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Abstract

We consider a strategic variant of the facility location prob-
lem. We would like to locate a facility on a closed interval.
There are n agents located on that interval, divided into two
types: type 1 agents, who wish for the facility to be as far
from them as possible, and type 2 agents, who wish for the
facility to be as close to them as possible. Our goal is to max-
imize a form of aggregated social benefit: maxisum– the sum
of the agents’ utilities, or the egalitarian objective– the min-
imal agent utility. The strategic aspect of the problem is that
the agents’ locations are not known to us, but rather reported
to us by the agents– an agent might misreport his location in
an attempt to move the facility away from or towards to his
true location. We therefore require the facility-locating mech-
anism to be strategyproof, namely that reporting truthfully is
a dominant strategy for each agent. As simply maximizing
the social benefit is generally not strategyproof, our goal is to
design strategyproof mechanisms with good approximation
ratios.
In this paper, we provide a best-possible 3- approximate de-
terministic strategyproof mechanism, as well as a 23

13
- ap-

proximate randomized strategyproof mechanism, both for the
maxisum objective. We provide lower bounds of 3 and 3

2
on

the approximation ratio attainable for maxisum, in the deter-
ministic and randomized settings, respectively. For the egal-
itarian objective, we show that no bounded approximation
ratio is attainable in the deterministic setting, and provide a
lower bound of 3

2
for the randomized setting. To obtain our

deterministic lower bounds, we characterize all determinis-
tic strategyproof mechanisms when all agents are of type 1.
Finally, while still restricting ourselves to agents of type 1
only, we consider a generalized model that allows an agent
to control more than one location. In this generalized model,
we provide best-possible 3- and 3

2
- approximate strategyproof

mechanisms for the maxisum objective in the deterministic
and randomized settings, respectively.

1 Introduction
Consider the problem of locating a single facility on a closed
interval. There are n agents, located in the interval, divided
into two types: type 1 agents, who wish for the facility to be
as far away from them as possible, and type 2 agents, who
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wish for the facility to be as close to them as possible. In
particular, the utility of a type 1 agent equals his distance
from the facility, while the utility of a type 2 agent equals
the length of the interval minus his distance from the facil-
ity. A social planner wishes to locate the facility in a way that
maximizes some aggregated measure of the agents’ utilities.
However, we are interested in a variant of the problem first
introduced in (Procaccia and Tennenholtz 2013), in which
the locations of the agents are not known to the planner, but
rather are reported to the planner by the agents themselves.
In that case, the agents may misreport their locations if do-
ing so will cause the planner to locate the facility in a lo-
cation more desirable to them. Due to this strategic aspect,
the planner cannot simply locate the facility at the optimal
location with respect to the reports. Instead, we require the
mechanism used by the planner to be strategyproof: truth-
fully reporting his location is a dominant strategy for each
agent. Subject to this requirement, the planner’s goal is to
optimize the social benefit, in terms of worst case approx-
imation ratio. We consider maximizing two social benefit
functions: the maxisum function, which is simply the sum
of the agents’ utilities, and the egalitarian function, which is
the minimum agent utility.

The strategic facility location problem and its variations
have received a lot of attention in the recent literature. The
case of the unbounded interval with type 2 agents alone
was studied in (Procaccia and Tennenholtz 2013), (Feld-
man and Wilf 2013) and (Feigenbaum, Sethuraman, and
Ye 2013); a notable characterization of deterministic strat-
egyproof mechanisms in this setting is given in (Moulin
1980). The case of the bounded interval with agents of
type 1 alone, called the obnoxious facility location prob-
lem, was introduced in (Cheng, Yu, and Zhang 2013) and
further explored in (Ibara and Nagamochi 2012). There is
much related research, considering different graph topolo-
gies, different number of facilities, and more: see, for exam-
ple, (Cheng et al. 2013), (Alon et al. 2010), and (Alon et al.
2009). To the best of our knowledge, our paper is the first to
consider the generalized, hybrid model which contains both
types of agents.

