
A Proposal for Behavior Prediction via Estimating Agents’
Evaluation Functions Using Prior Observations of Behavior

Robert Loftin
North Carolina State University

rtloftin@ncsu.edu

David L. Roberts
North Carolina State University

robertsd@csc.ncsu.edu

Abstract
In this work we present a theoretical approach (not cur-
rently implemented), to the problem of predicting agent
behavior. The ultimate goal of this work is to learn mod-
els that can be used to predict the future actions of in-
telligent agents, based on previously recorded data on
those agents’ behavior. We believe that we can improve
the predictive accuracy of our models by assuming that
an agent reasons about the actions it takes, and trying to
explicitly model that reasoning process. Here, we model
an agent’s reasoning process as a form of Monte-Carlo
search, and attempt to learn a state evaluation function
that, when used with this planning algorithm, yields a
similar distribution of actions given the current state of
the world as we observe in the data. While it is simple to
simulate Monte-Carlo search given an evaluation func-
tion, it is much more difficult to determine an evaluation
function that will generate a certain behavior. Here we
will use Expectation-Maximization to find a maximum
likelihood estimate of the parameters of the evaluation
function, treating the actual steps taken in planning each
action as unobserved data.

Introduction
The ability to accurately predict the actions of an intelligent
agent is useful for a wide variety of problems, such as com-
puter security (Qin and Lee 2004) and automated driver as-
sistance (Dagli and Reichardt 2002). In this work we are
specifically interested in sampling from a distribution over
actions, conditioned on the current state of the world, that is
as close as possible to the distribution of actions that a given
agent would take in the same state. This work is a detailed
proposal for an approach to behavior prediction which learns
parametric models that can be used to predict the behavior of
agents, based on previously recorded data on those agents’
behaviors. As this approach has yet to be implemented and
experimentally validated, we attempt to provide theoretical
justification for our approach, and discuss multiple possible
design choices that could be made when implementing the
approach for a specific domain.

As opposed to modeling a distribution over actions di-
rectly using existing techniques, we believe that we can im-
prove the predictive accuracy of our models by assuming

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

that an agent reasons about the actions it takes, and trying to
explicitly model that reasoning process. We can reasonably
assume that any intelligent agent will have some goals or
motivations, some states of the world they prefer over oth-
ers, and that they follow some procedure to choose actions
based on these motivations. We do not need know exactly
how the agent reasons about their actions, as many different
processes may lead to the same observed behavior. Instead,
this assumption serves as an inductive bias for our prediction
approach, a bias towards actions that are reasonable (though
not necessarily optimal) with respect to some motivations.

We specifically assume, however, that while agents at-
tempt to take optimal action, they can only reason within
certain computational bounds, and so may act sub-optimally.
While assuming optimal behavior can be helpful in some do-
mains, such as game playing, ensuring an opponent can do
no better than some outcome, in many domains it will lead
to less accurate predictions of behavior. While different rea-
soning models might ultimately lead to the same optimal be-
havior, if those models are not allowed to run until they find
truly optimal solutions, then they may yield potentially very
different approximate solutions.

Here, we model an agent’s reasoning process as being
similar to Monte-Carlo planning (Kocsis and Szepesvári
2006), and attempt to learn a state evaluation function that,
when used with this planning algorithm, yields a similar dis-
tribution of actions given the current state of the world as we
observe in the data. The structure of this type of planning al-
gorithm lends itself to learning the state evaluation function
efficiently. It is easy to simulate Monte-Carlo search given
an evaluation function, but it is much more difficult to deter-
mine an evaluation function that will generate a certain be-
havior. Here we will use Expectation-Maximization to find a
maximum likelihood estimate of the parameters of the eval-
uation function, treating the actual steps taken in planning as
hidden data that must be marginalized over.

