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Abstract 
In the context of soccer robotics, ball dribbling is a complex 
behavior where a robot player attempts to maneuver the ball 
in a very controlled way, while moving towards a desired 
target. To learn when and how to modify the robot’s veloci-
ty vector is a complex problem, hardly solvable in an effec-
tive way with methods based on identification of the system 
dynamics and/or kinematics and mathematical models. We 
propose a decentralized reinforcement learning strategy, 
where each component of the omnidirectional biped walk 
(𝑣𝑥, 𝑣𝑦, 𝑣𝜃) is learned in parallel with single-agents working 
in a multi-agent task. Moreover, we propose an approach to 
accelerate the decentralized learning based on knowledge 
transfer from simple linear controllers. Obtained results are 
successful; with less human effort, and less required design-
er knowledge, the decentralized reinforcement learning 
scheme shows better performances than the current drib-
bling engine used by UChile Robotics Team in the SPL ro-
bot soccer competitions. The proposed decentralized rein-
forcement learning scheme achieves asymptotic perfor-
mance after 1500 episodes and can be accelerated up to 70% 
by using our approach to share actions. 

1. Introduction   
In the context of soccer robotics, ball dribbling is a com-
plex behavior where a robot player attempts to maneuver 
the ball in a very controlled way, while moving towards a 
desired target. In case of humanoid biped robots, the com-
plexity of this task is very high, because it must take into 
account the physical interaction between the ball, the ro-
bot’s feet, and the ground, which is highly dynamic, non-
linear, and influenced by several sources of uncertainty. 
 Very few works have addressed the ball dribbling be-
havior with humanoid biped robots (Macalpine et al. 2012; 
Alcaraz et al. 2011; Meriçli et al. 2011; Latzke et al. 2007; 
Leottau et al. 2014). Besides, not many details about the 
specific dribbling modeling (Tilgner et al. 2013; Röfer et 
al. 2014), or performance evaluations for the ball-control 
or accuracy to the desired path are mentioned. 
 The main goal of this paper is to apply and evaluate a 
decentralized Reinforcement Learning (RL) scheme 
(Busoniu et al. 2006) as a first approach to Multi-Agent 
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Systems (MAS) (Stone & Veloso 2000) applied to inwalk-
ball-pushing based behaviors  (Leottau et al. 2014) like the 
ball-dribbling in the context of the biped soccer robotics. In 
this way, this paper proposes to address the ball-dribbling 
behavior based on a Decentralized-RL (D-RL) strategy 
(Busoniu et al. 2006), where each component of the omni-
directional biped walk (𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃) is learned in parallel as a 
single agent working in a multi-agent task (Tuyls et al. 
2005). In addition, the nearby action sharing (NASh) ap-
proach is proposed to accelerate the decentralized learning, 
where knowledge from simple linear controllers is trans-
ferred to the D-RL agent.  
 Performance indices for dribbling speed and ball control 
are measured for the proposed D-RL solution and different 
configurations of the accelerated approach. These are com-
pared with the RL + Fuzzy-Logic-Control (FLC) method 
reported in (Leottau et al. 2014), which is the current drib-
bling engine used by UChile Robotics Team (Yañez et al. 
2013) in the SPL robot soccer competitions.  
 Experiments show that D-RL schemes are able to out-
perform the RL-FLC approach with less human effort and 
less required designer knowledge. Likewise, a decentral-
ized agent, learning from scratch, achieves asymptotic per-
formance after 1500 episodes, which can be accelerated up 
to a 70% by applying the proposed NASh approach. 

2. Related Work 
Although several strategies can be used to tackle the ball-
dribbling problem in the context of the biped soccer robot-
ics, we classify these in three main groups:  
• Based on human experience and/or hand-code: (Latzke 

et al. 2007) presents an approach that uses imitative rein-
forcement learning for dribbling the ball from different 
positions into the empty goal, meanwhile (Meriçli et al. 
2011) proposes an approach that uses corrective human 
demonstration for augmenting a hand-coded ball drib-
bling task performed against stationary defender robots. 

• Based on identification of the system dynamics and/or 
kinematics-mathematical models: (Alcaraz et al. 2011) 
presents an approach to incorporate the ball dribbling as 
part of a closed loop gait, combining a footstep and foot 
trajectory planners for integrating kicks in the walking 
engine. Since this work is more focused to the theoreti-
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cal models and controllers of the gait, there is not in-
cluded a dribbling engine final performance evaluation. 

