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Abstract

Quantifying biodiversity is an important task related to
ecological research. One way to measure biodiversity
is through species richness, which measures the num-
ber of unique species found in an area. Recently, citi-
zen science biodiversity datasets such as eBird allow the
calculation of species richness over an unprecedented
spatial and temporal extent. However, several confound-
ing factors associated with the unstructured observa-
tion process, such as observer effort, affect the number
of species reported by citizen scientists. In this work,
we develop an algorithm for discovering hotspots and
coldspots of species richness using eBird data while ac-
counting for these confounding factors.

Introduction
Quantifying the biodiversity of a region is a critical aspect
of many important ecological research problems, includ-
ing designing reserves for conservation, building models
of species extinction and measuring the effects of climate
change. One way to measure biodiversity is to use species
richness, which is the count of unique species found in a re-
gion. Since it is difficult to detect all species within a given
area, ecologists have traditionally estimated species rich-
ness from species accumulation curves (Gotelli and Colwell
2001). These curves model the rate of change in the accu-
mulation of new species and use the asymptote of this curve
to estimate the total number of species. Collecting data to
produce species accumulation curves is labor intensive and
is typically performed by trained scientists. Due to the man-
ual labor involved, the data are usually collected over small
regions, thereby limiting the conclusions that can be drawn
from these studies.

Recently, the citizen science paradigm has opened new
doors for ecological research. Citizen science projects for
biodiversity, such as eBird (Sullivan et al. 2014) and eBut-
terfly (Larrivee et al. 2014), encourage participants to sub-
mit their species observations and thus create a global hu-
man sensor network. The eBird project, which is the context
for our work, is currently one of the largest active citizen
science projects. Participants in eBird submit checklists of
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bird species observed during searches, along with informa-
tion describing the amount of effort they expended (eg. dis-
tance traveled and time spent birding). These checklists can
be used to estimate species richness over broad spatial and
temporal extents that were not previously possible. How-
ever, this data is collected by citizen scientists instead of
trained scientists. Although critics bring up concerns over
data quality (eg. due to observer variability in identifying
birds by species), recent studies have shown citizen science
data to be informative (Munson et al. 2010) and machine
learning approaches can help separate the signal from the
noise (Yu, Wong, and Hutchinson 2010).

In our work, we present an algorithm for discovering
hotspots or coldspots for species richness based on data
reported by eBird participants. Our work is related to ap-
proaches in spatial statistics for discovering spatial hotspots
such as the GI* statistic (Getis and Ord 1992) and the Spatial
Scan Statistic (Kulldorff 1997). However, because the num-
ber of unique species reported on a checklist is influenced
by numerous factors (eg. the duration of time spent birding),
a novel aspect of our approach is spatial hotspot/coldspot
discovery based on citizen science observations taking into
account the confounding factors associated with the unstruc-
tured observation process. We evaluate the algorithm using
simulated data designed to resemble eBird data.

Methodology
Negative Binomial Regression
Our detection algorithm represents the ith eBird checklist
as a tuple (xi, yi), where yi is the count of unique species
observed and xi are the covariates affecting yi. First, we
model the distribution of yi as a negative binomial distribu-
tion. We use the negative binomial because it acts as an over-
dispersed Poisson distribution, modeling count data without
having the variance tied directly to the mean (Hilbe 2007).
Capturing this overdispersion is important for eBird data,
which is very noisy.

The PDF of the negative binomial distribution can be pa-
rameterized as

P (Y = k) =
Γ(k + 1/α)
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This gives the log likelihood of the data as

l(y, µ, α) =
n∑
i=1

ln(Γ(yi + 1/α))− ln(Γ(yi + 1))

− ln(Γ(1/α)) + yi ln

(
αµi

αµi + 1

)
− 1

α
ln(αµi + 1) (2)

The parameter µi is subscripted here because it will be
replaced by a regression on the covariates xi. We use the
canonical log link for negative binomial regression, allowing
us to rewrite µi = 1

α(exp(−xi·β)−1) . As (Hilbe 2007) shows,
making this substitution gives us the likelihood

l(y,β, α) =
n∑
i=1

yi(xi · β) +
1

α
ln(1− exp(xi · β))+

ln(Γ(yi + 1/α))− ln(Γ(yi + 1))− ln(Γ(1/α)) (3)
In this work, xi consists of a single covariate, namely the

time spent observing, and an intercept term. As such, the re-
gression on xi accounts for the trend that observers report a
greater number of species when observing for a longer pe-
riod of time. To simplify notation, we will refer to the time
spent observing on the ith checklist as the single covariate
xi.