Related Work
A number of techniques have been applied to the problem of
behavior prediction, including supervised learning and prob-
abilistic modeling (Davison and Hirsh 1998). While not re-
stricted to the problem of behavior prediction, work on the
problem of inverse reinforcement learning (Ng, Russell, and
others 2000; Ramachandran and Amir 2007) or IRL is most

33

Trajectory-Based Behavior Analytics: Papers from the 2015 AAAI Workshop

closely related to the approach described here. Inverse re-
inforcement learning is the problem of identifying a reward
function for an otherwise known Markov Decision Process
such that a policy or observed set of actions is optimal with
respect to that reward function. IRL could be seen as a more
general form of goal recognition, where the reward func-
tion can represent a preference over possible goals, and over
ways of reaching those goals (for example, by avoiding cer-
tain bad states). IRL has been used to allow agents to learn
to perform behaviors based on partial demonstrations (not
covering all possible states) of those demonstrations by an-
other agent (Abbeel and Ng 2004), a problem that is very
similar to that of learning to predict another agents behavior
in previously unseen states.

Most closely related to our work is the use of maximum-
entropy IRL to predict the paths of pedestrians so as to al-
low a mobile robot to avoid them (Ziebart et al. 2009). In
that work, IRL was applied to learn a reward function used
to predict the movement of humans walking in an environ-
ment. The significance of that work to our approach is that it
assumed a degree of sub-optimality in the humans’ choice of
path, allowing for a more accurate prediction of their actual
behavior. It did not, however explicitly consider the nature of
the underlying reasoning process used to choose those paths,
instead assuming that the sub-optimal policy resulted from a
sub-optimal value function.

While analogous to our approach, IRL algorithms gen-
erally work only with relatively small state spaces, or with
value functions that can be linearly approximated in some
set of state features, and do not scale well to many real-world
domains. Because our algorithm explicitly models the plan-
ning done by the agent or agents in the training data, it does
not need to find truly optimal solutions to a MDP or planning
problem. Our algorithm can also use classes of evaluation
functions which are nonlinear in their parameters.

Motivation
Our ultimate goal is to be able to predict the action that an
agent will take in a given state of the world, or more specif-
ically, to sample from the distribution over actions that is as
close as possible to the actual action distribution. To do this,
we will learn a parametric model of this distribution from
data on previous actions of the target agent, or of agents
which we assume choose actions in a similar way to the
target agent. For simplicity, we assume that the state rep-
resentation is sufficiently detailed such that we only need to
condition our learned action distribution on the current state.
Instead of simply modeling a function or probability distri-
bution over the agent’s actions given the current state, our
algorithm learns a parametric model of the agent’s reason-
ing process, and simulates that process to predict the agent’s
actions in states not seen in the training data.

We assume that the agent chooses its next action by
executing a form of Monte-Carlo search. Unlike standard
Monte-Carlo search algorithms (Browne et al. 2012), we
also assume that that the agent has some evaluation function
which it uses to asses the value of different states reached
during that search. It is this evaluation function that will

actually be learned, and used to simulate the agent’s rea-
soning. The relationship between the evaluation function,
and the probability of a particular action being selected, is
highly complex, such that directly optimizing the evaluation
function with respect to the accuracy of the action distribu-
tion will be intractably hard. Given the actual sequence of
states explored during a planning run, the optimal evalua-
tion function is much easier to estimate. As the details of the
planning run for each data point (state-action) pair are un-
known, we will compute a maximum likelihood estimate of
the parameters of the evaluation function model, attempt-
ing to marginalize over all possible planning runs, using
the Expectation-Maximization (EM) algorithm (Dempster,
Laird, and Rubin 1977).

We believe that this approach will allow for better gener-
alization, that is, it will allow a sufficiently accurate model
to be learned with less data, than could be achieved by learn-
ing a function or probability distribution mapping states to
actions. Like inverse reinforcement learning, there are two
ways in which this approach can improve generalization.
Firstly, we assume that the state evaluation function (and
the transition dynamics) are simpler to represent, and can
be learned from fewer examples, than a function or proba-
bility distribution directly mapping state to actions, that is, it
is simpler to represent the goal than it is to represent the set
of actions needed to reach it. Secondly, by learning the eval-
uation function itself, and assuming we know or can learn
the transition dynamics of the domain, we can use planning
to identify a likely action for a previously unseen state.