• Based on the on-line learning of the system dynamics: 
(Macalpine et al. 2012) presents the evolutionary param-
eter learning of a biped omnidirectional walk for some 
common soccer subtasks such as the drive-ball to goal in 
the RoboCup 3D simulation environment. The distance 
the ball travels toward the goal during 30 seconds is the 
fitness function. This is the most related work regarding 
the proposed method in this paper. However, our ap-
proach also considers the ball control in the learning 
modeling and performance evaluation. 

 The dribbling problem has been addressed more exten-
sively for the wheeled robots case (Carvalho & Oliveira 
2011; Riedmiller et al. 2008; Riedmiller et al. 2009), how-
ever, these approaches are not directly applicable to the 
humanoid case, due to the much higher complexity of the 
biped case. Furthermore, oppositely to our decentralized 
proposal, these works address centralized RL schemes 
where the joint action state is composed by discretized 
combinations of each component of the velocity vector. 
 To the best of our knowledge, no publications related to 
distributed or D-RL agents working in a multi-agent task to 
learn individual behaviors such as the soccer ball-dribbling 
or other similar task have been reported. Some distributed 
control applications particularly applied to robot manipula-
tors are (Busoniu et al. 2006; Martin & Lope 2007). 

3. Proposed modelling for the ball-dribbling 
The description of the dribbling behaviors will use the fol-
lowing variables: 𝑣𝑥, 𝑣𝑦, 𝑣𝜃, the robot’s linear and angular 
speeds; α, the robot-target angle; γ, the robot-ball angle; ρ, 
the robot-ball distance; ψ, the ball-target distance; β, the 
robot-target-ball angle; and, φ, the robot-ball-target com-
plementary angle. These variables are shown in Figure 1, 
where the desired target (⊕) is located in the middle of the 
opponent goal, and a robot’s egocentric reference system is 
considered whit the x axis pointing forwards. 
 The ball-dribbling behavior can be splitted in two task 
which have to be executed in parallel: the alignment that 
keeps the robot aligned to the ball-target line (𝜑 = 0, 𝛾 =
0) while approaching the ball; and the inwalk-ball-pushing, 
whose objective is that the robot walks as fast as possible 
and hits the ball in order to change its speed, but without 
losing its possession.  
 

 
Figure 1: Variables definition for the dribbling modeling. 

 Reinforcement Learning of the ball-dribbling 
 Why a RL based controller?  ̶ In the inwalk-ball-pushing 
task of the dribbling behavior, the ball must be kept near 
(𝜌 = 0 ∧  𝛾 = 0) while it is hit towards the desired target 
(𝜑 = 0 ∧ 𝜓𝑘+1 < 𝜓𝑘). The modeling of the robot’s feet–
ball–floor dynamics is complex and inaccurate because 
kicking the ball could generate several unexpected transi-
tions, due to uncertainty on the foot’s shape and speed 
when it kicks the ball (note that the foot’s speed is different 
to the robot’s speed 𝑣𝑥). Moreover, an omnidirectional bi-
ped walk intrinsically has a delayed response, which varies 
depending on the requested velocity (𝑣𝑥, 𝑣𝑦, 𝑣𝜃). To learn 
when and how much the robot has to slow down or accel-
erate is a complex problem, hardly solvable in an effective 
way with methods based on identification of the system 
dynamics and/or kinematics and mathematical models 
(Alcaraz et al. 2011; Li et al. 2007; Zell 2008). Thus, to 
solve that as a Markov Decision Process (MDP) with a RL 
scheme for learning simultaneously the ball-dribbling dy-
namics is a promising approach. 

Decentralized Reinforcement Learning 
The D-RL emerges as a Distributed Artificial Intelligence 
technique where systems with several branches working 
together towards a common goal (Stone & Veloso 2000). If 
resources and information of those branches are managed 
separately in a behavioral way, and, under a joint environ-
ment, it could be considered as a MAS.  
 Since this work is a first approach to MAS applied to the 
RL of inwalk-ball-pushing based behaviors, a simple 
scheme with single-agents without a coordination mecha-
nism is considered. According to (Tuyls et al. 2005), sin-
gle-agents working in a multi-agent task are able to con-
verge to a coordinate equilibrium under certain parameter 
and for some particular behaviors. 
 Why a D-RL scheme?  ̶  The MAS perspective gives 
several potential advantages if the problem is approached 
with decentralized learners and the coordination problem is 
solved: learning speed might be higher with respect to a 
centralized agent because this searches into an exponential-
ly larger action space; the state space could be reduced if 
not all the state information is relevant to all the learning 
agents; memory and processing time requirements will also 
be smaller because parallel computation (Busoniu et al. 
2006). 

