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Abstract
In this challenge paper, we consider the importance of prefer-
ences in smart homes and assistive environments and discuss
the potential application of models and algorithms developed
within the computational preferences community. We suggest
the value of future research collaborations.

The Importance of Preferences in Smart
Environments

A chime sounds and Joe’s wristwatch vibrates, reminding
him that it is time to eat. Joe was recently diagnosed with
early-stage Alzheimer’s disease and also suffers from de-
pression. In his case these interfere with executive function,
making it difficult for him to make decisions, keep track of
the time, and make and carry out plans. However, with the
help of an intelligent home environment, Joe is still able to
live independently. The house knows what is in Joe’s re-
frigerator and pantry. Furthermore, the kitchen has already
compiled a list of recipes that are “feasible”: Joe can assem-
ble those dishes and has actually been known to eat them.
They have also been screened for ingredients that are in-
compatible with his medications or violate other dietary con-
straints. With the help of a system similar to that described
by Bouchard et al. (2014), Joe can prepare a suitable meal.
Still, he has difficulty making decisions. How should the
choice be narrowed down?

It is well established that assistive environments should be
personalized (see, for example, Augusto et al. [2013]). They
should learn, and then know, their inhabitants’ preferences.
Suppose that Joe’s kitchen has some sort of representation
of his preferences. It would know whether Joe wants a sin-
gle option or the sense of control that comes from choosing
from a list of suggestions. It may even be able to model Joe’s
mood and cognitive state at a given point in time and be able
to adjust to his “good” and “bad” days.

What is involved in representing preferences? The house
must be able to recognize context—his good and bad days,
the activities he is engaged in, whether guests are present,
the season, day of the week, and so on—and to reason with
that context. Context can include the combinations of dishes,
or even what Joe had for lunch the previous day. He might
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prefer the same thing every morning for breakfast, but a
greater variety for his evening meal. He may prefer some
sort of “comfort food” on cold, rainy days, but something
relatively light after working in the garden on a hot summer
day. He may always prefer that certain foods, such as peas
and carrots, occur together. On particularly challenging days
he may be altogether incapable of preparing anything more
complicated than a prepackaged meal.

Preference Representations
Preferences often have a combinatorial structure. It is con-
ceivable that Joe could choose from dozens, if not hundreds,
of recipes and other consumable food items (frozen meals,
canned items, condiments, etc.). Moreover, these could be
combined in almost any imaginable fashion to compose a
given meal. The number of possible meals is thus expo-
nential in the number of consumable items. Furthermore,
if context—previous meals, the state of the house and its
inhabitant, and so on—is included in the preference repre-
sentation, the number of possible outcomes could be vast
indeed. It is unlikely that we could even list all of the possi-
bilities explicitly. We thus need some sort of factored repre-
sentation of the possibilities that avoids the problem of hav-
ing to treat every possibility as an atom. That is, we need to
represent outcomes according to their features.

However, even with a factored representation, it would be
impossible to elicit from Joe a ranking over all possible meal
outcomes. An alternative approach is to use some sort of rat-
ing system—for example, one in which each meal with a
rating of ? ? ? is preferred to each with a rating of ? ? ;
however, this approach has its difficulties also. First, there is
the problem of consistency of ratings (from day to day and
person to person). Conceivably, when he is despondent, Joe
may give everything the lowest possible rating. Furthermore,
we are likely to be left with a lot of ties for the top rating,
making it difficult to recommend a most preferred choice or
list of top choices of manageable size. Finally, ratings do not
necessarily reflect rankings. Consider that Joe could give a
top rating to meals that he knows would win high approval
from his doctor, family, and friends, but nonetheless be hap-
pier most days with poutine or even the humble peanut butter
and jelly sandwich—dishes to which Joe awards only two
stars. For similar reasons, we understand that Netflix is no
longer relying primarily on ratings for its recommendations.
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Issues such as these have led to the development of com-
pact formalisms for representing preferences. General ad-
ditive independence (GAI) value functions (Bacchus and
Grove 1995; Fishburn 1999) assign numerical value to the
anticipated utility of each outcome to the subject. However,
not all utility functions are additive. Moreover, it is not al-
ways clear how to assign numerical values to human pref-
erences. For example, Joe may know that he prefers tomato
bisque soup to clam chowder without being able to quantify
such a preference. Preferences can also be modeled com-
pactly as constraint satisfaction problems (CSPs) through
methods that employ soft constraints (Bistarelli, Montanari,
and Rossi 1997; Bistarelli et al. 1999; Rossi, Venable, and
Walsh 2011). An advantage of this approach is that it allows
for the use of constraint solvers. However, as with GAI value
functions, it introduces the problem of quantifying prefer-
ences that are more naturally expressed in a qualitative way.