Data Representation
We assume that our training data takes the form of a se-
quence (or set of sequences) of state-action pairs. The do-
main will use a STRIPS planning-like representation (Fikes
and Nilsson 1972), where actions will be represented as
functions parameterized by some set of entities (entities
which may be different from entities in subsequent test data),
and that the state will consist of a set of grounded first order
predicates over the same set of entities. In this work, S will
be the set of all possible sets of grounded state predicates,
while A is the set of all grounded actions. These ground-
ings are all with respect to the entities present in the train-
ing data. Some domain specification may also be provided,
giving preconditions for certain actions, which can reduce
the size of the action set available in a given state, and may
also specify which predicates are added or removed from the
state after each action.

As an example, consider a state-action pair that might
arise in a computer game. The state takes the form

at(Character A,Location C)

at(Character B,Location C)

damaged(Character B),

while a logical action in this state (assuming Character A
is the agent taking an action at this time step) might be

attack(Character B).

As can be seen in this example, the choice of action depends
on which agent is actually taking the action. We can assume

34

that this information is provided for each action. However,
we wish to learn an evaluation function over states, one that
is independent of the specific set of entities present, and can
be used to model the behavior of multiple agents by comput-
ing the value of a state relative to the agent actually choosing
the action. We must therefore add information to the state
representation such that the agent currently acting is appar-
ent. In the simplest case, this could consist of a single predi-
cate, self(Character A), whereCharacter A is the agent
taking the next action, such that the agent can distinguish
between itself and all other agents. There will be some ac-
tions in the data which do not correspond to the actions of
any agent (environmental events), which can be removed for
training. We may also wish to ignore the actions of some
agents whose behavior we do not wish to model.

Monte-Carlo Planning
Here we will use a form of Monte-Carlo planning (Kocsis
and Szepesvári 2006), where the agent simulates the results
of a sequence of actions (which we will call a roll-out), and
then computes the value of the evaluation function at the
final state reached after that action sequence. The value of
the final state in a roll-out will be propagated back to every
action taken in every state encountered during the roll-out.
The values propagated back to a state are used to select the
actions for subsequent roll-outs that reach that state. We will
assume that the agent always does K roll-outs of T actions,
with K and T being parameters of the algorithm.

Action selection is done according to some exploration
strategy, and here we will use a simple SoftMax strat-
egy (Vermorel and Mohri 2005), where actions are selected
according to a Boltzmann distribution based on there aver-
age value so far. Let qi(s, a) be the average return of all roll-
outs that took action a in state s, up to but not including
roll-out i. The probability of taking action a in state s at step
i of the planning process would be

p(a|s, i) =
1

Z
e
qi(s,a)

αi ,

where Z is a normalization constant, and αi is a tempera-
ture parameter which can be gradually decreased to make
action selection greedier. While not always the most effi-
cient action selection rule, it has the advantage of having
action probabilities which are differentiable with respect to
qi(s, a) (which we will see is differentiable with respect to
the evaluation function). Because the SoftMax strategy is
stochastic, it will also lead to a likelihood function that is
smoother with respect to the evaluation function parameters,
which will make optimizing the model parameters easier. In-
tuitively, any sequence of actions is at least possible under
SoftMax, if not probable, whereas with a deterministic strat-
egy and sequence would either be possible or impossible,
leading to a highly discontinuous likelihood function.

It should be noted that this approach does not require that
an agent actually use this planning algorithm to be able to
accurately predict the actions that that agent will take. The
evaluation function learned will will be that which maxi-
mizes the probability of the agent taking the actions it did,
given that it used this algorithm, and so it may not actually
represent the true evaluation function used by the agent.

State Transition Model
To actually simulate the agent’s planning runs, we will need
a model of how the world evolves in time in response to
the agent’s actions, that is a transition distribution p(s′|s, a),
conditioned on the current state and action. We will assume
that the model used by the agent is relatively accurate, and so
will learn this model directly from the training data, prior to
attempting to learn the agent’s evaluation function. There-
fore, our choice of transition model will not consider how
the model affects the agent’s choice of actions, only how ac-
curately it models their effects.