Decentralized RL modelling 
The proposed control actions for the dribbling behavior are 
the requested speed to each axis of the biped walking en-
gine (𝑣𝑥, 𝑣𝑦, 𝑣𝜃). A D-RL scheme (Busoniu et al. 2006; 
Martin & Lope 2007) can be considered in order to learn in 
parallel each component of that velocity vector as a MAS. 
 Our expected policy is walking fast towards the desired 
target while keeping the ball possession. That means: to 
minimize 𝛾, 𝜑; to maintain 𝜌 < 𝜌𝑚𝑎𝑥; to maximize 𝑣𝑥; and, 
to minimize 𝑣𝑦 and 𝑣𝜃. So, the proposed modelling for 
learning the velocity vector (𝑣𝑥, 𝑣𝑦, 𝑣𝜃), depending on the 
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observed state (𝜌, 𝛾, 𝜑) is detailed in Table 1, where 
𝜌𝑡ℎ, 𝛾𝑡ℎ, 𝜑𝑡ℎ are desired thresholds where the ball is con-
sidered controlled while it is reinforced to walk forward at 
maximum speed. 
 
Table 1: States, actions, and reward function description for 

the three RL agents 

Common states space: 𝑠 = [𝜌, 𝛾, 𝜑]𝑇 
 Min Max # Bins 

Feature1 𝜌 0mm 600mm 13 
Feature2 𝛾 -50° 50° 11 
Feature3 𝜑 -50° 50° 11 

Actions space: 𝑎 = [𝑣𝑥, 𝑣𝑦, 𝑣𝜃] 
 Min (0%) Max (100%) # Actions 

Agentx vx 0 mm/s 150 mm/s 21 
Agenty vy -50 mm/s 50 mm/s 21 
Agent vθ -45 °/s 45 °/s 21 

Reward function: 𝑟(𝑠, 𝑎) = [𝑟𝑥, 𝑟𝑦, 𝑟𝜃] 
  𝑟 = [1,1,1] 𝑟 = −[1,1,1] 

Constraint 𝑟𝑥 
𝑖𝑓  𝜌 < 𝜌𝑡ℎ ∧ |𝛾| < 𝛾𝑡ℎ ∧ 

        |𝜑| < 𝜑𝑡ℎ ∧ 𝑣𝑥 ≥ 𝑣𝑥.𝑚𝑎𝑥′ 
otherwise 

Constraint 𝑟𝑦 𝑖𝑓  |𝛾| < 5° otherwise 

Constraint 𝑟𝜃 𝑖𝑓  |𝛾| < 5° ∧ |𝜑| < 5° otherwise 

4. Knowledge Transfer 
Since the proposed D-RL scheme does not include direct 
coordination mechanisms, joint actions, or sharing infor-
mation between agents, knowledge transfer is considered 
to guide the learning towards a partially coordinated policy 
in the early episodes in order to accelerate the learning 
process. According to (Taylor & Stone 2009), transfer is 
one possible approach to making such problems more trac-
table, as an alternative, decentralized agents could start the 
learning process over a subset of actions, and then increase 
or modify progressively the action space over time.  
 Two constraints are considered to select the knowledge 
transfer strategy:  methods for transferring on any RL algo-
rithm that uses an action value function (Taylor & Stone 
2007; Mataric 1994; Knox & Stone 2012), and methods for 
transferring from different source types, as controllers, 
hand coded behaviors, RL policies, among others (Bianchi 
et al. 2012; Fernández et al. 2010). Thus, the control shar-
ing method (Knox & Stone 2012), which accomplishes 
both constraints, is used here. In addition, a similar, but 
original method, called nearby action sharing (NASh), is 
introduced. 

Control Sharing Approach 
The control sharing (CoSh) method, originally proposed in 
(Knox & Stone 2010), acts only during action-selection, 
without affecting the Action-Value functions:  
𝑃(𝑎 = 𝑎𝑠𝑟𝑐) = 𝑚𝑖𝑛 (𝛽, 1). Otherwise use base RL agent’s 
action selection mechanism. The action a is chosen by 

source-policy (𝜋𝑠𝑟𝑐(𝑠) = 𝑎𝑠𝑟𝑐) with probability 𝛽, where 𝛽 
is annealed periodically by a predefined factor. 