Conditional preference networks (CP-nets) (Boutilier et
al. 2004) offer a qualitative approach. CP-nets consist of a
node for each feature in the model—e.g., a binary variable
indicating inclusion of a menu item or multivalued variable
representing a category (e.g., beverage) or state of the world
(e.g., the day of the week or Joe’s mood). An arc from one
node to another indicates that the preference over the lat-
ter features depends in general on the value of the former.
Such preferences are encoded for each node in conditional
preference tables specifying the preference for some or all
assignments to the parent variables. Such preferences over
the values of features take the form of rules such as, “If it is
a cold day, I prefer hot tea to iced tea, all else being equal.”
CP-nets have garnered significant interest within the com-
putational preferences community and have been proposed
for applications including cybersecurity (Bistarelli, Fiora-
vanti, and Peretti 2007), automated negotiation (Aydoğan et
al. 2013), and interest-matching in social networks (Wicker
and Doyle 2007). A number of extensions have been pro-
posed, including PCP-nets, a probabilistic variant closely re-
lated to Bayesian networks (Cornelio et al. 2013; Bigot et al.
2013). Many problems involving CP-nets and their variants,
including learning a CP-net that is consistent with compari-
son data and using the resulting CP-net to determine which
of two arbitrary outcomes is preferred, are known to be com-
putationally hard in the worst case (Goldsmith et al. 2008;
Lang and Mengin 2009). However, the problems of finding
the most preferred and k-best outcomes can be solved in
polynomial time in the number of features when domains are
constrained—for example, when certain items are unavail-
able (Boutilier et al. 2004). This is precisely what is needed
for us to recommend one or more best choices to Joe.

Conclusions
Compact preference models such as CP-nets and soft con-
straints offer considerable potential for customizing assistive
technologies and smart environments. We believe this po-
tential should be explored in collaborative research in which
preference models and algorithms are integrated in proto-
type environments and evaluated, first with simulated data
(or data repurposed from previous experiments) and ulti-
mately with human subjects.
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Journées d’Intelligence Artificielle Fondamentale 57.
Bistarelli, S.; Montanari, U.; Rossi, F.; Schiex, T.; Verfaillie,
G.; and Fargier, H. 1999. Semiring-based CSPs and valued
CSPs: Frameworks, properties, and comparison. Constraints
4(3):199–240.
Bistarelli, S.; Fioravanti, F.; and Peretti, P. 2007. Using CP-
nets as a guide for countermeasure selection. In Proc. 2007
ACM Symposium on Applied Computing, 300–304. ACM.
Bistarelli, S.; Montanari, U.; and Rossi, F. 1997. Semiring-
based constraint satisfaction and optimization. Journal of
the ACM (JACM) 44(2):201–236.
Bouchard, B.; Bouchard, K.; and Bouzouane, A. 2014. A
smart range helping cognitively-impaired persons cooking.
In Twenty-Sixth IAAI Conference.
Boutilier, C.; Brafman, R.; Domshlak, C.; Hoos, H.; and
Poole, D. 2004. CP-nets: A tool for representing and reason-
ing with conditional ceteris paribus preference statements.
Journal of Artificial Intelligence Research 21:135–191.
Cornelio, C.; Goldsmith, J.; Mattei, N.; Rossi, F.; and Ven-
able, K. B. 2013. Updates and uncertainty in CP-nets.
In 26th Australasian Joint Conference on Artificial Intelli-
gence.
Fishburn, P. 1999. Preference structures and their numerical
representations. Theoretical Computer Science 217(2):359–
383.
Goldsmith, J.; Lang, J.; Truszczynski, M.; and Wilson, N.
2008. The computational complexity of dominance and con-
sistency in CP-nets. J. Artif. Intell. Res.(JAIR) 33:403–432.
Lang, J., and Mengin, J. 2009. The complexity of learning
separable ceteris paribus preferences. In IJCAI-09, 848–853.
San Francisco, CA, USA: Morgan Kaufmann.
Rossi, F.; Venable, K. B.; and Walsh, T. 2011. A Short Intro-
duction to Preferences: Between Artificial Intelligence and
Social Choice. Synthesis Lectures on Artificial Intelligence
and Machine Learning 5(4):1–102.
Wicker, A. W., and Doyle, J. 2007. Interest-matching com-
parisons using CP-nets. In Proc. AAAI.

3