This model could be deterministic, based on the plan-
ning representation, such that each subsequent state is deter-
mined by the set of predicates that are added or deleted from
the previous state by the previous action. For simplicity, we
will assume that the effects of any action are deterministic.
State transitions, however, may still be stochastic from the
agent’s perspective. Between each action taken by the agent,
other events will occur, either actions taken by other agents,
or events occurring beyond the control of any agent. The
agent will likely choose whether to select a new action in a
stochastic manner as well.

In the general case, an accurate transition model will
therefore require two components, an event distribution con-
ditioned on the current state, and a binary distribution giving
the probability that the agent will take an action in the cur-
rent state, conditioned on the time since the last action was
taken, and possibly on the current state. There are a number
of existing algorithms and representations that could be used
to learn and sample from these distributions, such as Markov
Logic Networks (Richardson and Domingos 2006). The best
choice of model will depend on the specific domain.

Evaluation Function Model
What will actually be learned is a state evaluation function,
that is, a function fθ : S 7→ < represented by parameters θ.
This function is meant to encode the near term goals of an
agent, such that the actions generated by the resulting action
selection model will as often as possible match the actions
taken in the training data.

As a concrete example, we can use a multilayer percep-
tron (Attali and Pagès 1997) as a parametric model of the
evaluation function. We can construct by hand (based on do-
main knowledge) a set of k binary state features c(s), which
take the form of existentially or universally quantified first
order clauses. Our evaluation function will then consist of a
multilayer perceptron, with a single hidden layer of size l,
that takes these binary features as inputs, and uses a logis-
tic activation function. The weight for the jth input to the
ith hidden node will be wij , the bias for the ith hidden node
will be bi, and the weight of the output of the ith hidden
node will be oi, such that θ = 〈w, b, o〉. Therefore, the value
of the evaluation function for state s will be:

fθ(s) =

l∑
i

oi

[
1

1 + ebi+Σkjwijcj(s)

]
.

As this model is differentiable with respect to θ, and the
expected log-likelihood to be maximized at each step of the
EM algorithm is differentiable with respect to the evaluation
function, we can optimize θ via gradient ascent.

35

Expectation-Maximization for Learning
Evaluation Functions

Under our model, the action selected by the agent in a
given state depends not only on the evaluation function,
but also on the sequence of state-action roll-outs gener-
ated from that state during the planning run. This sequence
of roll-outs is not observable, and is not fully determined
by the parameters of the evaluation, due to the stochastic
nature of the transition simulation, and potentially of the
evaluation function and the exploration rule. As a result,
we need to marginalize over the set of possible planning
runs when computing the likelihood. Directly marginaliz-
ing over possible planning runs, while simultaneously max-
imizing the parameters of the evaluation function, would
be intractable. Fortunately, the problem can be addressed
using the Expectation-Maximization algorithm (Dempster,
Laird, and Rubin 1977). The basic EM algorithm iteratively
computes estimates of the true model parameters, with the
(n+ 1)th estimate being

θn+1 = argmax
θ

EH∼D,θn [ln(p(H,D|θ))] . (1)

Where each θn is a maximum of a progressively tighter
lower bound on the log likelihood of the true parameters.
This update is typically divided into an expectation step,
where the expectation (given θn) over the log-likelihood of
θ is estimated, followed by a maximization step in which
the expectation is maximized with respect to θ. Updates can
continue until the θ parameters converge, or until the action
distribution they generate is sufficiently close to the distri-
bution observed in the training data set.