 Nearby Action Sharing Approach 
This method is introduced for transferring knowledge from 
continuous action spaces, when no information different to 
the suggested action in an observed state is available from 
the source of knowledge. The method has applicability in 
cases where the source of knowledge are controllers, hand 
coded behaviors, rule inference system, among others. The 
NASh method takes advantage of continuous actions spac-
es to compensate the lack of information about the quality 
of the actions, like an action-value function. It assumes that 
a measure of the quality of an state-action pair from source 
is related with its distance to the action suggested by the 
source (𝑎𝑠𝑟𝑐). In this way a normal distribution along the 
universe of discourse centered in 𝑎𝑠𝑟𝑐could be considered, 
and the resulting nearby action to transfer is 𝑎′𝑠𝑟𝑐 =
𝜉(𝑎𝑠𝑟𝑐 = 𝜋𝑠𝑟𝑐(𝑠), 𝜚 ∙ (1 − 𝛽)), where 𝜉(𝜇, 𝜎) is a normally 
distributed random generator with mean  𝜇 = 𝑎𝑠𝑟𝑐, and 
standard deviation 𝜎 = 𝜚 ∙ (1 − 𝛽), where 𝜚 is a scale fac-
tor for the continuous action space. Then, the transfer 
mechanism is similar to the CoSh method: 
𝑃(𝑎 = 𝑎′𝑠𝑟𝑐) = 𝑚𝑖𝑛 (𝛽, 1). Otherwise use base RL agent’s 
action selection mechanism.  
 As in the CoSh case, the action is chosen by source-
policy with probability 𝛽; 𝛽 is annealed periodically as 
well as the standard deviation of 𝜉. That means at the be-
ginning of the learning process, NASh works similarly to 
CoSh, however, along the learning process, the probability 
of choosing an action 𝑎′

𝑠𝑟𝑐, increasingly away from the ac-
tion 𝑎𝑠𝑟𝑐 increases with 𝜚 ∙ (1 − 𝛽). 
 Practical implementations of the NASh method can be 
carried out similarly to the softmax action selection (Sutton 
& Barto 1998), e.g., for N discrete actions, 𝑄(𝑎𝑛) =
𝜂(𝑎𝑛), 𝑎𝑛 = {𝑎1, … 𝑎𝑁}, where 𝜂(𝜇, 𝜎) is a normally dis-
tributed function with 𝜇 = 𝑎𝑠𝑟𝑐 , and 𝜎 = 𝜚 ∙ (1 − 𝛽). Oth-
er simpler alternative is directly gets 𝑎′𝑠𝑟𝑐  bounding it into 
the action space with module or clip functions. 

5. Experimental setup 
The ball-dribbling RL procedure is carried out episodical-
ly. After a reset, the robot is set in the center of the own 
goal (black right arrow in Figure 1), the ball is placed 𝜌𝑡ℎ 
millimeters in front of the robot, and the desired target is in 
the center of the opponent goal (⊕). The terminal state is 
reached if the robot loses the ball, or, the robot leaves de 
field, or, the robot crosses the goal line and reaches the tar-
get, which is the expected terminal state. The trained field 
has 6x4 meters. Fault-State constraints are set as: 
 [𝜌𝑡ℎ, 𝛾𝒕𝒉, 𝜑𝒕𝒉, 𝑣𝒙.𝒎𝒂𝒙′] = [250𝑚𝑚, 15°, 15°, 0.9 ∙ 𝑣𝒙.𝒎𝒂𝒙]. 
 The current scope of this paper is to evaluate the effec-
tiveness and potential usefulness of knowledge transfer for 
D-RL agents as first approach to the MAS applied to in-
walk-ball-pushing based behaviors. Thus, all the presented 
experiments are carried out in simulation.  
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The SARSA(𝝀) algorithm 
The implemented RL algorithm is the SARSA(λ) with re-
placing traces (Sutton & Barto 1998) and a Radial Basis 
Functions (RBF) scheme. Based on previous work and af-
ter several trials, the SARSA(λ) parameters have been cho-
sen prioritizing fastest convergences. In this way, the fol-
lowing parameters are chosen: learning rate α=0.5, dis-
count factor γ=0.995, eligibility traces decay λ=0.9, and 
epsilon greedy action selection with an exponential decay 
along the trained episodes:  
𝜀 = 𝜀0 ⋅ 𝑒𝑥𝑝 (−𝑒𝑝𝑖𝑠𝑜𝑑𝑒 ⋅ 𝜅/𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠), with ε0=1, 
κ=15 constants, and 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 the current episode index and 
𝑚𝑎𝑥𝐸𝑝𝑖𝑠𝑜𝑑𝑒𝑠=2000 the trained episodes per run.  
 The same learning parameters are used for the three de-
centralized agents under evaluation in all the experiments. 
For the CoSh transfer and NASh experiments,  = 𝜀. 

