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Abstract

How can knowing the location of my friends be used
to more accurately predict my location? This paper ex-
plores socially-aware location prediction under a partic-
ularly challenging setting where the underlying interac-
tions and social network are unknown and must be in-
ferred over continuous spatiotemporal data. Our method
samples inferred network topology using a linear re-
gression model to predict future individual locations.
We present an in-depth empirical study comparing dif-
ferent network models and network sampling regimes
under a bootstrapped sampling baseline. Furthermore,
our qualitative analysis demonstrates the value of social
information in population mobility modeling under our
application’s challenges.

Introduction
When modeling movement of social individuals, does the
knowledge of social information improve the accuracy of the
model? Research in movement modeling using mobile so-
cial sensors (GPS, mobile phone) has become a burgeoning
area of research with applications in multi-user coordina-
tion (Ashbrook and Starner 2003; Davidoff et al. 2011), per-
sonalized place recommendation (Zhang and Chow 2013;
Bao, Zheng, and Mokbel 2012), location-aware information
ranking (Chow, Bao, and Mokbel 2010) and place discovery
(Do and Gatica-Perez 2014). However, much of this work
has focused on individual dynamics (González, Hidalgo, and
Barabási 2008), or incorporating personal points of inter-
est (e.g. home, work) (Cho, Myers, and Leskovec 2011) but
rarely a social context. Alternatively, research has focused
on aggregate estimation of large urban population dynamics
(Hasan, Zhan, and Ukkusuri 2013) for applications such as
destination prediction (Xue et al. 2013), improved driving
directions (Yuan et al. 2010), and large-scale spatiotemporal
event detection (Zheng et al. 2014), with scarce individual-
level knowledge. Past work scarcely incorporates detailed
social information in individual mobility modeling. Our pa-
per investigates the question: “can knowing the location of
my friends be used to more accurately predict my location?”
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(a) A troop of baboons in the wild wearing GPS collars

(b) Example GPS data from baboons (blue nodes) and inferred co-
location network structure (red edges). Note that interacting com-
munities change between two time samples (left, and right). (see:
Data Description).

Figure 1: Baboon GPS data overview

We develop methods for answering this question and estab-
lish an initial positive result in this paper.

The capability to infer location information from that of
“friends” is important for the study of movement and be-
havior of social animals (including humans), and has im-
portant privacy implications. An increased understanding of
the social role of individual movement allows anticipatory
location-based services, and a more detailed user context.
However, this capability may also yield unwanted surveil-
lance of the users of these services, as well as their social
connections who may not even be users of the service. For
example, even if a user forgoes a mobile device entirely due
to concerns of surveillance, an attacker with the knowledge
of some small number of her friends may be able to pre-
dict her location with access to the friends’ location-based
social network check-ins (often published on other social
networks), by having privileged access to their mobile call-
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record data, or other geo-location data.
This work focuses on a location prediction problem on

a tracked population of baboons wearing GPS collars. This
instrumentation allows researchers to observe the traces and
interactions of animals in unprecedented detail (Krause et
al. 2013; Morales et al. 2010). Baboons are highly social an-
imals and these devices provide high-resolution GPS data
that would not generally be appropriate to collect on human
subjects due to privacy concerns, while still providing a ‘sur-
rogate’ for several human movement dynamics. Such data
provides a testbed for modeling the movement of any so-
cial animal (including humans), and can be down-sampled
to simulate many different sensor environments.

Figure 1 (a) shows the troop in the wild, wearing these
devices (see: Data Description). Figure 1 (b) visualizes the
GPS data against landscape imaging. Between individu-
als (blue nodes), we infer interaction networks (red edges)
based on several network inference models (see: Methods).
In the left and right images we see a different number of
interacting subgroups of varying densities. Analogous to ur-
ban spaces, this population is characterized by intentional,
periodic interactions under differing (hidden) contexts, as
well as a mixing of individuals in chance encounters. This
inferred time-evolving ‘interaction network’ can be used as
a representation of social information. Our prediction task
directly tests the predictability of individuals simulated to
be ‘outside’ of our dataset: given the social information of
this individual baboon and hiding his location information,
how accurately can we track this individual? We use sev-
eral network models (see: Experimental Design) to demon-
strate improved predictive performance over baseline sam-
pling strategies, including population demographic-based
networks and randomly constructed networks (see: Exper-
imental Results).

Related Work
Improved localization technologies (GPS and cellular phone
triangulation) have enabled significant amounts of research
for reasoning about human-generated location trajectories
from individuals and groups. Our work extends upon previ-
ous work demonstrating that interactions and social relations
are structured by geography, and that social-spatiotemporal
modeling can be predictive of behavior or future interac-
tions.

