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Abstract

We introduce the novel task of identifying important ci-
tations in scholarly literature, i.e., citations that indicate
that the cited work is used or extended in the new ef-
fort. We believe this task is a crucial component in al-
gorithms that detect and follow research topics and in
methods that measure the quality of publications. We
model this task as a supervised classification problem at
two levels of detail: a coarse one with classes (important
vs. non-important), and a more detailed one with four
importance classes. We annotate a dataset of approxi-
mately 450 citations with this information, and release
it publicly. We propose a supervised classification ap-
proach that addresses this task with a battery of features
that range from citation counts to where the citation ap-
pears in the body of the paper, and show that, our ap-
proach achieves a precision of 65% for a recall of 90%.

Introduction
Tracking citations is an important component of analyzing
scholarly big data. Citations provide a quantitative way to
measure the quality of published works, to detect emerging
research topics, and to follow evolving ones.

In this work we argue that not all citations are equal.
While some indeed indicate that the cited work is used or,
more importantly, extended in the new publication, some are
less important, e.g., they discuss the cited work in the con-
text of related work that does not directly impact the new
effort. To illustrate this point, Table 1 lists several citations
in increasing order of importance. We further argue that be-
cause current citation tracking algorithms do not distinguish
between important vs. incidental citations, all of the above
applications (e.g., measuring the quality of a publication, or
tracking research topics) are negatively affected.

To our knowledge, this work is among the first to tackle
the problem of identifying important citations. The contri-
butions of our work are the following:

1. We introduce the novel task of identifying important ci-
tations, defined as a classification task with either two
classes (important vs. non-important citation) or four
classes (following the examples in Table 1).
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Citation
Type

Citation Text

incidental:
related
work

Discriminative models have recently been
proved to be more effective than genera-
tive models in some NLP tasks, e.g., parsing
(Collins 2000), POS tagging (Collins 2002) and
LM for speech recognition (Roark et al. 2004).

incidental:
comparison

Online baselines include Top-1 Perceptron
(Collins, 2002), Top-1 Passive-Aggressive
(PA), and k-best PA (Crammer & Singer, 2003;
McDonald et al., 2004).

important:
using the
work

Here, we follow the definition of Collins per-
ceptron (Collins, 2002).

The part-of-speech tagger is our re-
implementation of the work in (Collins,
2002).

important:
extending
the work

We describe a new sequence alignment model
based on the averaged perceptron (Collins,
2002), which shares with the above...
Our learning method is an extension of
Collins’s perceptron-based method for se-
quence labeling (Collins, 2002).

Table 1: Citation examples for (Collins, 2002), listed in in-
creasing order of importance.

2. We annotate a dataset of approximately 450 citations with
citation importance information. The dataset is publicly
available in the hope that it will foster further research on
this topic.

3. We propose a supervised classification approach that sep-
arates important from incidental citations using a battery
of features, ranging from citation counts to where the ci-
tation appears in the body of the paper. Our approach
models both direct citations, i.e., citations that follow es-
tablished proceeding formats, and indirect citations, i.e.,
which use a description of the algorithm instead (e.g.,
“Stanford parser”). Our method performs well, obtaining
a precision of 65% for a recall of 90%.
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Citation Type Fine-grained Label Coarse Label
Related work 0 Incidental
Comparison 1 Incidental
Using the work 2 Important
Extending the work 3 Important

Table 2: Citation annotation labels.

Data
To address this task, we used a collection of 20,527 papers
from the ACL anthology1, together with their citation graph
and metadata generated by (Elkiss et al. 2008). There were
106,509 citations among them. We annotated 465 of these
citations, represented as tuples of (cited paper, citing paper),
with ordinal labels ranging from 0 to 3, in increasing order
of importance. The four classes follow the examples in Ta-
ble 1. To obtain a coarse, binary label set, we also collapsed
these fine-grained labels, such that 0 and 1 indicate inciden-
tal citations, and 2 and 3 indicate important citations. Table 2
summarizes both the fine-grained and the coarse label sets.

The citations were annotated by one expert, but we ver-
ified inter-annotator agreement between two experts for a
subset of the dataset. For the set of four fine-grained la-
bels, the annotators agreed on 83.6% of the citations; for the
coarse label set, the inter-annotator agreement was 93.9%.
These results indicates that this task is relatively easy for
domain experts.

Crucially, we found that in this dataset only 14.6% of the
annotated citations are considered important, i.e., they are
labeled 2 (using the cited work) or 3 (extending the work).
This further demonstrates that the identification of impor-
tant citations is an important task, since most citations are
actually incidental.