Experiments 
Four different experiments are presented in this paper. 
Methods considered for testing and comparing during each 
of these experiments are listed below: 
i)   Decentralized Learner (DL): the D-RL proposed 

scheme detailed in Table 1. Three initializations of the 
Q function are considered, pessimistic (Qi=-5), zeros 
(Qi=0), and optimistic (Qi=5). These initialization val-
ues are the best after several simulation trials with dif-
ferent values. So, three DL are considered for this ex-
periment: DL pessimistic, DL zeros, and DL optimistic. 

ii)   DL accelerated with CoSh: the three initialization 
values considered for DLs are also tested. So, three 
CoSh DLs are considered: CoSh pessimistic, CoSh ze-
ros, and CoSh optimistic. A hand tuned linear controller 
like the proposed in (Leottau et al. 2014) is used as 
source of knowledge. 

iii) DL accelerated whit NASh: as in CoSh experiments, 
three DLs are considered: NASh pessimistic, NASh ze-
ros, and NASh optimistic. The same source of 
knowledge is used for CoSh and NASh. 

iv) CoSh and NASh with different sources of 
knowledge: in order to evaluate the impact of the 
source policy’s quality in the learning process, two ex-
tra sources of knowledge are tested, both linear control-
lers with the same scheme considered for (ii): FastSrc 
that is tuned to prioritize the dribbling speed (i.e., 
shortest 𝑡𝐷𝑃, despite highest %𝑡𝐹𝑆); and SlowSrc, which 
prioritizes the ball-control (i.e., smallest %𝑡𝐹𝑆, despite 
longest 𝑡𝐷𝑃). Thus, four additional learners are consid-
ered for this experiment: the best CoSh from experi-
ment (ii) whit FastSrc and SlowSrc, and the best NASh 
from experiment (iii) whit FastSrc and SlowSrc. 

Performance indices 
The evolution of the learning process of each scheme men-
tioned in the previous section is evaluated by measuring 
and averaging ten runs. In this way, the following perfor-
mance indices are considered: 

• The Dribbling-Path Time (𝑡𝐷𝑃): how long takes the 
agent to push the ball up to the target, finishing the drib-
bling episode. 

• % time in fault-state (% 𝑡𝐹𝑆): the cumulated time in 
fault-state 𝑡𝐹𝑆 during the whole episode. The fault-state 
is considered when the robot loses the ball possession, 
i.e., 𝜌 > 𝜌𝑡ℎ ∨ |𝛾| > 𝛾𝒕𝒉 ∨ |𝜑| > 𝜑𝒕𝒉, then: % 𝑡𝐹𝑆 =
𝑡𝐹𝑆 𝑡𝐷𝑃⁄ . 

 A final comparison between the best DL scheme from 
methods evaluated in experiment (i), the best scheme with 
CoSh from methods evaluated in (ii), and the best scheme 
with NASh from methods evaluated in (iii)  is carried out 
by using their averaged mean rewards and a global fitness 
function introduced in order to evaluate both performance 
indices together. The global fitness is computed as follows, 
where 𝑡𝐷𝑃 is normalized by the maximum value of 𝑡𝐷𝑃. 

𝐹 = 1/2 ∙ [(1 − 𝑡𝐷𝑃/𝑡𝐷𝑃−𝑚𝑎𝑥) + %𝑡𝐹𝑆/100] (1) 

6. Results and Discussion 
Experiment (i): Figure 2 shows the learning evolution of 
the three decentralized learners: DL pessimistic, DL zeros, 
and DL optimistic. With respect to the learner initialized 
with zeros, the pessimistic scheme achieves a similar %𝑡𝐹𝑆, 
and the optimistic one achieves a similar 𝑡𝐷𝑃. However, the 
learner initialized with zeros shows the best performance 
for both indices, furthermore, it shows the fastest asymp-
totic convergence. Notes that pessimistic initializations fa-
vor the ball control (improving %𝑡𝐹𝑆) meanwhile optimis-
tic initializations favor the dribbling speed 
ing 𝑡𝐷𝑃). This is because the agent gets negative reinforces 
were it losses the control of the ball and gets positive rein-
forces were it goes fast. Thus, the learner initialized neu-
trally whit zeros keeps a trade-off between %𝑡𝐹𝑆and 𝑡𝐷𝑃. 
 