Our main findings are summarized below:

• We design a 3- approximate deterministic strategyproof
mechanism, and a 23

13 - approximate randomized strate-
gyproof mechanism for the maxisum objective.
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• We characterize deterministic strategyproof mechanisms
when only type 1 agents are present.

• We prove a lower bound of 3 on the approximation ratio of
deterministic strategyproof mechanisms for the maxisum
objective, thus proving the optimality of the mechanism
we provide for this setting. We also show that no deter-
ministic strategyproof mechanism can provide a bounded
approximation ratio for the egalitarian objective. These
bounds hold even when all agents are of type 1.

• We prove a lower bound of 3
2 on the approximation ra-

tio of randomized strategyproof mechanisms for both the
maxisum and egalitarian objectives. These bounds hold
even when all agents are of type 1.

• We consider a generalized model that allows an agent to
control more than one location. In this model, we provide
a 3- and 3

2 - approximate strategyproof mechanisms for
the deterministic and randomized settings respectively,
assuming only type 1 agents are present (matching our
proven lower bounds).

In the interest of space, complete proofs of theorems are
included in the extended version of the paper, which can be
found online at www.columbia.edu/ js1353/hybrid.pdf.

2 Model
Let N = {1, 2, . . . , n} be the set of agents, and let I
be the closed interval. We assume, without loss of gener-
ality, that I = [0, 2]. Each agent i ∈ N reports a lo-
cation xi ∈ I . The vector x = (x1, x2, . . . , xn) is a
location profile; for any α ∈ I , we also use the nota-
tion (α,x−i) = (x1, x2, . . . , xi−1, α, xi+1, . . . , xn), where
x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) is a partial location
profile of all agents but i. A deterministic mechanism is a
collection of functions f = {fn|n ∈ N} such that each fn :
In → I maps each location profile x = (x1, x2, . . . , xn)
to the location of the facility. We use f(x) instead of fn(x)
when n is clear from the context. Similarly, a randomized
mechanism is a collection of functions f that maps each lo-
cation profile to a probability distribution over I: if f(x) is
the distribution π, then the facility is located by drawing a
single sample from π.

We study deterministic and randomized mechanisms for
the problem of locating a single facility when the location
of any agent is private information to that agent and cannot
be observed or otherwise verified. It is therefore critical that
the mechanism be strategyproof—it should be optimal for
each agent i to report his true location xi. To make this pre-
cise, we assume that if the facility is located at y, an agent’s
utility, equivalently benefit, is either Bi(xi, y) = |xi − y|,
if he is a type 1 agent, or Bi(xi, y) = 2 − |xi − y|, if he
is a type 2 agent1. If the location of the facility is randomly
distributed with distribution π, then the benefit of agent i
is simply EY∼π[Bi(xi, Y )], where Y is a random variable
with distribution π. We denote the set of type j agents as Nj

1The number 2 is chosen merely because it is the length of I .
With this choice, the utility of each agent is between 0 and 2 re-
gardless of his type.

for j = 1, 2. The formal definition of strategyproofness is
now:

Definition 1. A deterministic mechanism f is strate-
gyproof if for each i ∈ N , each xi, x

′
i ∈ I , and for

each x−i = (x1, x2, . . . , xi−1, xi+1, . . . , xn) ∈ In−1,
Bi(xi, f(xi,x−i)) ≥ Bi(xi, f(x

′
i,x−i)); a randomized

mechanism f is strategyproof if EY∼f(xi,x−i)[Bi(xi, Y )] ≥
EY∼f(x′i,x−i)[Bi(xi, Y )].