Expectation Step
The unknown data H over which we must compute the ex-
pectation is the set of planning runs (where each planning
run is a sequence of roll-outs) done by the agent for each of
the data points (state-action pairs) in the training data set D.
It is unlikely that we will be able to tractably marginalize
over all possible values for H , and so we will need to es-
timate the expectation by sampling roll-out sequences from
the distribution p(τi|ai, si, θn), where τi is a random vari-
able representing the planing run associated with the ith
state-action pair inD. As planning runs for each state are in-
dependent, we can rewrite the expectation such that we can
generate samples of τi for each state action pair separately.
The expectation at the nth EM iteration is

EH∼D,θn [ln(p(H,D|θ))] = EH∼D,θn

 |D|∑
i=1

ln(p(τi, Di|θ))

=

|D|∑
i=1

Eτi∼Di,θn [ln(p(τi, Di|θ))] .

We will generate κ samples of each τi, with κ being a pa-
rameter of the algorithm that must be selected based on the
domain and on available computational resources.

For a single state-action pair 〈s, a〉 in the data set, we need
to sample from the posterior distribution p(τ |s, a, θn). Sam-
pling from p(τ |θn) simply requires running the planning al-
gorithm for N roll-outs, using the evaluation function repre-
sented by θ. We can therefore use rejection sampling (Flury

1990) to sample from the posterior, by noting that

p(τ |s, a, θn) =
p(τ, a|s, θn)
p(a|s, θn)

= p(τ |s, θn)
p(a|τ, s, θn)∑
τ ′ p(a|τ ′, s, θn)

.

Using p(τ |θn) as the proposal distribution, we can accept
each sample with probability

1

C
p(a|τ, s, θn),

where C is defined such that

C ≥ p(a|τ, s, θn)∑
τ ′ p(a|τ ′, s, θn)

, ∀τ.

Note that we drop the normalization constant∑
τ ′ p(a|τ ′, s, θn) as it can be be assumed to cancel

out with C.
We assume that the action a is also chosen with the Soft-

Max rule, with temperature β, using the final action value
estimates qN (s, . . .). To minimize the rejection rate, we
choose the smallest value of C possible, which is

C = max
τ

p(a|τ, s, θn)

= max
q(s,...)

eq(s,a)/β∑
a′∈A e

q(s,a′)/β
.

Knowing that our evaluation function is bounded to the
range [c, d],∀s ∈ S, we see that

C =
ed/β

ed/β +
∑
a′ 6=a∈A e

c/β

=
1

1 + (|A| − 1)e
c−d
β

.

And so we accept τ with probability

eq(s,a)/β∑
a′∈A e

q(s,a′)/β

[
1 + (|A| − 1)e

c−d
β

]
,

where c and d will depend on θn.
Initially, with θ0 chosen at random, we might expect

the average returns q(s, a) to be similar for all a, and so
p(a|τ, s, θ0) ∼ 1

|As| , though for a particularly poor initial-
ization of θ the probability of the correct action being taken
could be much lower. At the same time, we would need to
set the temperature β low enough such that the probability of
selecting the optimal action under a good estimate of evalua-
tion function fθ will be close to 1, meaning that M will also
be close to 1. As the action spaceA will be quite large under
our representation, a large majority of samples would likely
be rejected, and to generate κ final samples, we might have
to generate κ|A| samples from the proposal distribution.

One way to avoid, or at least reduce, this problem is to al-
low the temperature β to vary, similar to the approach used
in simulated tempering (Marinari and Parisi 1992). Starting
out with a high temperature, a much larger number of sam-
ples will be accepted. As the the estimate of the evaluation
function improves, and the sampled planning runs are more
heavily biased towards the correct actions, the temperature

36

can be reduced while still having a relatively high accep-
tance rate. To update the temperature in a way that maintains
the convergence of the EM algorithm, we can include β in
the set of parameters being estimated, along with the θ pa-
rameters. We will show that β can be updated using gradient
ascent, in the same way that θ is updated.

A good initial value of β will be one that is large enough
to ensure a reasonable acceptance probability for all sam-
ples. If we assume that, on average (across all data points),
the probability of a sample τ leading to the correct action
is approximately 1

|A| , and we want an average acceptance
probability of α, then we will want β0 such that

α =
1

|A|

[
1 + (|A| − 1)e

c−d
β0

]
α|A| − 1

|A| − 1
= e

c−d
β

c− d
ln(α|A| − 1)− ln(|A| − 1)

= β0.