Grid Search
In order to deal with the spatial aspects of this problem, our
algorithm partitions the geographic area into a set of fixed-
size grid cells (see Figure 1). For each grid cell, we consider
two sets of checklists: 1) the checklists within a grid cell and
2) the checklists from the grid cell’s eight immediate neigh-
bors. We fit a negative binomial regression to each set of
checklists. This regression has the number of species as the
response variable and the observation time as the covariate.
We end up with two models, one for the number of species
within the grid cell and the other for the neighbors of the
grid cell. In order to compare the two models, we perform a
hypothesis test on the two regression models:

H0 : µi = β0 + β1xi

H1 : µi = β0 + β1xi + β2[I(i)] + β3[I(i)xi]

s.t. β2 6= 0 or β3 6= 0 (4)
In the equations above, I(i) is an indicator function that

is 1 if the ith checklist comes from within the grid cell, and
0 if it comes from one of the cell’s neighbors. Under the
null hypothesis, the regression model for the grid cell and
its neighbors are identical. Under the alternative hypothesis,
the checklists inside the grid cell may have an different con-
ditional mean relative to its neighbors.

We use the likelihood ratio test to determine if the null hy-
pothesis is to be rejected. Using Wilks theorem (Wilks 1938)
the test statisticD = 2l(Ha)−2l(H0) follows a chi-squared
distribution with two degrees of freedom, since there are two
extra parameters to fit in the alternative model.

Since this test is performed on each grid cell, we must ac-
count for the multiple hypothesis test problem. Even with a

Figure 1: An example of a grid used in our algorithm. Each
checklist (represented as a dot) falls into a single grid cell,
and consists of the observation duration (xi) and the number
of species seen (yi). Under the alternative hypothesis, check-
lists inside the center grid cell {(x4, y4), (x5, y5)} have a
different conditional mean from the negative binomial re-
gression than those in the outer 8 grid cells.

set error level of α = 0.05 for each test, the probability of
a false positive increases as the number of tests increases.
We correct for this by using the False Discovery Rate (FDR)
(Benjamini and Hochberg 1995). To explain the FDR cor-
rection, we define the number of discoveries to be the num-
ber of times we reject the null hypothesis. Furthermore, we
define a false discovery to occur when we reject the null hy-
pothesis when it is in fact true. If we use α = 0.05, then
the FDR ensures that the expected number of false discover-
ies divided by the number of discoveries will be 0.05. Using
FDR in conjunction with our algorithm allows us to reduce
the probability of falsely reporting a grid cell to be different
from its neighbors.

Synthetic Data Generation
For the purpose of establishing ground truth, we gener-
ate simulated data to evaluate our approach. The simulated
data models the number of species that occupy the area
of observation as a Gaussian process (Rasmussen 2006).
We used a Gaussian process with a constant mean and pe-
riodic kernel to create a smooth distribution space with
many local ”bumps” (see Figure 2(a)). Simulated hotspots
are then injected by selecting a rectangular area and uni-
formly boosting the counts in this area by a constant (see
Figure 2(b)). We chose rectangular hotspots to better match
the assumptions of the grid search, though in the future we
hope to move away from any assumptions on the shape of
hotspots. Although our algorithm is equally capable of de-
tecting hotspots and coldspots, in this paper we only evaluate
its ability to detect injected hotspots.

To generate the checklists, we randomly sample locations
and observation durations. The durations are modeled as a
beta distribution with a mean at 60 minutes, as this was the
empirical distribution we found on actual eBird data. Each
duration xi is transformed into a proportion pi using the
equation pi = Pr(Z ≤ xi), where Z follows an exponen-
tial distribution. This maps the duration values to a value
between 0 and 1 along the exponential CDF curve. These
proportions are then multiplied by the true occupancy at the
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Figure 2: An example of synthetic data without injected hotspots (left) and with injected hotspots (right).

location to get the observed number of species for the check-
list. Under this procedure, checklists with longer durations
capture a greater percentage of the true number of species.
This downsampling makes the injected peaks harder to find,
since the algorithm must account for the detected number of
species instead of the actual number.

We tested our algorithm on 30 different randomly gen-
erated synthetic datasets of 20,000 checklists each. Each
dataset had 1 to 5 injected hotspots of varying height and
width. The data was partitioned into square grids, with ei-
ther 10, 20, 25, or 40 grids to a side. If a grid cell was found
to be a hotspot, the algorithm labels all the checklists within
the grid cell as coming from a hotspot. We compared this
labeling against the ground truth from the simulation, and
reported the following metrics: true positive rate (the per-
cent of checklists correctly identified to be coming from
hotspots), false positive rate (the percent of non-hotspot
checklists incorrectly identified as coming from hotspots)
and false discovery rate (the percent of checklists identified
to be from hotspots that are not actually from hotspots).

Results and Discussion
As a baseline, we tested our algorithm with negative bino-
mial regression, which accounted for the observation dura-
tion, against the algorithm with just a negative binomial. We
abbreviate the detector with regression as NBR, and the de-
tector without regression as NB. In the non-regression ver-
sion, the model treats the detected number of species as the
actual number of species and we still use likelihood ratio
to test if each grid has an elevated mean with respect to its
neighbors. For the baseline, this test statistic is a chi-squared
distribution with one degree of freedom. We also report the
algorithm results with the FDR correction, with α = 0.05.
These variants are abbreviated as NBR-FDR and NB-FDR.