In this paper we assume that locating a facility at y when
the location profile is x = (x1, x2, . . . , xn) gives the social
benefit sb(x, y), where we consider two possible options for
sb: maxisum, defined by sb(x, y) =

∑n
i=1Bi(xi, y), and

egalitarian, sb(x, y) = mini∈N Bi(xi, y). When the facility
is located according to a probability distribution π, maxisum
is defined as sb(x, π) = EY∼π[

∑n
i=1Bi(xi, Y )], and egal-

itarian as sb(x, π) = EY∼π[mini∈N Bi(xi, Y )]. The goal
is to find a strategyproof mechanism that does well with re-
spect to maximizing (either definition of) the social benefit.
A natural mechanism is the “optimal” mechanism: each lo-
cation profile x = (x1, x2, . . . , xn) is mapped to OPT (x),
defined as2 OPT (x) ∈ argmaxy∈I sb(x, y). However,
the optimal mechanism is not generally strategyproof. Given
that strategyproofness and optimality cannot be achieved si-
multaneously, it is necessary to find a tradeoff. In this paper
we shall restrict ourselves to strategyproof mechanisms that
approximate the optimal social benefit as best as possible: an
α- approximation (α ∈ [1,∞)) algorithm guarantees at least
a 1
α fraction of the optimal social benefit for every instance

of the problem. Formally, the approximation ratio of an al-
gorithm A is supT {OPT (T )/A(T )}, where the supremum
is taken over all possible instances T of the problem; and
A(T ) and OPT (T ) are, respectively, the benefits obtained
by algorithm A and the optimal algorithm on the instance
T . Our goal is to design strategyproof mechanisms whose
approximation ratio is as close to 1 as possible.

3 Deterministic and Randomized
Mechanisms for the Hybrid Model

In this section, we provide a best-possible 3- approximate
deterministic strategyproof mechanism for the maxisum ob-
jective, as well as a 23

13 - approximate randomized strate-
gyproof mechanism for the same objective.

Theorem 1. Let R = {i : i ∈ N1, xi ≤ 1} ∪ {i : i ∈
N2, xi ≥ 1}, L = {i : i ∈ N1, xi > 1} ∪ {i : i ∈ N2, xi <
1}. Let f be the mechanism that locates the facility at 2 if
|R| ≥ |L| and at 0 otherwise. Then f is a 3- approximate
strategyproof mechanism for the maxisum objective.

Proof sketch. Strategyproofness is easy. For the approx-
imation ratio, let x be a location profile. Assume without
loss of generality that f(x) = 2, and let Rj and Lj be the
sets of agents of type j in R and L, respectively. To show
that sb(x, a) ≤ 3sb(x, f(x)) for every a ∈ I , we first show
that the worst case approximation ratio occurs when the

2If the social benefit at x is maximized by multiple locations y,
an exogenous tie-breaking rule is used to select one of the optimal
locations.
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profile is xi = 1 for i ∈ R1 ∪ R2, xi = 0 for i ∈ L2, and
xi = 2 for i ∈ L1; this latter observation follows from
noting that that the approximation ratio must increase as
each agent moves toward his location in this profile. We
further show that the worst case occurs when the facility is
located at a ∈ {0, 1}. The upper bound of 3 is established
by analyzing the two resulting cases.

Later, we prove a lower bound of 3 on the approximation
ratio under strategyproofness. Thus, the approximation ra-
tio achieved by this mechanism is best-possible. Moreover,
in the obnoxious facility model (N2 = ∅), the above mech-
anism reduces to the deterministic mechanism proposed in
(Cheng, Yu, and Zhang 2013), where it is proved that this
mechanism a 3- approximation for that special case.

We now use randomization in an attempt to improve the
approximation ratio. Getting a 2- approximation is easy:
choosing each endpoint with probability 1

2 is a 2- approx-
imate strategyproof mechanism 3. However, we can do bet-
ter:

Theorem 2. Let p1 = 12
23 , p2 = 8

23 , and p3 = 3
23 . Consider

the following randomized mechanism f . If |R| ≥ |L|, then
P (f(x) = 2) = p1 and P (f(x) = 0) = p2; if |R| <
|L|, then P (f(x) = 2) = p2 and P (f(x) = 0) = p1;
and either way, P (f(x) = 1) = p3. The mechanism f is a
strategyproof, 23

13 - approximate mechanism.