The dataset of papers behind these citations was pre-
processed as follows:

• To extract the text from the PDF files we used Poppler’s
pdftotext

2.

• The text was normalized by removing diacritics with an
in-house script.

• For sentence splitting, tokenization and POS tagging we
used Factorie (McCallum, Schultz, and Singh 2009).

• For shallow parsing, or chunking, we used OpenNLP3.

• To identify the section in which the citation occurs, we
used ParsCit to segment the paper into sections (Luong,
Nguyen, and Kan 2010). ParsCit provides normalized sec-
tion names, which we use instead of the section titles. For
example, both “State of the Art”, and “Previous Work”
are normalized to related_work.

Approach
Our modeling of citation importance is driven by three key
observations:

1http://www.aclweb.org/anthology/
2http://poppler.freedesktop.org
3http://opennlp.apache.org

Citation
Type

Citation Text

Algorithm
name

Figure 3: Stanford Parser output example.

Algorithm
name

We implement a part-of-speech tagger with av-
eraged perceptron.

Algorithm
name

We implemented the MXPOST tagger and in-
tegrated it with our algorithm.

Author +
Algorithm
name

However, the application of the Yarowsky
algorithm to NER involves several domain-
specific choices as will become evident below.

Author The behaviour is slightly different here, with
Charniak obtaining better results than Bikel in
most cases.

Table 3: Indirect citations by name of first author or
name/description of the cited algorithm.

1. The more citations a paper receives in the body of the
citing work, the more important the citation is likely to
be.

2. It matters where the citation appears. For example, a cita-
tion in the Related Work section is likely to indicate an
incidental citation. On the other hand, a citation in the
Methods section indicates that the cited work is used or
extended in the citing paper, which signals importance.

3. Citations appear in many forms. Some are direct, i.e., the
citation follows an established proceedings format, or in-

direct, where the work is cited by mentioning the name
of an author, typically the first author, the name of the
cited algorithm, of a description of the algorithm. Table 3
shows examples of indirect citations. Thus, in order to re-
liably implement the first two observations, one has to first
identify both direct and indirect citations.

Identifying Direct and Indirect Citations
We identified direct citations using rules that follow the ci-
tation format of the ACL proceedings, and matched them
to unique paper identifiers in our corpus. A regular expres-
sion was generated using the paper metadata. This regular
expression was designed to match citations that follow the
format of the ACL proceedings and some variations that oc-
curred in our corpus. For example, the required syntax for
a citation to a paper with three authors is to write the last
name of the first author followed by the phrase “et al.” but
we found that many papers in our corpus mention all the
authors last names.

To identify indirect citations, we implemented two heuris-
tics: one focusing on author names, and one addressing
names or descriptions of the cited algorithms. We extracted
indirect citations by author name by first finding all citations
to any paper in the citing paper’s text and then matching the
last name of the first author of the cited paper of interest
outside any of the direct citations.

Automatically identifying algorithm name or descriptions
is less trivial. For this, we implement a two step algorithm:

1. For any given cited paper, we first find the papers that
cite it in the entire corpus of 20K+ papers, and we extract
the corresponding citations. Then we extract: (a) the noun
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Cited paper id Verb Noun phrase
P05-1044 proposed a new objective function
J96-1002 presented a Maximum Entropy Approach
A00-1031 reports 96.7% overall accuracy
W06-1643 used skip-chain Conditional Random Fields
P08-1108 combined MSTParser and MaltParser
W02-1001 extended the perceptron algorithm
P02-1018 reports 93% precision and 83% recall

Table 4: Examples of noun phrases following citations. The
paper ids are from the ACL ontology; to retrieve the paper
content append the id at the end of this URL: http://www.
aclweb.org/anthology/.

phrase directly before the citation, or (b) the noun phrase
following the citation and a verb. For this step, we used
the Knowitall Taggers tool, a pattern-matching tool that
functions over tokens and incorporates part-of-speech and
shallow syntactic information4. Table 4 shows examples
of citations followed by a verb and a noun phrase. Most
of these noun phrases are informative, but some do not
describe the cited approach, e.g., focusing instead on its
“accuracy” and “recall”. We address these errors below
with a robust heuristic inspired from information retrieval.

2. In the second step, we collect the unigrams and bigrams
found in the noun phrases related to each cited paper
and identify the most important ones by selecting the
ones with a tf-idf score (Manning, Raghavan, and Schütze
2008) above some threshold (arbitrarily set to 200). Ta-
ble 5 shows examples of the extracted names and descrip-
tions, which illustrates that this filtering manages to re-
move most of noise introduced in the previous step. A
remaining limitation of our approach is that we currently
use unigrams and bigrams, which might not to be suffi-
cient to capture longer descriptions. We analyze this issue
later in the paper.

