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Abstract

We consider the online setting where a user would like to
continuously release a time-series of data that is correlated
with his private data, to a service provider in the hope of
deriving some utility. Due to correlations, the continual ob-
servation of the released time-series puts the user at risk of
inference of his private data by an adversary. To protect the
user from inference attacks on his private data, the time-series
is randomized prior to its release according to a probabilistic
privacy mapping. The privacy mapping should be designed
in a way that balances privacy and utility requirements over
time. Our contributions are threefold. First, we formalize the
framework for the design of utility-aware privacy mappings
for time-series data, under both online and batch models. We
provide a sequential scheme that allows to design online pri-
vacy mappings at scale, that account for privacy risk from
the history of released data and future releases to come. Sec-
ond, we prove the equivalence of the optimal mappings un-
der the batch and the online models, in the case where the
time-series samples are independent across time. We further
show that there exists a gap between optimal batch and on-
line privacy mappings when certain conditions are not satis-
fied. Finally, we evaluate the performance of the framework
over synthetic and real-world time-series data. In particular,
we show that smart-meter data can be randomized for privacy
purposes to prevent disaggregation of per-device energy con-
sumption, while preserving the utility.

1 Introduction

In the era of the Internet of Things, more and more devices
collect and report fine-grained time-series data. Examples
include sensors or monitoring devices in homes or busi-
ness offices such as smart meters, HVAC systems (NEST),
temperature, light, or motion sensors; as well as health-
monitoring devices (fitbit, jawbone); and sensors on hand-
held devices such smartphones, tablets, game controllers.
The collection of time-series data raises privacy concerns
(Group and others 2010), as such data is often highly cor-
related with information that the user may deem sensitive
and wants to keep private. For instance, an analyst having
access to some of the aforementioned time-series data could
infer private information including household composition,
user behavior and lifestyle (appliance use, eating and sleep-
ing patterns, presence, household activities) (Lisovich, Mul-
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ligan, and Wicker 2010; Robertson 2014), heath status (Her-
nandez et al. 2014), mobility patterns...

The collection of time-series data may happen with or
without user consent, and potentially without the possibility
for user to opt-out . The entity collecting the data may also
make this data available to third parties (NEST 2014) with
or without user knowledge. A natural question arises as to
where the trust boundary lies. On one hand, the user may
trust the entity aggregating the data but not the third-party
with whom the aggregator may share data. For instance, the
US department of Energy expressed concerns regarding the
control over third-party access to consumer energy usage
data (US Department of Energy 2010). On the other hand,
the user may not entirely trust the aggregating entity in the
first place, and may want to limit the amount of private infor-
mation leaked by the released data. Data distortion has been
proposed as a countermeasure to protect user privacy in both
cases: either locally at the user side by randomized response
of the user data prior to its release, or in a centralized man-
ner at the aggregator side by randomization of the answer to
a query over a database. In either case, the design of the dis-
tortion mechanism should satisfy formal privacy guarantees,
but also maintain utility of the distorted data. Initially, data
distortion approaches to privacy were devised for the static
case, and when they were subsequently extended to the dy-
namic case of time-series data, scalability challenges arose.
First, as the sequence of distorted releases carries correlation
across time, the amount of distortion introduced by the ran-
domization procedure may grow with the sequence length,
thus maintaining utility often becomes challenging. Second,
the distortion mechanism balancing the privacy-utility trade-
off over time is often obtained through optimizations whose
complexity may scale with the length of the sequence.

In this work, we consider the online setting where a user
continuously releases a time-series of data that is correlated
with his private data, to a service provider in the hope of
deriving some utility from this release. Due to correlations,
the continual observation of the released time-series puts
the user at risk of inference of his private data by an ad-
versary. To protect the user from inference attacks on his
private data, samples from the time-series are sequentially
randomized prior to their release according to a stochastic
process, called the privacy mapping. The privacy mapping
should be designed in a way that balances privacy and util-
ity requirements over time. Our contributions are threefold.
First, we formalize the framework for design of utility-aware
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Figure 1: Sequential structure of the online scheme.

privacy mappings for time-series data, under both the online
and batch models. Our framework for time-series data builds
on and generalizes the static framework for privacy against
statistical inference (du Pin Calmon and Fawaz 2012) to ac-
count for temporal correlations in the time-series, and for
multiple sequential data releases. We provide a sequential
scheme that allows to design online privacy mappings at
scale, that accounts for privacy risks from the history of re-
leased data and future releases to come. Second, we prove
the equivalence of the optimal mappings under the batch and
the online models, in the case where the time-series sam-
ples are independent across time. We further show that there
exists a gap between the optimal batch and online privacy
mappings when the time-series samples do not satisfy cer-
tain conditions. Finally, we evaluate the performance of the
framework over real-world time-series data. We show that
smart-meter data can be randomized for privacy purposes to
prevent disaggregation of per-device energy consumption,
while maintaining the utility over the randomized series.

