the GP on four
weeks of aggregated flow data (Rasmussen and Williams
2005).

Once the GP is trained, for new observed flow values, de-
tection is done over a moving window of one week by learn-
ing the mean function hyperparameters, θl = {θloc; θmag}, us-
ing a bounded search process. At each time step, t, both θmag
and θloc are bounded based on the observed flow. The leak
location parameter, θloc, is bounded by our data modelling
window of one week. For a new observed flow value, y(t), at
time, t, the leak magnitude will always be between mw(t) and
y(t). The leak at a particular time can not be more than the
observed flow reading, y(t), and less than the historic weekly
mean, mw(t). An observed flow value less than the historic
mean suggests a reduction in water flow where as a leak al-
ways produces an increase. Thus, at a particular time slot,
t, if y(t) − mw(t) < 0, then search for θloc at that particular
time slot, t, can be pruned. These bounds reduce the leak pa-
rameter search space considerably. In case y(t) − mw(t) > 0
or a set min threshold value, we discretize the possible θmag
values by sampling five consecutive equidistance values be-
tween the upper and lower bounds, y(t) and mw(t). Exhaus-
tive search is then used to find both a single θmag (out of the
discretized possibilities) and a θloc value (out of all possible
time slots in a week) that yields the lowest negative log like-
lihood. It must be noted that by modelling the leak as a para-
metric mean function we have explicitly made the leak inde-
pendent of the correlations in the observations and observa-
tion noise model under no leak conditions. This leads to a
better modelling of the actual physical leak process as leaks
are un-correlated additions to the underlying latent process.
Furthermore, when learning the leak parameters, this results
in the marginal likelihood giving an estimate of the leak
based on a normal no leak observation noise model. Thus,
any variations in the observation noise due to the leak are
also captured in the leak parameters, giving a more accurate
estimate of the leak effect. Having defined the leak detec-
tion process we now refer back to the previously mentioned
requirement of distinguishing between legitimate short term
increase in flow and leaks. Depending on the specific reli-
ability requirements of a utility company, a duration, T , of
continuous increased flow can be defined for an anomaly to
be considered a leak. In such cases θloc will always be be-
tween the current timeslot t and t − T . This not only allows
continuous monitoring and record keeping of the leak but
also leak correction, in the observed flow data, based on any
previously confirmed leaks.

6 Evaluation And Comparison on Real
Water Network Data

To evaluate our model we use five weeks of real flow data
from a DMZ in UK, with readings taken at 15 minutes inter-
val. Four weeks of data is used to calculate the weekly mean
and variance vectors. We introduce time varying leaks in the
fifth week using the following formula.

Ln
s = Bmag + (Bmag/8)yn

s

Where L represents the leak, s is the starting location of the
leak, n is the total number of readings in a week, Bmag is a
constant base magnitude of the leak and y is the observed
flow. This allows us to simulate leaks that are dependant on

87



the observed flow. In our experiments we consider the fol-
lowing metrics for evaluation:

1. True Positive Rate (TPR): This is the ratio of the number
of correctly identified times slots with a leak, T P, over the
true number of times slots with a leak P i.e. T PR = T P/P.

2. False Positive Rate (FPR): This is the ratio of the num-
ber of in-correctly identified times slots with a leak over,
FP, the true number of times slots without a leak N i.e.
FPR = FP/N.

3. Accuracy (ACC): Accuracy is the proportion of true re-
sults (both true positives and true negatives) in the pop-
ulation. It is is the degree of closeness of the number of
detected leaks to the actual number of leaks in the data i.e.
ACC = (T P + T N)/(P + N).

4. Precision (PRE): Precision or positive predictive value
is defined as the proportion of the true positives against
all the positive results. It is measures the accuracy of the
correct identifications of a leak. PRE = (T P)/(T P + FP).