Features
Using both direct and indirect citations, we extract the fol-
lowing features from each citation tuple:
• (F1) Total number of direct citations: This feature

counts the total number of citations to the cited paper.
• (F2) Number of direct citations per section: Similar to

the above feature, but counts are qualified by the section
in which they appear. For this feature we used the normal-
ized section titles produced by ParsCit. For example, if a
paper has five citations, with two appearing in the Related
Work section and three in Methods, we generate two fea-
tures: DirectCountsRelatedWork with a value of
2 and DirectCountsMethods with a value of 3.

• (F3) Total number of indirect citations and number of
indirect citations per section: Similar to the previous
two features but focusing on indirect features. Since the
description n-grams may be redundant (i.e., we may find
multiple, slightly different descriptions of the same work)
we count them differently than direct citations: instead of
counting occurrences, we count the number of sentences
in which at least one potential description appears.
4https://github.com/knowitall/taggers

• (F4) Author overlap (Boolean): This feature is set to true
if the citing and the cited works share at least one common
author. The intuition behind this feature is that shared au-
thors indicate that the new work is likely to be an exten-
sion of the cited paper.

• (F5) Is considered helpful (Boolean): This feature is set
to true if a sentence in which a citation occurs contains
phrases such as “we follow” or “we used”, which are hints
that the author of the citing work considers the cited paper
to be important.

• (F6) Citation appears in table or caption (Boolean): Set
to true if at least a citation appears in a table or a caption
of a figure or table. This is an indicator that the author of
the citing work is comparing her results to the cited paper.

• (F7) 1 / number of references: This feature computes the
inverse of the length of the citing paper’s reference list,
which hints to the value of receiving one citation, e.g., if it
is one citation from a total of two references, this citation
is clearly important.

• (F8) Number of paper citations / all citations: Simi-
larly, this feature computes the number of direct citations
instances for the cited paper over all the direct citation
instances in the citing work.

• (F9) Similarity between abstracts: This feature com-
putes the similarity between the cited and citing paper’s
abstracts using the cosine similarity of the tf-idf scores.
The intuition behind this feature is that the closer the ab-
stracts, the more likely the new work extends the cited
paper.

• (F10) PageRank: This feature computes the PageRank
score (Page et al. 1999) of the cited paper, as a measure
of the cited work’s importance.

• (F11) Number of total citing papers after transitive
closure: This feature records the number of citing papers
after the transitive closure, e.g., papers that cite the cited
work, papers that cite those papers, etc.

• (F12) Field of the cited paper: This feature stores the
particular computer science subfield to which the cited
paper belongs. This is work in progress: we currently de-
veloped a classifier that identifies if a paper describes a
software system or not. This classifier was developed as
part of a scientific literature search engine and is based
on bag of words technique matching system names with
citation contexts.
For learning, we used classifiers implemented in the

scikit learn toolkit5, in particular support vector ma-
chines (SVM) and random forests. We normalized all nu-
meric features by centering on the mean and scaling to unit
variance.

Experiments
Identifying important citations
For the main experiments in this section, i.e., identifying im-
portant citations, we used a leave-one-out cross-validation

5http://scikit-learn.org/
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Citation Paper title Nickname TF-IDF score
P03-1054 Accurate Unlexicalized Parsing stanford parser 1236.89
W04-3252 TextRank: Bringing Order into Texts textrank 319.33
N07-1051 Improved Inference for Unlexicalized Parsing berkeley parser 506.45
A00-1031 TnT – A Statistical Part-of-Speech Tagger tnt 1041.02
W96-0213 A Maximum Entropy Model for Part-Of-Speech Tagging mxpost 377.71
W02-1001 Discriminative Training Methods for Hidden Markov Models:

Theory and Experiments with Perceptron Algorithms
structured perceptron 356.06

W02-1001 Discriminative Training Methods for Hidden Markov Models:
Theory and Experiments with Perceptron Algorithms

averaged perceptron 373.52

Table 5: Identified algorithm names/descriptions.

Figure 1: Precision-recall curve for our baseline and two
classifiers: SVM with a RBF kernel and random forests.

setup, i.e., we repeatedly evaluated the performance of our
models on a different citation, by training on all remaining
ones. For this experiment, we used only the binary coarse
labels, i.e., important vs. incidental, and employed the stan-
dard precision, recall, and F1 scores as evaluation measures,
considering the important citations as the positive class.