2 Related Work

The problem of preserving differential privacy (Dwork et
al. 2006) when an analyst continually tracks statistics over
a time-series was studied in (Dwork et al. 2010; Chan, Shi,
and Song 2010) for running sum of bits and in (Bolot et al.
2013) for decayed sums of predicates, while (Shi et al. 2011;
Rastogi and Nath 2010) considered differential privacy for
aggregate-sum queries over the time-series data of multiple
users. However, these approaches do not account for tempo-
ral correlations between samples of the time-series.

Approaches to protect user privacy for the specific case of
smart-meter data (Jawurek, Kerschbaum, and Danezis 2012)
include battery-based solutions (Kalogridis et al. 2010;
McLaughlin, McDaniel, and Aiello 2011), data distortion
(Rajagopalan et al. 2011; Sankar et al. 2013), and cryp-
tographic protocols (Garcia and Jacobs 2011; Erkin and
Tsudik 2012; Lin et al. 2012; Danezis et al. 2013). Battery-
based solutions (Kalogridis et al. 2010; McLaughlin, Mc-
Daniel, and Aiello 2011) consist of off-loading some of the
power consumption to batteries to hide some of the load.
These approaches do not rely on formal guarantees, and re-
quire that the user purchases and installs batteries at home.
Privacy-utility tradeoffs for smart-meter data were stud-
ied in (Rajagopalan et al. 2011; Sankar et al. 2013) under
an information-theoretic framework. Assuming a stationary
Gaussian Markov model for the energy load measurements,
the authors show that the privacy-utility tradeoff can be op-
timized through water-filling. The privacy mechanism that
distorts the time-series data is designed and applied offline
once over the whole sequence prior to the release, and the
privacy guarantees hold in the asymptotic regime of a large
sequence. In contrast, our approach considers the online set-

ting where distorted data is released sequentially, and it is
applicable to any stochastic model for the time-series.

3 Privacy-utility framework for time-series

Notation: The set of integers {1, 2, ..., T} will be denoted
by [T ]. X ∈ X denotes a random variable which takes val-
ues from the set X . XT = {X1, X2, . . . , XT } denotes a
sequence of T random variables.

We consider the dynamic setting where at every time t ∈
[T ], a privacy-conscious user generates samples from two
time-series: a sample St ∈ S of sensitive data that the user
would like to keep private, and a sample of data Xt ∈ X
that the user is willing to release to a service provider, in the
prospect of receiving some utility. Assuming that the time-
series ST and XT are correlated, the sequential observation
of samples from XT by the service provider may allow him
to adversarially perform inference attacks on the private ST .

As a countermeasure to protect the user’s privacy, the
time-series XT is not released as such, but is distorted ac-
cording to a stochastic process called the privacy mapping,
to generate a new time-series X̂T , from which the user
will sequentially release samples to the adversarial service
provider. The privacy mapping should be designed in a way
that balances privacy and utility requirements over time: the
time-series should be altered dynamically in a way that ren-
ders inference attacks against the private information ST

harder at any instant, but not so much that the alteration hin-
ders extracting some utility from the released data.

The privacy mapping can be designed according to an on-
line or a batch scheme. The online scheme refers to an algo-
rithm that generates a distribution for X̂t based on all avail-
able information up to time t, whereas the batch scheme
refers to an algorithm that generates the joint distribution
for the vector X̂T based on the information available un-
til time T (after observing all T samples). The difference
in performance between batch and online schemes is called
regret. Online schemes can be further categorized as inter-
active or non-interactive. In the interactive setting, at time
t, X̂t is generated based on (X̂t−1, Xt, St), whereas in the
non-interactive setting, the distorted data is generated based
only on the current sample (Xt, St).

We now introduce the privacy and distortion metrics used
to define the privacy-utility trade-off for time-series.
Privacy metric: We first define the general notion of Infor-
mation Leakage as the amount of information that the obser-
vation of vector X̂t leaks about vector St.
Definition 1. The Information Leakage J (X̂t;St) from X̂t

to St quantifies the improvement in the inference of St after
observing X̂t.