Proof sketch. The proof is similar in spirit to that of
Theorem 1. We show that sb(x,a)

sb(x,f(x)) ≤
23
13 for all possible

facility locations a ∈ I and profiles x. Our proof works by
analyzing the cases where a ∈ [0, 1] and a ∈ [1, 2]. In each
of these cases, we obtain two possible location profiles,
such that at least one of them must lead to the worst case
approximation ratio. We then show that the worst-case “a”
in all these profiles is either 0, 1 or 2. This analysis results
in studying 7 cases, and we show the bound of 23

13 in each.

The approximation ratio of the mechanism above is tight:
when there are two agents of different types, with the type
1 agent at 1 and the type 2 agent at 0, the optimal benefit is
3, whereas the mechanism’s expected benefit is 39

23 , and the
ratio is exactly 23

13 .

4 Characterization of Deterministic
Mechanisms for the Obnoxious Facility

Model
We now focus on the special case where N2 = ∅, also
called the obnoxious facility model. The assumptionN2 = ∅
will remain in effect for the rest of the paper. In this sec-
tion, we characterize all deterministic strategyproof mecha-
nisms. A similar result has been independently obtained in
an unpublished paper (Han and Du 2012). We begin with a
temporary, somewhat weak characterization of deterministic
mechanisms, in terms of single agent deviations:

3In (Cheng, Yu, and Zhang 2013), the authors note that this
mechanism is 2- approximate for the obnoxious facility model; this
still holds true for the hybrid model.

Theorem 3 (Reflection Theorem). For any deterministic
mechanism f , agent i ∈ N , and partial location profile x−i,
define fx−i

(a) = f(a,x−i)
4. Then, the mechanism f is

strategyproof iff each fx−i
is of the following form: there

exists (not necessarily distinct) αx−i
, βx−i

∈ I , such that
βx−i

≥ αx−i
and:

1. fx−i
(a) = βx−i

for 0 ≤ a < αx−i
+βx−i

2

2. fx−i
(a) = αx−i

for
αx−i

+βx−i

2 < a ≤ 2

3. fx−i
(
αx−i

+βx−i

2 ) ∈ {αx−i
, βx−i

}

If αx−i
6= βx−i

, we call
αx−i

+βx−i

2 the reflection point of i
for the partial profile x−i.

Proof sketch. The verification of strategyproofness is
easy. On the other hand, let f be a strategyproof mechanism.
Fix a location profile x and an agent i. Let g = fx−i

and
let β = g(0), S = {a ∈ I : g(a) 6= β} and m = inf S.
Furthermore, let α = 2m − β. By definition, g(a) = β
for a < m. In the proof, we show that if m ∈ S, then
g(m) = α, and if m /∈ S, then m is a limit point of
T := {a ∈ I : g(a) = α} (and g(m) = β by the definition
of S). It remains to show that g(a) = α for all a > m.
Assume otherwise for some a′ > m. First, note that as
g(m) is either α or β, g(a) ∈ [α, β] for all a ∈ I by
strategyproofness. Note that within this range, α is the point
furthest from a′. Thus, the agent has an incentive to deviate
from a′ to any point a′′ for which g(a′′) = α; the existence
of such a point is guaranteed, as either g(m) = α or T 6= ∅.
Thus strategyproofness is violated.

As a corollary of the above theorem, we can deduce:
Corollary 1. For any deterministic strategyproof mecha-
nism f , and any n ∈ N, Rfn = {fn(x) : x ∈ In} is finite.

Proof sketch. Let x be an arbitrary profile. For each
agent, we use the reflection theorem to show that the agent
is able to move to at least one of the endpoints without
changing the facility location. Thus, we obtain a location
profile x′, which locates all the agents at the endpoints and
f(x′) = f(x). Therefore, for every y ∈ Rfn, there exists a
profile z s.t. f(z) = y and z locates all the agents at the
endpoints; but there are only finitely many such profiles.