Figure 1 shows the results of our model trained with two
classifiers: SVM with a RBF kernel, and random forests.
To obtain the P/R curve, we used various thresholds on the
classifier confidence. Both classifiers are compared against
a baseline that randomly assigns the “important” label using
a probability p, which varies from 0 to 1. The red dot in the
figure corresponds to a value of p equal to the the prior dis-
tribution of the “important” label in the entire corpus (i.e.,
14.6%).

The results in the figure show that our proposed model
considerably outperforms the baseline: for example, for a
recall of 0.9 our SVM model has a precision of approxi-
mately 0.65, whereas the baseline’s precision at the same
recall point is under 0.2. This is an important result, which
shows that under a high-recall requirement (which is a com-
mon scenario for a real-life system – see the Discussion sec-
tion) our system has a reasonable precision. Overall, both
classifiers have an area under the curve of 0.80. We con-
sider this a very encouraging result for our relatively simple
model.

Figure 2: Learning curve for the SVM classifier with RBF
kernel.

Figure 2 shows the learning curve of the SVM classifier.
For this experiment, we used a simpler, three-fold cross val-
idation. For each testing fold, we randomly selected subsets
of the training data for each point in the curve. To avoid po-
tential biases in the random subset selection, we repeated the
experiments five times and averaged the results. This exper-
iment indicates that the classifier learns relatively quickly,
achieving near optimal performance with half of the train-
ing data available. This suggests that, even though our cor-
pus is relatively small, its size is not a drastic constraint on
performance.

Feature analysis
To understand the contribution of each of the features pro-
posed in the previous section, we performed a post-hoc anal-
ysis, where we evaluated variants of our model containing a
single feature group at a time. Because we are ultimately in-
terested in a high-recall configuration of the classifier, where
no important citations are missed (see the Discussion sec-
tion), for this analysis we enforced a high recall of 0.9 for
all configurations. The results are listed in Table 6.

The table highlights that all individual features perform
better the random baseline. Recall that the baseline had both
precision and recall under 0.2, whereas most of our features
have a precision of over 0.2 for a recall of 0.9. The fact that
all features contribute to the overall performance is high-
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Features Precision
Only: direct citations per section (F2) 0.37
Only: direct citations (F1) 0.30
Only: author overlap (F4) 0.22
Only: is useful (F5) 0.22
Only: direct citations / all citations (F8) 0.22
Only: research field (F12) 0.22
Only: in figure/table (F6) 0.20
Only: indirect citations: author names (F3) 0.19
Only: indirect citations: descriptions (F3) 0.17
Only: inverse number of references (F7) 0.17
Only: PageRank (F10) 0.17
Only: total citing papers (F11) 0.16
Only: abstract similarity (F9) 0.14
All features 0.62

Table 6: Performance of the system when using individual
feature groups, for a recall of 0.90. The feature groups are
listed in descending order of their contribution.

lighted by the performance of the system that uses all fea-
tures (last row in the table), which is nearly double that of
the best performing individual feature.

However, the individual feature contributions vary widely.
The best performing features are the direct citations (both
globally and per section) (F2, F1), followed by author over-
lap between citing and cited papers (F4), and textual hints
that the cited work is considered useful by the authors of
the citing paper (F5). The least performing features are: our
PageRank score (F10) (perhaps due the small size of our
paper dataset), the total number of citing papers after transi-
tive closure (F11) (which suggests that influence dissipates
beyond the immediate citations), and similarity of abstracts
(F9) (suggesting that researchers working on similar topics
are not necessarily influencing each other).

Evaluating paper descriptions
Although the paper descriptions extracted by our algorithm
are informative (see Table 5), the analysis in the previ-
ous sub-section indicates that indirect citations, which use
these descriptions, contribute minimally to the overall per-
formance. To better understand this issue, we performed a
direct evaluation of the descriptions that our algorithm ex-
tracts.

In this work we focus solely on the precision of the set of
extracted descriptions, which are responsible for the indirect
citations.6 For this purpose, we selected a subset of 50 pa-
pers from the larger corpus of +20K papers. 12 of these pa-
pers appear as cited papers in our smaller, annotated citation
corpus. For these 50 papers, we collected all the descriptions
automatically extracted by our approach. The descriptions in
this set total 119. A domain expert analyzed these descrip-
tions, and produced two precision scores: a lenient score,
which considers a n-gram description as correct if it is part
of a correct description, and a strict score, which considers
a description as correct only if it forms a complete, non-

6Furthermore, a recall-based evaluation in this context is hard:
it is not trivial to extract all the possible descriptions of a paper in
the literature.