In addition to reducing the number of proposal samples
which need to be generated, allowing β to vary may improve
the accuracy of the learned model. For example, there may
be similar (or even identical) states in the data set with dif-
ferent associated actions, such that choosing θ to account
for those data points may be difficult or impossible. A less
greedy action selection distribution (higher β) may better
account for these cases, and even if some value of θ could
account for them with greedy action selection, that function
might not generalize as well to states not observed in the
data set. Therefore, a variable temperature may help to re-
duce overfitting of the evaluation function.

We define H̄ to be the set of all accepted samples τ for
all data points in D. Regardless of how we choose to gen-
erate these sample planning runs, we can write the sample
estimate of the expectation as

1

κ

∑
τ∈H̄

ln [p(aτ , τ |θ)] , (2)

where κ is again the desired number of samples for each
state-action pair in the data set, and aτ is the action from the
state-action pair for which sample τ was generated.

Maximization Step
The evaluation function parameters θ will be trained via gra-
dient ascent on the expected log-probability (Equation 2).
Note that we can restrict the number of gradient ascent up-
dates performed per maximization step to some fixed con-
stant, as the EM algorithm only requires that θn+1 be an im-
provement over θn (Neal and Hinton 1998). At each update,
we can compute the gradient separately for each sampled
planning run τ ∈ H̄ , such that the full gradient is

1

κ

∑
τ∈H̄

∇θ ln [p(aτ , τ |θ)] .

To derive the gradient of a single sample τ , we will define
a sequence, from 0 to KT + 1, of state-action-state triples.
〈si, ai, s′i〉 will represent the ith action selection made dur-
ing planning run τ (essentially concatenating the sequence

of K roll-outs), choosing action ai in state si, and transi-
tioning to state s′i. We then have

∇θ ln [p(τ, a|θ)] =
KT∑
i=0

ln
[
p(s′i, ai|si, θ)

]
(3)

=

KT∑
i=0

ln
[
p(s′i|ai, si)p(ai|si, θ)

]
(4)

=

KT∑
i=0

ln
[
p(s′i|ai, si)

]
+

KT∑
i=0

[p(ai|si, θ)] . (5)

As the state transition probabilities p(s′|s, a) are indepen-
dent of θ, we can drop the second term of Equation 5, and
can derive the gradient in terms of the gradient of the values
qiθ(a), which we define as the average return (up to time i),
for taking a in state si:
KT∑
i=0

∇θ ln
[
p(ai|qiθ, si)

]
=

KT∑
i=0

∇θ ln

[
eq
i
θ(ai)/αi∑

a∈A e
qi
θ
(a)/αi

]
(6)

=

KT∑
i=0

[
∇θqiθ(ai)

αi
−∇θ ln

(∑
a∈A

e
qiθ(a)

αi

)]
(7)

=

KT∑
i=0

∇θqiθ(ai)
αi

−

∑
a∈A

(
eq
i
θ(a)∇θqiθ(a)

αi

)
∑
a∈A e

qi
θ
(a)/αi

 . (8)

We note that the qiθ values are simply the average return
of all roll-outs prior to i that have taken action ai in state
si. We define µi(a, s′) to be the number of roll-outs prior to
action selection step i that have taken a in state si and have
terminated in state s′. Therefore

qiθ(a) =

∑
s′∈S µi(a, s

′)fθ(s
′)∑

s′∈S µi(a, s
′)

, (9)

with µi(a, s′) equal to 0 for most states s′. Therefore

∇θqiθ(a) =
∑
s′∈S µi(a, s

′)∇θfθ(s′)∑
s′∈S µi(a, s

′)
. (10)

Plugging this into Equation 8, we get the gradient of the log
probability of sample τ with respect to θ.

We can similarly find the derivative of ln[p(τ |θ)] with re-
spect to the temperature parameter β, which depends only
on the final state action pair in planning run τ , 〈sKT , aKT 〉,
with αKT = β.