Experiment (ii)-(iii): the two proposed strategies for trans-
ferring knowledge are compared in Figure 3, the Control 
Sharing (CoSh) and the Nearby Action Sharing (NASh). 
As the experiments for DLs, pessimistic, with zeros, and 
optimistic initializations are tested.  
 Regarding CoSh, the pessimistic initialized learner 
shows the fastest asymptotic convergence and the best per-
formances. The better performance of optimistic initializa-
tions for the CoSh method is well discussed in (Knox & 
Stone 2010), which is validated in this work with a differ-
ent and more complex problem. 
 
Comparison of the best schemes: According to experi-
ments (i)-(iv), the fastest asymptotic convergence and best 
performances of each of the tested methods (DL, CoSh, 
NASh) are: the DL with zeros initialization (DL zeros) 
where knowledge transfer is not used; the accelerated DL 
with control-sharing and pessimistic initialization (CoSh 
pessimistic), and the accelerated DL with nearby-action-
sharing and optimistic initialization (NASh optimistic). 
These learning evolution plots are shown in Figure 5, 
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where the mean reward of each decentralized agent and a 
global fitness evolution are included. 
 The policy of the run with better performance of the DL 
zeros, CoSh pessimistic, and NASh optimistic are stored. 
After that, these are tested and measured separately by a 
hundred of runs in order to obtain statistically significant 
results. Those performance are presented in Table 2, in ad-
dition to the RL-FLC reported in (Leottau et al. 2014). 

  
Figure 2: Learning evolution of the Decentralized Learners (DL). 

 
Figure 3: Learning evolution of the Control Sharing (CoSh) and 

Nearby Action Sharing (NASh) approaches. 

 
Figure 4: Learning evolution of the CoSh and NASh approaches 

transferring knowledge form sources with different performances. 

 

 
Figure 5: Learning evolution of the best performances parameter 

settings by each method: DL, CoSh and NASh schemes. 

   
Table 2:  Performance indices 

  
From Table 2, DL is on average 9% faster and commits 
10.5% less faults than RL-FLC.  NASh optimistic is the 
most effective learning scheme. It shows the fastest asymp-
totic convergence, and the best asymptotic performance. If 
a threshold of F=0.12 is defined, according to Figure 5, the 
time to threshold (Taylor & Stone 2009) of NASh optimis-
tic is 331 learning episodes, the 26.6% and 39.5% of the 
required learning time with respect to DL and CoSh. 
Moreover, from Table 2, NASh’s dribbling time 𝑡𝐷𝑃 
speedup the DL and CoSh in around 18% and 15.9% re-
spectively, and it commits 2.4% and 0.16% less faults than 
DL and CoSh. 
 From mean reward plots in Figure 5, it can be noticed 
that NASh scheme shows the highest values for mean-
rewardx but the lowest for mean-rewardy and mean-

Method 𝑡𝐷𝑃 (s) 𝑡𝐷𝑃  
St.Dev. %𝑡𝐹𝑆  

%𝑡𝐹𝑆 
St.Dev. 

RL-FLC 62.19 3.30 14.57 5.13 
DL zeros 58.08 6.64 4.07 7.75 

NASh Optimist. 47.49 0.61 1.67 4.13 
CoSh Pessimit. 56.50 5.07 1.83 5.44 

Best Source 71.03 1.77 7.29 3.42 
Slow Source 93.38 1.33 0.56 0.11 
Fast Source 41.55 0.44 90.08 1.77 
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reward. The opposite of the DL which mean-rewardx is 
the lowest, meanwhile its mean-rewardy and mean-reward 
are the highest. Thus, it can be said the dribbling problem 
does not require a very accurate controller for 𝑣𝑦 and 𝑣𝜃  
for achieving good performance, so, the key of the NASh’s 
best performance is a good policy for the Agentx.   
 Note that at the early episodes, Agenty and Agent mean-
rewards of the knowledge transfer schemes get highest 
values, those decrease during the transfer and learning pro-
cess, and these converge to values lower than their initial 
values at the fists episodes. It can be explained taking into 
account the MAS benefits; and, although any coordination 
mechanism is implemented, each decentralized agent is 
able to adjust its own policy, observing a joint state space, 
interacting with a joint environment, and acting individual-
ly towards a common goal, achieving the so-called indirect 
coordination. 
 A video which shows some of the training process and 
the learned policies for the dribbling behavior can be 
watched in (Leottau 2014). 