Definition 1 captures a broad class of adversaries per-
forming inference attacks on time-series. J (XT ;ST ) is
used as a privacy metric in the following defintion:

Definition 2. A sequence XT ∈ RT is εT -private with re-
spect to a sequence ST if ∀t ∈ [T ], the information leakage
at time t is bounded by εt, i.e., ∀t ∈ [T ], J (Xt;St) ≤ εt.

In the sequel, as in (du Pin Calmon and Fawaz 2012),
we focus on a specific metric for the information leakage,
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Figure 2: Online-scheme dependency-graph. Dotted lines:
general dependency. Solid lines: Markov relation.

namely the mutual information (Shannon 1948) between the
vectors of private data and of distorted data up to time T :
J (X̂t;St) = I(ST ; X̂T ) = H(ST ) −H(ST |X̂T ), where
H(·) and H(·|·) denote the entropy and the conditional en-
tropy, respectively. I(ST ; X̂T ) quantifies the amount of in-
formation that vector X̂T has about ST .
Distortion metric: The distortion metric d : R × R → R
describes the proximity of the distorted sequence X̂T to the
original data XT . We will assume that the distortion metric
is separable: d(XT , X̂T ) = 1

T

∑T
t=1 d(Xt, X̂t). Separable

metrics include Hamming distance, and lp-norms.
Privacy-Utility trade-off for time-series: The design of the
privacy mapping should minimize the expected distortion
d(XT , X̂T ), while enforcing a privacy constraint εt at each
time step t which will be specified by the user. That is, the
privacy mapping should generate a distorted version of XT

which is εT−private and is close to the original data XT .
The batch scheme is given by:

Ab :=
minimize
p(x̂T |xT ,sT )

E[d(XT , X̂T )]

subject to J (X̂t;St) ≤ εt, ∀t ∈ [T ].
(3.1)

The online scheme is given by: ∀t = [T ],

Ao :=
minimize

p(x̂t|xt,st,x̂t−1)
E[d(Xt, X̂t)]

subject to J (X̂t;St) ≤ εt.
(3.2)

Note that the online scheme minimizes the distortion be-
tween Xt and X̂t over p(x̂t|xt, st, x̂t−1) in a recursive man-
ner that , at step t, it receives p(x̂t−1, xt, st) from the pre-
vious step and solves the optimization problem (See Figure
1). The sequential nature of the online algorithm generates
a dependency graph that enables a recursive relation. The
case for T = 3 is shown in Figure 2. The simple idea comes
from the conditional independence of x̂t−1 and (xt, st) con-
ditioned on (xt−1, st−1). At step t, the online algorithm re-
quires the joint distribution p(x̂t−1, xt, st) as an input. This
can be achieved simply by

p(x̂t−1, xt, st) = p(xt, st|xt−1, st−1)p(x̂t−1, xt−1, st−1).
In contrast, the batch version minimizes over the whole

joint distribution p(x̂T |xT , sT ) in a single run. This im-
poses a regret between online and batch versions of Privacy-
Utility trade-off where the regret is defined as the difference
between the optimal distortion achieved by the algorithms.
Contrary to existing work, both algorithms allow us to re-
strict the information leakage at each time point t.
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Figure 4: Privacy-Utility trade-off under a dependent model
showing that there exists a regret.

4 Analysis of the schemes

Convexity of the optimization
Theorem 4.1. Assume that the information leakage met-
ric is mutual information and the alphabets X ,S are finite.
Then, problems (3.1) and (3.2) are convex optimizations.

By Theorem 4.1, Problems (3.1) and (3.2) can be solved
using efficient convex optimization techniques. However,
without any modeling assumption, the number of variables
of the convex programs grows exponentially with T . Instead
of full-dependence structure, a simplifying model assump-
tion, such as HMM or time-window dependency, allows to
decrease the problem size. For instance, for independent
samples, the online problem scales linearly with T .

Regret under independence
Theorem 4.2. Let the information leakage metric J , be the
mutual information. For a given batch problem with privacy
levels {εt}Tt=1, if the random pairs {St, Xt}Tt=1 are indepen-
dent from each other, then there exists a choice of privacy
levels {ε′t}Tt=1 for the online problem resulting in no regret.

If we further assume that the random pairs are i.i.d. and
the increments of privacy levels, {εt − εt−1}Tt=1, are non-
decreasing, then online and batch problems are the same for
the same choice of privacy levels, resulting in no regret.