Now it is time for our strong characterization result. Con-
sider the following definition:
Definition 2. Let f be a deterministic mechanism s.t.
|Rfn| ≤ 2 for all n ∈ N. For each n ∈ N, letRfn = {αn, βn}
s.t. βn ≥ αn

5, and let mn = αn+βn
2 . For any n ∈ N, for

every profile x ∈ In, consider the partition of the agents
Lx
n = {i ∈ N : xi < mn}, Mx

n = {i ∈ N : xi = mn},
and Ex

n = {i ∈ N : xi > mn}. We say that f is a
midpoint mechanism if it satisfies the following property: for
any n ∈ N, let x,y ∈ In be any profiles s.t. f(x) = βn and
f(y) = αn. If βn > αn, then there exists an agent i which
satisfies one of the following:

4Note that when i 6= j, x−i and x−j are distinct objects, re-
gardless of the values of their coordinates.

5αn = βn is possible.
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(D-1) i ∈ Lx
n and i ∈My

n

(D-2) i ∈ Lx
n and i ∈ Ey

n

(D-3) i ∈Mx
n and i ∈ Ey

n

This definition is simple to interpret: the mechanism can
switch the facility location from right to left or from left to
right only when an agent crosses the midpoint in the oppo-
site direction.

In (Ibara and Nagamochi 2012), the authors show that for
a strategyproof mechanism f , whenever Rfn is a finite set,
|Rfn| ≤ 2 6. Using that, we can now show:

Theorem 4. A deterministic mechanism f is strategyproof
iff it is a midpoint mechanism.

Proof. Verifying strategyproofness is easy. Now, assume
that f is a strategyproof mechanism. Fix n ∈ N. By corol-
lary 1, Rfn is finite, and thus by Ibara’s and Nagamochi’s re-
sult, |Rfn| ≤ 2. If Rfn is a singleton there is nothing to prove;
thus, assume |Rfn| = 2, and let αn, βn ∈ Rfn s.t. βn > αn.
Let x,y ∈ In s.t. f(x) = βn and f(y) = αn. Consider the
sequence of profiles zi, defined for i = 0, . . . , n via zij = xj
if j > i and zij = yj otherwise. Assume no agent satisfies at
least one of (D-1), (D-2) and (D-3). Then, when agent i devi-
ates in zi−1 to create profile zi, he does not cross mn from
left to right (i.e. moving from zi−1i < mn to zii ≥ mn or
zi−1i ≤ mn to zii > mn). As the possible facility locations
are αn and βn, mn is his only candidate for reflection point
in zi−1−i . Thus, the reflection theorem implies that he can-
not change the facility location to αn by deviating. Hence,
f(y) = f(zn) = f(z0) = f(x), contradiction.

We note that Ibara and Nagmochi have characterized all
anonymous mechanisms under the assumption that Rfn is fi-
nite for all n ∈ N, using what they called “valid threshold
mechanisms”. Our proofs easily translate to the anonymous
case, and under anonymity, our midpoint mechanisms be-
come equivalent to valid threshold mechanisms. Thus, our
work allows the removal of the finite Rfn assumption for the
anonymous case as well.

5 Lower Bounds on Deterministic
Mechanisms

We can use our characterization to obtain lower bounds on
the possible approximation ratios for the maxisum and egal-
itarian objectives in the deterministic setting.

Theorem 5. No deterministic strategyproof mechanism f
can provide an approximation ratio better than 3 for the
maxisum objective, even when N2 = ∅.

Proof sketch. Let f be a deterministic strategyproof
mechanism, and let n ∈ N be even. The case of Rfn being a
singleton is easy, and by Theorem 4, ifRfn is not a singleton,
then |Rfn| = 2. Consider the profile x ∈ In which locates
agents 1 through n

2 at αn, agents n
2 + 1 through n at βn,

and assume without loss of generality that f(x) = βn. If we
relocate agents 1 through n

2 to mn − ε, by Theorem 4 the

6While they assume anonymity, the proof of this fact does not
rely on that assumption.

facility is still located at βn, but the resulting approximation
ratio is 3(βn−αn)−2ε

βn−αn+2ε . Sending ε → 0 gives us the required
result.

By Theorem 1, our lower bound is best-possible. Our
characterization can also be used to get a lower bound for
the egalitarian objective:

Theorem 6. No deterministic strategyproof mechanism f
can provide a bounded approximation ratio for the egalitar-
ian objective, even when N2 = ∅.