∂

∂β
ln
[
p(aKT |qKTθ , sKT)

]
=

∂

∂β
ln

[
eq
KT
θ (sKT ,aKT)/β∑

a∈A e
qKT
θ

(sKT ,a)/β

]

= −q
KT
θ (sKT , aKT)

β2
− ∂

∂β
ln

(∑
a∈A

e
qKTθ (sKT ,a)

β

)

=

∑
a∈A

(
e1/β q

KT
θ (sKT ,a)

β2

)
∑
a∈A e

qKT
θ

(sKT ,a)/β
− qKTθ (sKT , aKT)

β2
.

Note that we do not have to update β with the same gradient
step size, nor with the same number of iterations as we do θ,
as we only need an improvement, not a true maximum, for
the EM algorithm to work. It may improve sampling perfor-
mance if β is changed more slowly.

37

Efficiently Computing the Gradient It can be seen in this
form that computing the gradient for each sample will take
time proportional to KT + 1, the total number of action se-
lection steps in the sample. While the gradient of the log
probability is linear in the gradient of the evaluation func-
tion, it is highly non-linear in the parameters θ, due to the
normalization constants. As we will do multiple gradient as-
cent steps per maximization step, the maximization step may
end up representing the bulk of the cost of the algorithm, de-
pending on the sample rejection rate of the expectation step.

There are, however, aspects of the problem that we can
take advantage of to make computing the gradient some-
what less expensive. For one, a large fraction of action se-
lection steps will occur in states that have not been pre-
viously encountered during the planning run, and so have
no dependence on the evaluation function. These selection
steps (which include the entire initial roll-out, and deeper
segments of many subsequent roll-outs) can therefore be ig-
nored when computing the gradient.

We also note that the first term of the gradient (Equa-
tion 8) is linear in the gradient of the evaluation function, and
does not depend on the parameters of the evaluation function
in any other way. This term could therefore be replaced by a
linear combination of the gradients for each state∑

s′∈S

ws′∇θfθ(s′),

with weights

ws′ =

KT∑
i=0

∑
s′∈S µi(a, s

′)

αi
∑
s′∈S µi(a, s

′)
,

where µi(a, s′) is defined as in Equation 9. These weights
would be zero for any state that was not the terminal state of
some sampled roll-out.

We can further reduce the effort required by noting that
while each normalization constant must be recomputed for
each action selection step, for each new set of θ parame-
ters, at each gradient update, the constants for some selec-
tion steps may be equivalent. This would occur when there
are two action selection steps i and j such that there exists
a bijection m : A 7→ A (a permutation of actions) such
that ∀s ∈ S, a ∈ A,µi(a, s) = µj(m(a), s). In this case,
regardless of the parameters of the evaluation function, the
normalization constants for steps i and j would be equal.
By assigning a total order over µ functions, a look-up table
could be used to keep track of the number of occurrences
of each unique µ function, and compute the second term of
Equation 8 once for each µ.

Future Directions
Future work will involve implementing the algorithm de-
scribed here, and applying them to real-world data. We will
evaluate the accuracy and generality of the learned models,
as well as the computational efficiency of the approach, in a
number of domains. The accuracy and efficiency of this al-
gorithm is highly dependent on the configuration parameters
(search depth, number of roll-outs) and the choice of transi-
tion and evaluation models used, and so efforts will be made

to find good values and models for different domains, and
if possible to automate parameter selection to some degree.
Future work will also consider how the models learned by
this algorithm could be used to simulate the behavior of a
collection of agents in some domain, for the purpose of esti-
mating the probability of events of interest occurring in that
domain, given some initial state.

There are a number of ways in which this approach could
be extended to improve accuracy or computational effi-
ciency. For example, for states that have not previously been
visited during a planning run, the agent could be assumed
to use the value of some heuristic function to select ac-
tions. We might also assume that the agent assigns return
values not only to the final state of each roll-out, but to inter-
mediate states as well, possibly to avoid undesirable states.
These heuristic or return functions could be modeled using
the same representation as used for the evaluation function,
and similarly trained, though at potentially greater computa-
tional cost. We can also consider learning more abstract state
representations that the agent might use. Learning to group
states together, or ignore state features, in such a way that the
resulting action selection more closely matches the training
data, could in fact lead to reduced computational complexity
when generating, or optimizing over, planning runs.