Theorem 4.2 states that the online and the batch problems
are the same and there is no regret under certain conditions.
Also, the online scheme reduces to a non-interactive one un-
der independence. Simulations in Figure 4 show that a posi-
tive regret might occur when the assumptions on the privacy
levels are not satisfied or the samples (Sτ , Xτ ) are corre-
lated. Figure 4 also illustrates the convexity of the problems.

5 Experiments on smart-meter dataset

We experimented our online scheme on the Reference En-
ergy Disaggregation Dataset (REDD) (Kolter and Johnson
2011; Kolter and Jaakkola 2012), which consists of power
consumption of 6 houses. For each house, the power con-
sumption of each appliance in the house is available every
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Figure 3: (Left):Dashed blue line: aggregate load XT . Continuous red line: distorted load X̂T . Green segments on time axis:
microwave ON. (Center): ROC for MAP inference attack on private data (microwave). (Right): ROC for MAP utility inference
(washer-dryer). Distorted load allows for washer-dryer utility inference but prevents attack on private microwave data.

3 seconds. For a given house, we refer to aggregate load of
that house at time t as the total power consumption of all the
appliances at that time.

The scenario for the experiments involves a household,
and a service provider, who may behave adversarially. The
service provider offers some utility to the household, which
requires inference of the state of washer-dryer in the house
from the aggregate load. To provide utility to the user, for
instance automated control of the washer/dryer, the service
provider needs process the aggregate load data received the
user. The utility Ut represents the outcome of the service
provider’s algorithm that runs on the released data. In this
experiment, Ut will be the result of the inference on the state
of washer-dryer from the load data.

The household is willing to give the aggregate load Xt

to the service provider, but wishes to keep the information
related to their eating patterns private, in particular the mi-
crowave usage which can also be inferred from the aggre-
gate load. In this experiment, we choose St to be the state of
the microwave (ON or OFF). If the user released Xt as is, it
can be used adversarially by the service provider to infer in-
formation regarding St, thus raising privacy concerns. The
user will instead release a distorted version X̂t. Examples
of adversarial providers include third-parties, such as apps,
to whom the company operating the smart-meter may give
access to the data it collects (NEST 2014), or a malicious in-
sider such as a curious employee. Our goal is to get the util-
ity related to the washer-dryer, while keeping the sensitive
information regarding microwave usage private. The dataset
provides ground truth for both the microwave and washer-
dryer state, which allows us to verify the performance of our
approach. Note that neither the private data nor the utility
are limited to components of the aggregate load, and could
be any information correlated with the aggregate load.

In the training process, we obtained the empirical distribu-
tions for (St, Xt) and (Ut, Xt). These distributions are also
available to the adversarial provider, and the household. This
worst-case setting provides too much information to the ad-
versary but might be the case as the adversary might have
collected data from a different but similar household. Using
the training set, the adversarial provider trains models for at-

tack and utility, respectively, and they are given a test set to
make inference using these models.

We experimented on the above scenario where the infer-
ence algorithm is maximum a posteriori (MAP) estimation.
The household provides the distorted load {X̂t}Tt=1 using
our non-interactive online scheme where the privacy leak-
age levels are defined as εt = tε. The case where the house-
hold does not use the algorithm and sends the aggregate load
itself is denoted by ε = Inf.

For each leakage level ε, the distorted aggregate load is
fed to the trained inference algorithms (See Figure 3(left)
for a comparison between XT and X̂T ). ROC curves for
MAP inference are shown in Figure 3: the center plot shows
the ROC of the adversarial inference on the microwave, and
the right plot shows the ROC of the utility inference on
the washer-dryer. As ε decreases (information leakage), the
quality of the adversarial inference attack degrades whereas
the utility inference remains unchanged.

6 Discussion

We consider the setting where a user continuously releases
a time-series that is correlated with another private time-
series, to a service provider in the hope of deriving some util-
ity from this release. We propose general online and batch
schemes for the design of utility-aware privacy mappings,
which bound the private information leakage while mini-
mizing the distortion of the data generated by the mapping.
These general schemes can be adapted to any modeling as-
sumption suitable for a given application. We prove that both
schemes can be cast as convex optimizations. Then, under
the assumption of independent data samples across time, we
show that the solutions of the online and the batch optimiza-
tions are the same, thus there is no regret. We then provide
an example with correlated samples in which there exists
a positive regret between batch and online solutions. Ex-
periments on a smart-meter dataset show that leakage can
be bounded over time while maintaining the utility of the
released data. Further applications may include privacy for
time-series data from health-monitoring devices, sensors in
houses, offices, cars or handheld devices.
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