Tables 1 and 2 show the true and false positive rates for
the algorithms, averaged over the 30 datasets. Bolded values
are significantly better then their counterparts (NBR vs NB,
and NBR-FDR vs NB-FDR) based on a paired t-test with
α = 0.05. Table 3 shows the false discovery rate for the
algorithms, and how it changes when using the FDR correc-
tion.

True Positive Rate
Grid Size NBR NB NBR-FDR NB-FDR
10x10 0.9997 0.9958 0.4733 0.5038
20x20 0.9912∗ 0.9781 0.7382∗ 0.609
25x25 0.6277∗ 0.4918 0.1262∗ 0.0497
40x40 0.3271∗ 0.1796 0 0

Table 1: True positive rates of per-checklist hotspot detec-
tion for each algorithm. Results averaged over 30 random-
ized experiments. Starred values are significantly better from
their non-regression counterparts (paired t-test, α=0.05)

False Positive Rate
Grid Size NBR NB NBR-FDR NB-FDR
10x10 0.0562 0.0403∗ 0.006 0.0062
20x20 0.0413 0.0184∗ 0.0007 0.0003
25x25 0.0464 0.0177∗ 0.0002 0
40x40 0.0501 0.0087∗ 0 0

Table 2: False positive rates of per-checklist hotspot detec-
tion for each algorithm. Results averaged over 30 random-
ized experiments. Starred values are significantly better from
their regression counterparts (paired t-test, α=0.05)

In 3 of the cases NBR has a significantly higher true pos-
itive rate than NB, while in all cases NB has a significantly
lower false positive rate. These results indicate that NB is
much more conservative in finding hotspots, which is to be
expected, since without the additional input of observation
time and the majority of observations being at relatively low
durations, NB will be inclined to underestimate the popu-
lation mean. The addition of the FDR step makes both al-
gorithms more conservative, lowering the false positive rate
but also substantially reducing the true positive rate rela-
tive to its non-FDR counterparts. However it does make the
reported hotspots more reliable, as a smaller percentage of
them are false after the correction. In future work, we will
look deeper into finding the right tradeoff between the true
and false positive rates.
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False Discovery Rate
Grid Size NBR NB NBR-FDR NB-FDR
10x10 0.7811 0.7198 0.4459 0.4386
20x20 0.7257 0.5443 0.0568 0.0303
25x25 0.8243 0.6955 0.0914 0
40x40 0.9067 0.7546 0 0

Table 3: False discovery rates of per-checklist hotspot detec-
tion for each algorithm. Results averaged over 30 random-
ized experiments. False discovery rate is the proportion of
reported hotspots that are false.

Algorithm performance peaks at the 20 by 20 grid split,
and then degrades as the grid cells get finer and finer. When
the grid cells are much smaller than the injected peaks, cells
deep within the injected peak appear to be similar to their
neighbors, and hence not reported as a local hotspot. Data
sparsity may also be a contributing factor, as the smaller grid
cells will have less data points to fit the regression model.
The algorithm is clearly sensitive to the choice of grid size,
and it would be beneficial in future versions to automate this
choice in some intelligent way.

Conclusion and Future Work
We investigated an algorithm to detect biodiversity hotspots
from citizen science data. Our results on simulated data in-
dicate that the negative binomial regression model, which
models how the number of species detected changes with
time spent observing, helps improve the true positive rate.
The addition of the False Discovery Rate to correct for mul-
tiple hypothesis testing helps reduce false positives, but does
so at the expense of a substantially reduced true positive rate.
In addition, the size of the grid cells clearly has an effect on
the performance of the model.

In future work, we first plan to discover spatial regions
rather than being restricted to considering a set of pre-
defined grid cells. We will employ a similar strategy to the
spatial scan statistic, which searches over spatial regions
such as circles (Kulldorff 1997). This search will increase
the computational complexity but will improve the flexibil-
ity of the approach. Second, we would like to explore a one-
sided likelihood ratio test to specifically detect species-rich
hotspots, but these one-sided tests are more complex and
computationally expensive. Third, another issue with our ap-
proach is that it uses a regression estimate of the conditional
mean of the distribution as a conservative estimate of species
richness. We are actually interested in the maximum number
of species in an area (for hotspots) instead of the mean. As an
alternative, we will explore estimating the maximum num-
ber of species in an area, but this estimate is well-known to
lack robustness as it is very sensitive to noise.

Finally, in this work, we are only using the total count of
species on each checklist. In reality, checklists from eBird
are more detailed as they list the actual species observed.
We can leverage these details to develop new hotspot de-
tection algorithms based on biodiversity metrics other than
species richness, such as entropy (Shannon 1948) and β

diversity (Whittaker 1972), which measures the change in
species composition.
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