Proof. Assume N2 = ∅. For any n ≥ 2, |Rfn| ≤ 2 by theo-
rem 4. Consider any profile which locates at least one agent
at each point in Rfn; any such profile leads to a social ben-
efit of 0 for the mechanism, whereas the optimal benefit is
positive.

6 Lower Bounds on Randomized
Mechanisms

We begin with the maxisum objective. We provide a lower
bound of 3

2 on the best-possible approximation ratio obtain-
able by randomized strategyproof mechanisms.

Lemma 1. For any randomized strategyproof mechanism
f , there exists a randomized strategyproof mechanism f ′

which satisfies P (f ′(x) ∈ {0, 2, x1, x2, ..., xn}) = 1 for
each x ∈ In and has the same approximation ratio as f for
the maxisum objective.

Theorem 7. No randomized strategyproof mechanism can
provide an approximation ratio better than 3

2 for the max-
isum objective, even when N2 = ∅.

Proof sketch. Assume f is such a mechanism, and
consider the case of 2 agents. By Lemma 1, we may assume
that P (f(x) ∈ {0, 2, x1, x2}) = 1 for all profiles x ∈ I2.
As a convenient notation, let pxq = P (f(x) = q). The proof
proceeds as follows: in the profile y in which y1 = 1 − ε
and y2 = 2, to beat the 3

2 approximation ratio, we must
have py0 >

1
2 for small enough ε > 0. However, in that case,

strategyproofness dictates that in the profile z, in which
z1 = 0 and z2 = 0, pz0 >

1
2 as well (otherwise, pz2 >

1
2 , and

we can use that to show that it is beneficial for agent 1 to
deviate from y to z). However, a symmetric argument gives
that pz2 >

1
2 as well, which leads to a contradiction.

We note that, when N2 = ∅, Theorem 10 provides a
family of randomized 3

2 - approximate strategyproof mech-
anisms for the maxisum objective. Hence, when N2 = ∅,
the above lower bound is best-possible.

Finally, we show the same lower bound for the egalitarian
objective:

Theorem 8. No randomized strategyproof mechanism can
provide an approximation ratio better than 3

2 for the egali-
tarian objective, even when N2 = ∅.

Proof sketch. Let I = [0,M + 2] for some large M ,
and consider the profile x that locates one agent at 1 and
M + 1, a large number of agents at 0 and M + 2, as well
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as agents spread across [1,M + 1] which cover that inter-
val so that there is at least one agent in every subinterval of
length ε. For a mechanism f to have an approximation ratio
c < 3

2 , we show that p = P (f(x) ∈ [1,M + 1]) ≤
1
2 (1−

1
c )

1
2−

ε
2

.
Assume without loss of generality that f locates the fa-
cility at [0, 1] with probability at least 1−p

2 . We now con-
sider a profile x′ obtained from x by moving agents from 0
to spread them along the interval [0, 1], so that now there
is at least one agent in every subinterval of length ε of
[0,M + 1]. To maintain the approximation ratio c, we must
have P (f(x′) ∈ [0,M + 1]) ≤

1
2 (1−

1
c )

1
2−

ε
2

. However, strat-
egyproofness limits P (f(x′) ∈ [M + 1,M + 2]), as that
interval is far from 0, and a high probability of locating the
facility there will incentivize the agents located at 0 in x to
misreport their locations as their locations in x′ 7. A careful
analysis of these bounds leads to a contradiction.

7 Mutiple Locations Per Agent in the
Obnoxious Model

In this section we follow the spirit of a suggestion in
(Procaccia and Tennenholtz 2013) and study a generalized
model, in which a single agent may be associated with more
than one location. As this multiple location model is a gen-
eralization of our previous model, the lower bounds carry
over; in particular, for the maxisum objective, we have lower
bounds of 3 and 3

2 on deterministic and randomized mecha-
nisms respectively, even when N2 = ∅. We show that when
N2 = ∅, we can find strategyproof mechanisms to match
these lower bounds, despite the additional power given to
the agents.