5. Root Mean Square Error (RMSE): To test the accuracy
of the detected magnitude of a leak, we compute the root
mean square error using the detected leak, L̂d, and the ac-
tual simulated leak, Ls as:

RMS E =

√
1
N

ΣN
i (L̂d − Ls)2

We test the leak detection accuracy of our model in compar-
ison to the recent GP based fault bucket method (Osborne et
al. 2012) which is an extension of the previous work by Gar-
nett et al.(2010). Furthermore, we also compare our model
with two applied leak detection approaches in water indus-
try. Firstly, leak detection by Nightline analysis (NL), which
is the default choice leak detection approach widely used by
water utility companies. Secondly, we compare our model
with a Kalman filter based recent advancement in leak de-
tection, which has been applied and tested in a real life sce-
nario (Ye and Fenner 2010). We briefly describe each of the
selected methods.

1. Nightline Analysis (NL): The the nightline flow for a day
is defined as the minimum out of all the average hourly
readings taken from 00:00 to 23:45 inclusive. The Night-
line analysis algorithm models one nightline flow reading
per day, i, as a discrete random variable Fi = mi +εi where
mi is the mean and εi is assumed to be the normally dis-
tributed noise. To detect a leak hypothesis tests are con-
ducted to see if the observed εi = Fi − m(i−1) comes from
the same distribution as ε(1 to i-1). Since, the NL method
only uses one minimum variance data point per day, the
nightline flow, it can take up to two days to detect and
report a leak.

2. Neptune Project Kalman Filter (NKF): As part of the
Neptune project (Ye and Fenner 2010), a Kalman filter
based approach was proposed to detect leaks. The NKF
approach uses one Kalman filter per time slot in a week to
model the weekly flow. Leaks are detected by analysing
the normalised residuals at time t which are calculated by

applying a moving averaging window on the data points
over the last week.

Residual(t) = R(t) =
F{y(t)} − F{ŷ(t)}

F{y(t)}

R(t) =

{
0 if R(t) < 0.01
R(t) if R(t) ≥ 0.01

}
where F denotes the low pass filtering by the moving av-
erage window and 0.01 l/s is the minimum allowed leak.
NKF can report leak as soon as they are detected. With
observed flow readings 15 minutes apart the default leak
reporting time for NKF is 15 minutes.

3. Fault Bucket (FB): The FB algorithm is based on the
expectation that points that are more likely to be gener-
ated by noise with wide variance, than under the normal
predictive model of a GP, are likely to be faults. This is
formalised by choosing an observation noise distribution
which is independent but not i.i.d as:

p(y| f , t,¬fault, (σn)2) = N
(
y; f , (σn)2

)
p(y| f , t, fault, (σ f )2) = N

(
y; f , (σ f )2

)
where fault ε{0, 1} is an indication of fault presence or ab-
sence in observation y(t) and σ f > σn is the standard de-
viation around the mean of the fault. Both σ f and σn form
part of the hyper-parameters of the model. The predictive
distribution p( f |y) for the latent variable f and the poste-
rior probability of an observations faultiness p(σ f |y) are
calculated by approximate marginalization based on four
key assumptions, while the hyper-parameters are approx-
imated by Bayesian Monte Carlo (for details see Osborne
et al.(2012)). Since FB is an online detection method its
default leak reporting time for our data set is also 15 min-
utes.
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Figure 2: ROC curve of all approaches on 20 different leaks.

We test the detection rates of all algorithms over one
week of observed data with a simulated time varying leak.
This test is repeated with 20 leaks with different magnitudes
(varying from 0.2 l/s to 1 l/s) starting at different locations
within the week. For comparison with the GP based FB ap-
proach we use the standard squared exponential kernel in
both FB and NSGP approaches with the same learned hy-
perparameters. The only difference being FB uses the stan-
dard constant Gaussian noise variance assumption where as
in the NSGP we use the diagonal noise covariance kernel
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Figure 3: (a) Leak detection of all approaches for a leak starting at 12:00 PM on the 4th day with a base magnitude of 0.2 l/s.
(b) Leak detection of all approaches for a leak starting at 7:30 PM on the 6th day with a base magnitude of 1.15 l/s