Figure 3: Screenshot of the scientific literature search engine
that uses this work. For each cited paper, the top right block
lists the important citations out of the total citations found in
the indexed corpus.

ambiguous description. For example, for the paper “Incor-
porating Non-local Information into Information Extraction
Systems by Gibbs Sampling”7, the expert considered the de-
scription “entity recognizer” correct under the lenient score
but incorrect under the strict one, whereas the description
“stanford ner” is marked as correct under both scores.

The results of this evaluation were a lenient precision
score of 115/119 = 96.6%, and a strict precision of
46/119 = 38.7%. This analysis indicates that the n-grams
extracted are almost always relevant (hence the high lenient
score), but seldom complete (hence the low strict score).
For example, for the above paper, our algorithm extracts the
following descriptions: “stanford named”, “named”, “recog-
nizer”, “named entity”, “entity recognizer”, “stanford”, and
“stanford ner”. While these are clearly relevant for this pa-
per, the incomplete descriptions, e.g., “named entity”, may
have two undesired effects: (a) they are likely to match in
the context of another paper, yielding incorrect indirect ci-
tations, and (b) they may cause spurious citations, when
multiple incomplete descriptions that form a complete one
(e.g., “stanford named” and “entity recognizer”) match in
the same sentence. In this work, we mitigate the latter is-
sue by counting sentences rather than individual indirect ci-
tations. In future work, we will explore more complex so-
lutions, such as n-gram tiling (Dumais et al. 2002), which
combine multiple incomplete n-grams to form a complete
description.

Discussion
One of the strengths of this work is its immediate applica-
bility to a real-world problem. We have incorporated our
citation classifier into a scientific literature search engine,
such that users can immediately identify the most impor-
tant followup work for a given cited paper. Figure 3 shows a
screenshot of this search engine using our work. The exam-
ple highlights that of the ten papers that cite the paper “The
infinite HMM for unsupervised PoS tagging” only two are
considered important and are shown first. To avoid missing
important citations, this system uses the high-recall config-
uration of our system (R 0.90, P 0.65).

7https://www.aclweb.org/anthology/P05-1045
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This work is however far from complete. In future work
we will improve the extraction of the paper description and,
correspondingly, of the indirect citations, by implementing
tiling algorithms that merge incomplete descriptions. We
will continue to improve the features used to represent a ci-
tation. For example, we will explore different ways of nor-
malizing citation counts, e.g., by dividing by the total num-
ber of references and/or citations in the citing paper. Also,
we will evaluate new features like the rhetorical function of
citations (Teufel, Siddharthan, and Tidhar 2006).

Related Work
There has been considerable effort in the past decade on
citation indexing systems (Giles, Bollacker, and Lawrence
1998; Lawrence, Giles, and Bollacker 1999; Councill, Lee,
and Giles 2006) and on algorithms that analyze these ci-
tation graphs to, e.g., understand the flow of research top-
ics in the literature, model the influence of specific pa-
pers in their field, or recommend citations for a given
topic; see, inter alia, (Dietz, Bickel, and Scheffer 2007;
Gruber, Rosen-Zvi, and Weiss. 2008; Nallapati et al. 2008;
Daume III 2009; Sun et al. 2009; Wong et al. 2009; Nallap-
ati, McFarland, and Manning 2011). However, by and large,
these works assume that all citations are important, which
we dispute in our work. We argue that by identifying the ci-
tations that are truly important, we will arrive at a better un-
derstanding of published research, which will lead to novel
or more accurate applications of scholarly big data.

Our work is closest to (Zhu et al. 2013), which focuses on
identifying key references for a given paper. Zhu et al. create
a dataset of citations, labeled according to their influence by
the authors of the citing papers, and train a supervised clas-
sifier with four features to predict academic influence. Our
work is different in that our dataset of citations is annotated
by (unbiased) domain experts and we explore a much larger
feature set (twelve vs. four).

Conclusions
To our knowledge, this paper is among the first to tackle
the important task of identifying important citations, which,
we believe, will ultimately improve many applications that
focus on tracking scholarly citations, such as detecting and
following research trends, or quantitatively measuring the
quality and impact of publications.

In addition to introducing and formalizing this task, our
contributions include a novel dataset of 465 citation tuples,
which is publicly available8. We also describe a supervised
classification approach for identifying meaningful citations,
which uses a battery of features ranging from citation counts
to where the citation appears in the body of the paper. Using
the previously described dataset, we show that our approach
performs well, obtaining a precision of 0.65 for a high recall
of 0.9.
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