Our generalized model (for the definition of the model,
we do not assume N2 = ∅) can be obtained from
our previous model via the following changes. First, let
k = (k1, . . . , kn) ∈ Nn. A location profile is now
z = (z1, z2, . . . , zn), where for each i = 1, ..., n, zi =
(zi1, z

i
2, . . . , z

i
ki
) ∈ Iki . A deterministic mechanism is a

collection of functions f = {fkn : n ∈ N,k ∈ Nn},
such that fkn : Ik1 × . . . × Ikn → I is a function that
maps each location profile to a facility location. The ben-
efit of agent i from facility location y is now defined as
Bi(z

i, y) =
∑ki
j=1Bi(z

i
j , y), where Bi(x, y) is |x− y| for a

type 1 agent and 2−|x−y| for a type 2 agent. The maxisum
objective is

∑n
i=1Bi(z

i, y) as usual. The rest of the notation
carries over, and the adjustment to the randomized model is
easy and left to the reader. For the approximation ratio, we
note that the possible instances of the problem include all
possible options for both n and k.

First, we provide a 3- approximate strategyproof deter-
ministic mechanism for the case where N2 = ∅.

Theorem 9. Let R∗ = {i :
∑ki
j=1 zj

ki
≤ 1}, L∗ = {i :∑ki

j=1 zj

ki
> 1}. Let f be the mechanism which locates the

facility at 2 if
∑
i∈R∗ ki ≥

∑
i∈L∗ ki and at 0 otherwise.

7This argument can be converted into a similar argument re-
garding single agent deviations.

This mechanism is strategyproof and 3- approximate for the
maxisum objective when N2 = ∅.

Note that when ki = 1 for all i, this mechanism reduces to
the mechanism proposed in (Cheng, Yu, and Zhang 2013).

Finally, we define a class of randomized strategyproof
mechanisms that provide a 3

2 - approximation ratio when
N2 = ∅ and show that it is nonempty.

Theorem 10. Let f be a randomized mechanism that, for a
profile z, locates the facility at 0 with probability pz and at
2 with probability (1− pz). Then, when N2 = ∅, the follow-
ing conditions on pz are sufficient to make the mechanism
strategyproof and 3

2 - approximate:

1. pz is increasing in
∑
i∈L∗ ki and decreasing in∑

i∈R∗ ki.

2. 1
3+

1
6 ·

∑
i∈L∗ ki∑
i∈R∗ ki

≥ pz ≥ 2
3−

1
6 ·

∑
i∈R∗ ki∑
i∈L∗ ki

(if
∑
i∈R∗ ki =

0, the leftmost term is∞; if
∑
i∈L∗ ki = 0, the rightmost

term is −∞).

Furthermore, the class of mechanisms of this form is
nonempty.

Proof sketch. The fact that pz is increasing in
∑
i∈L∗ ki

and decreasing in
∑
i∈R∗ ki clearly implies strategyproof-

ness. The bounds on pz follow from a careful analysis of
the profile which locates zij ≈ 1 for all i ∈ L∗ and zij = 0

for all i ∈ R∗, and the profile which locates zij = 1 for
all i ∈ R∗ and zij = 2 for all i ∈ L∗ (for all j), which
are the profiles that lead to the worst case approximation
ratios. The nonemptiness of the class comes from showing
that pz = max { 23 −

1
6 ·

∑
i∈R∗ ki∑
i∈L∗ ki

, 0} satisfies the above
properties.

It is worth noting that the randomized mechanism given in
(Cheng, Yu, and Zhang 2013), for the special case of ki = 1
for all i, falls into the category of mechanisms we defined
here.

8 Future Research
The immediate question stemming from our results is what
further improvement can be achieved in the approximation
ratio for the hybrid model by using randomization. Another
question is what can be done in the randomized setting for
the egalitarian objective. Other directions include character-
ization and bounds for strategyproof mechanisms on topolo-
gies different than the interval, and for objectives other than
maxisum and egalitarian. We are exploring these questions
in an ongoing work.
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