Default Reporting Time TPR FPR ACC PRE RMSE (l/s) Computation Time (seconds)
Averages over 20 different leaks

NL 2 days 1 0.015 0.986 0.808 N/A 0.011
NKF 15 mins 0.915 0.221 0.813 0.650 0.397 0.068
FB 15 mins 0.811 0.001 0.911 0.995 0.153 60.204
NSGP 15 mins 0.997 0.0 0.999 1 0.065 63.276

Table 1: Detection results all approaches averaged over 20 different leaks

in conjunction with the proposed step change mean func-
tion. Figure 2 illustrates the performance of all algorithms
using the Receiver Optimisation Characteristic Curve while
Table 1 details the results of the algorithms for each of the
selected performance metric. Although it may seem that the
NL algorithm performs better or at least as good as the pro-
posed NSGP it must be noted that the NL algorithm ad-
dresses a much simpler problem, as it uses one minimum
hourly average flow reading per day (nightline flow). Thus,
even though the NL algorithm shows high performance on
the nightline flow, it always takes at least 2 days for the NL
algorithm to confirm and report a leak. Owing to this the NL
algorithm is not included in Figure 3, which shows the leak
detection results of the selected algorithms over two out of
the 20 simulated leaks. However, the detection accuracy of
the NL algorithm, using the nightline flow, has been com-
pared with the remaining approaches. The results in Table 1
show that the proposed NSGP outperforms other approaches
with a detection accuracy of 99%, the lowest false positive
rate and the most accurate leak magnitude estimate with a
RMSE of 0.0647 l/s. To elaborate the affects of Gaussian
noise and leak independent assumptions (listed in Section
1), out of the 20 simulated leaks we have selected a small
leak of 0.2 l/s, shown in Figure 3(a), which lies between the
max, 0.4, and min, 0.0001, observed variance in data. Since
leak detection in NKF is based on smoothed residuals and
Gaussian noise assumptions, it does not cope well with the
heteroscedasticity in the data, producing false positive de-
tections before the actual leak occurrence (see Figure 3(a)
and Figure 3(b)) resulting in the highest overall FPR rate of
0.221 and lowest ACC (0.813). The FB approach, like NKF,

assumes a constant Gaussian noise variance and the leak at
each new observed flow reading to be independent of the
previous ones. As a consequence of these assumptions the
FB approach produces false negatives for the small leak in
Figure 3(a) even after the leak occurrence, resulting in the
lowest TPR of 0.811 out of all the selected approaches. Ow-
ing to the false positive and false negative detections, both
NKF and FB have higher leak magnitude estimation errors
of 0.397 and 0.153 l/s respectively whereas NSGP gives the
most accurate and sustained average estimate of the leak
magnitude resulting in the lowest RMSE of 0.065 l/s. Al-
though NSGP has the highest computation time, it is 18.6%
more accurate than NKF and 8.8% more accurate than FB. It
must be noted that, the computation cost of NSGP is depen-
dent upon the location of the leak in the weekly window. In
actual realtime deployment of NSGP leak correction would
be applied to the data when leaks are confirmed after a set
duration T , as discussed in Section 5. As a result, most of
the locations from time slot t = 1 to (times slots in a week
−T ), would be pruned resulting in considerably lower com-
putation times than in the current experiments without leak
correction, where on average 68.45% of the locations were
pruned.

7 Conclusion
We have proposed a novel GP based model to detect leaks in
water distribution systems. Our chief contribution is domain
specific application of GP to detect leaks in presence of het-
eroscedasticity. Also modelling of the physical leak process
in a way that allows us to use domain knowledge to dynam-
ically reduce the leak detection time while also catering for
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sustained leaks, reliability, and leak quantification require-
ments posed by the domain. As to future work we have de-
ployed a prototype implementation of NSGP in the live sys-
tems at our research partner company I2O Water which we
will evaluate in an online setting. We will also investigate
methods to learn the correlations between multiple neigh-
bouring DMZ to verify and distinguish between leaks and
legitimate short term increase in consumption.
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