7. Conclusions 
This paper has proposed and implemented the Decentral-
ized-RL of the ball-dribbling behavior in the context of 
humanoid soccer robotics, where each component of the 
omnidirectional biped walk (𝑣𝑥 , 𝑣𝑦 , 𝑣𝜃) is learned in paral-
lel with single-agents working in a multi-agent task. 
 Two methods for accelerating the D-RL, transferring 
knowledge from simple linear controllers have been tested 
and compared: the control sharing method, and the nearby 
action sharing which is introduced by authors in this paper.  
 Several schemes of D-RL are evaluated testing different 
Q initialization values, and different sources of knowledge 
for the accelerated learners.  
 The effectiveness and benefits of the RL-FLC approach 
have been pointed in (Leottau et al. 2014). However, a sig-
nificant human effort and knowledge of the controller de-
signer are required for implementing all the proposed stag-
es. In that sense, a D-RL approach is able to learn almost 
autonomously the whole dribbling behavior, achieving best 
performances with respect to the RL-FLC with less human 
effort and less previous knowledge. An advantage that still 
remains the RL-FLC method is the considerably less RL 
training time, regarding the D-RL scheme (100 episodes 
vs. 1500 episodes approximately). In that scene, the 
knowledge transfer strategies for D-RL agents proposed in 
this work are able to reduce that learning time up to 330 
episodes, which open the door to make achievable future 
implementations for learning ball-pushing based behaviors 
with physical robots. 
 Our ongoing research outline includes: (i) extending the 
current D-RL scheme to cooperative and joint actions 
learners with coordination mechanisms; (ii) extending the 
NASh method for addressing those cases where the agents 
re-learn all the policy more than enhance it weakness; (iii) 
validating the approach using physical robots.  

Acknowledgments 
This work was partially funded by FONDECYT under Pro-
ject Number 1130153. The first author was funded 
by CONICYT, under grant:  CONICYT-PCHA/Doctorado 
Nacional/2013-63130183. 

References 
Alcaraz, J., Herrero, D. & Mart, H., 2011. A Closed-Loop 
Dribbling Gait For The Standard Platform League. In Workshop 
on Humanoid Soccer Robots of the IEEE-RAS Int. Conf. on 
Humanoid Robots (Humanoids). Bled, Slovenia. 
Bianchi, R.A.C., Ribeiro, C.H.C. & Costa, A.H.R., 2012. 
Heuristically Accelerated Reinforcement Learning: Theoretical 
and Experimental Results. In L. De Raedt, ed. Frontiers in 
Artificial Intelligence and Applications. pp. 169 – 174. 
Busoniu, L., Schutter, B. De & Babuska, R., 2006. Decentralized 
Reinforcement Learning Control of a Robotic Manipulator. In 
IEEE, ed. Ninth International Conference on Control, 
Automation, Robotics and Vision, ICARCV 2006, 5-8 December 
2006. Singapore, pp. 1–6. 
Carvalho, A. & Oliveira, R., 2011. Reinforcement learning for the 
soccer dribbling task. In Computational Intelligence and Games 
(CIG), 2011 IEEE Conference on. Seoul, Korea, pp. 95–101. 
Fernández, F., García, J. & Veloso, M., 2010. Probabilistic policy 
reuse for inter-task transfer learning. Robotics and Autonomous 
Systems, 58(July 2009), pp.866–871. 
Knox, W.B. & Stone, P., 2010. Combining Manual Feedback 
with Subsequent MDP Reward Signals for Reinforcement 
Learning. In Proc. of 9th Int. Conf. on Autonomous Agents and 
Multi-agent Systems (AAMAS 2010). Toronto, Canada: 
International Foundation for Autonomous Agents and Multiagent 
Systems. 
Knox, W.B. & Stone, P., 2012. Reinforcement Learning from 
Simultaneous Human and MDP Reward. In In Proceedings of the 
11th International Conference on Autonomous Agents and 
Multiagent Systems (AAMAS), June 2012. 
Latzke, T., Behnke, S. & Bennewitz, M., 2007. Imitative 
Reinforcement Learning for Soccer Playing Robots. In G. 
Lakemeyer et al., eds. RoboCup 2006: Robot Soccer World Cup 
X SE - 5. Lecture Notes in Computer Science. Springer Berlin 
Heidelberg, pp. 47–58. 
Leottau, D.L., 2014. Video: Decentralized RL of the Ball-
Dribbling Behavior. Available at: 
https://docs.google.com/document/d/1dYl-a-
uRleQzLkicp6pF9lyG7QXteYm5PRQbQ63aBZM/edit?usp=shar
ing. 
Leottau, D.L., Celemin, C. & Ruiz-del-solar, J., 2014. Ball 
Dribbling for Humanoid Biped Robots: A Reinforcement 
Learning and Fuzzy Control Approach. In RoboCup, ed. 
RoboCup 2014: Robot Soccer World Cup XVIII Preproceedings. 
Joao Pessoa, Brazil. Available at: 
http://fei.edu.br/rcs/2014/RegularPapers/robocupsymposium2014
_submission_58.pdf. 
Li, X., Wang, M. & Zell, A., 2007. Dribbling Control of 
Omnidirectional Soccer Robots. In Proceedings 2007 IEEE 
International Conference on Robotics and Automation. IEEE, pp. 
2623–2628. 