Conclusion
Here we have presented an approach to the problem of pre-
dicting the future actions of intelligent agents. Our pro-
posed approach explicitly models the reasoning process such
agents follow when choosing their actions, and learns pa-
rameters of that reasoning process (the state evaluation func-
tion) which yield behavior similar to that observed in train-
ing data. Because this algorithm models the entire reason-
ing procedure, it should be able to generalize more effec-
tively to novel situations than algorithms that directly model
an agent’s actions. By working with a more complex plan-
ning representation, and modeling reasoning as a more ef-
ficient search procedure, this algorithm can be applied to
much larger state and action spaces capable of representing
real-world problems. Our overall approach is independent
of many domain specific details such as the choice of state
transition model and evaluation function representation, and
so should be applicable to a wide range of domains. Ideally,
the algorithm described here could be combined with other
approaches, so as to enable the simulation and prediction of
the evolution of complex, multi-agent environments.

Acknowledgments
This material is based upon work supported in whole or in
part with funding from the Laboratory for Analytic Sciences
(LAS). Any opinions, findings, conclusions, or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the LAS and/or
any agency or entity of the United States Government.

References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the

38

twenty-first international conference on Machine learning,
1–8. ACM.
Attali, J.-G., and Pagès, G. 1997. Approximations of func-
tions by a multilayer perceptron: a new approach. Neural
networks 10(6):1069–1081.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samoth-
rakis, S.; and Colton, S. 2012. A survey of monte carlo
tree search methods. Computational Intelligence and AI in
Games, IEEE Transactions on 4(1):1–43.
Dagli, I., and Reichardt, D. 2002. Motivation-based ap-
proach to behavior prediction. In Intelligent Vehicle Sympo-
sium, 2002. IEEE, volume 1, 227–233 vol.1.
Davison, B., and Hirsh, H. 1998. Probabilistic online action
prediction. In Proceedings of the AAAI Spring Symposium
on Intelligent Environments, 148–154.
Dempster, A. P.; Laird, N. M.; and Rubin, D. B. 1977. Maxi-
mum likelihood from incomplete data via the em algorithm.
Journal of the Royal Statistical Society. Series B (Method-
ological) 39(1):pp. 1–38.
Fikes, R. E., and Nilsson, N. J. 1972. Strips: A new approach
to the application of theorem proving to problem solving.
Artificial intelligence 2(3):189–208.
Flury, B. D. 1990. Acceptance-rejection sampling made
easy. SIAM Review 32(3):pp. 474–476.
Kocsis, L., and Szepesvári, C. 2006. Bandit based
monte-carlo planning. In Machine Learning: ECML 2006.
Springer. 282–293.
Marinari, E., and Parisi, G. 1992. Simulated tempering:
a new monte carlo scheme. EPL (Europhysics Letters)
19(6):451.
Neal, R. M., and Hinton, G. E. 1998. A view of the em al-
gorithm that justifies incremental, sparse, and other variants.
In Learning in graphical models. Springer. 355–368.
Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Icml, 663–670.
Qin, X., and Lee, W. 2004. Attack plan recognition and
prediction using causal networks. In Computer Security Ap-
plications Conference, 2004. 20th Annual, 370–379. IEEE.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. Urbana 51:61801.
Richardson, M., and Domingos, P. 2006. Markov logic net-
works. Machine learning 62(1-2):107–136.
Vermorel, J., and Mohri, M. 2005. Multi-armed bandit al-
gorithms and empirical evaluation. In Machine Learning:
ECML 2005. Springer. 437–448.
Ziebart, B. D.; Ratliff, N.; Gallagher, G.; Mertz, C.; Peter-
son, K.; Bagnell, J. A.; Hebert, M.; Dey, A. K.; and Srini-
vasa, S. 2009. Planning-based prediction for pedestrians. In
Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, 3931–3936. IEEE.

39