28



Macalpine, P. et al., 2012. Design and Optimization of an 
Omnidirectional Humanoid Walk: A Winning Approach at the 
RoboCup 2011 3D Simulation Competition. In Twenty-Sixth 
AAAI Conference on Artificial Intelligence (AAAI-12). Toronto, 
Ontario, Canada,. 
Martin, J. & Lope, H. De, 2007. A distributed reinforcement 
learning architecture for multi-link robots. In 4th Int. Conf. on 
Informatics in Control, Automation and Robotics, ICINCO 2007. 
Angers, Francia, pp. 192–197. 
Mataric, M.J., 1994. Reward Functions for Accelerated Learning. 
In In Proceedings of the Eleventh International Conference on 
Machine Learning. Boca Raton, Florida, USA: Morgan 
Kaufmann, pp. 181–189. 
Meriçli, Ç., Veloso, M. & Akin, H., 2011. Task refinement for 
autonomous robots using complementary corrective human 
feedback. International Journal of Advanced Robotic Systems, 
8(2), pp.68–79. 
Riedmiller, M. et al., 2008. Learning to dribble on a real robot by 
success and failure. In Robotics and Automation (ICRA), 2008 
IEEE International Conference on. Pasadena, California: IEEE, 
pp. 2207–2208. 
Riedmiller, M. et al., 2009. Reinforcement learning for robot 
soccer. Autonomous Robots, 27(1), pp.55–73. 
Röfer, T. et al., 2014. B-Human Team Description for RoboCup 
2014. In RoboCup 2014: Robot Soccer World Cup XVIII 
Preproceedings. Joao Pessoa, Brazil. 
Stone, P. & Veloso, M., 2000. Multiagent Systems: A Survey 
from a Machine Learning Perspective. Autonomous Robotics, 
8(3), pp.1–57. 
Sutton, R. & Barto, A., 1998. Reinforcement Learning: An 
Introduction, MIT Press. 
Taylor, M. & Stone, P., 2009. Transfer learning for reinforcement 
learning domains: A survey. The Journal of Machine Learning 
Research, 10, pp.1633–1685. 
Taylor, M.E. & Stone, P., 2007. Cross-domain transfer for 
reinforcement learning. Proceedings of the 24th international 
conference on Machine learning - ICML ’07, pp.879–886.  
Tilgner, R. et al., 2013. Nao-Team HTWK Team Description 
Paper 2013. In RoboCup 2013: Robot Soccer World Cup XVII 
Preproceedings. Eindhoven, The Netherlands: RoboCup 
Federation. 
Tuyls, K., Hoen, P.J. ’T & Vanschoenwinkel, B., 2005. An 
Evolutionary Dynamical Analysis of Multi-Agent Learning in 
Iterated Games. Autonomous Agents and Multi-Agent Systems, 
12(1), pp.115–153. 
Yañez, J.M. et al., 2013. UChileRT RoboCup 2013 Standard 
Platform League Team Description Paper. In RoboCup 2013: 
Robot Soccer World Cup XVII Preproceedings, July 2013. 
Eindhoven, The Netherlands: RoboCup Federation. 
Zell, A., 2008. Nonlinear predictive control of an omnidirectional 
robot dribbling a rolling ball. In 2008 IEEE International 
Conference on Robotics and Automation. Ieee, pp. 1678–1683. 
 
 

29