Individual mobility modeling
This area of work focuses on developing descriptive mod-
els of human movement (González, Hidalgo, and Barabási
2008) or predictive models demonstrating periodic and other
regular aspects of individual location (Cho, Myers, and
Leskovec 2011). Many of these models incorporate points
of interest (e.g. home and work) or operate on constrained
spaces such as urban road networks. Early work focuses on
extracting places of interest from individuals daily routines
and predicting which place of interest the individual would
visit next (Marmasse and Schmandt 2000; Ashbrook and
Starner 2003). Extensions also infer an individual’s mode
of transportation at each point of a location trajectory (Pat-

terson et al. 2004) and the motivations for selecting specific
trajectories (Ziebart et al. 2008).

Geographic constraints on social networks and
applications

This area of research examines the aggregate relationships
between social network topology and geography. (Onnela et
al. 2011) model social network communities derived from
call record data using the standard Louvain (Blondel et al.
2008) method of community detection. (Backstrom, Sun,
and Marlow 2010) examine social-spatial statistics across
the Facebook network for location prediction, and uses
friend locations to infer the location of a user, assuming the
spatial autocorrelation of friendship to make this prediction.
Several studies use Location Based Social Networks (LB-
SNs), analyzing both aggregate individual-place (Noulas et
al. 2011), and social-place (Scellato et al. 2011) statistics.
The main difference in our setting is that we predict future
locations and infer the social network topology.

Geo-spatial network prediction

This work is most related to spatial-social prediction prob-
lems. Methods for link prediction incorporating spatial fea-
tures such as co-location have been developed and evalu-
ated on mobile call record data (Wang et al. 2011), and
location-based social networks (Scellato, Noulas, and Mas-
colo 2011). Other work on LBSNs has incorporated so-
cial and spatial influence for place recommendation (Ye
et al. 2011). A key difference in our setting is that these
studies have discrete interaction events (calls, check-ins)
while we must find a predictive definition of interactions—
and therefore, network—from continuous spatial positions
rather than discrete points (e.g. places, cell towers). (Noulas
et al. 2012) propose a method with spatiotemporal features
for next-place prediction, also on Location Based Social
Networks, but this does not incorporate social features. Pre-
vious work has also inferred networks from spatiotemporal
co-occurrence of mobile phone data (Eagle, Pentland, and
Lazer 2009), and multimedia events in Flickr (Crandall et
al. 2010). However, both studies use a “ground-truth” social
network for evaluation, where none exists in our setting.

Data Description
Our dataset is collected from high-resolution GPS collars
worn by a group of 26 baboons in the wild at Mpala Re-
search Centre, Kenya (Figure 1). These devices capture geo-
location of each baboon at one observation per second. The
spatial error of this data is low enough to identify several
types of interactions including coordinated movement, sub-
groupings and communities, and group splits over time. Data
is collected for 12 hours a day (≈ 43, 000 observations a
day) for 35 days for a maximum of 1.5M latitude-longitude
coordinates per individual. Due to battery and transmission
failures in collars over the duration of the study, we examine
a subset of 20 individuals with complete data over a four day
period.
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Methods
We aim to demonstrate that linear regression with social fea-
tures is an effective starting point in location prediction us-
ing social information. In this section we give an overview of
our regression model, and the network models used to infer
social interactions between individuals.

Linear Regression
Linear regression is a well-known and widely used predic-
tion model. It predicts a vector of real-valued outputs y (n-
length) given an input dataset X composed of n examples
(e.g. individuals), each with p features (an n × p sized ma-
trix). ~w is a p-length learned weight vector for X , and w0

is a constant offset term. Linear regression is equivalent to
minimizing the residual sum of squares (Equation 2):

y = X ~w + w0. (1)

min
w

1

2n

n∑
i=1

(yi − w0 − ~xT
i ~w)2 (2)

This weight vector is then used to make predictions on
test data:

ŷ = Xtest ~w + w0. (3)

In our experiments, the input X contains
〈Latitude, Longitude〉 locations of a set of predictor
individuals, excluding the predicted individual. The output
y is the 〈Latitude, Longitude〉 location of our predicted
individual. In the next subsection, we describe how the set
of individuals is selected. We also add the normalization
constraint that 1T ~w = 1 to make the predicted individual’s
location a combination of other individuals’ locations.

Network construction models
We choose predictor individuals in our above regression
from an inferred social network between individuals. We as-
sume that frequent co-location approximates undirected in-
teractions, although we can incorporate positive, negative,
and asymmetric relationships for location prediction. We de-
fine a graph G = 〈V,E〉 and construct unweighted edges
〈ni, nj〉 → {0, 1}, i 6= j, ni ∈ V ∧ nj ∈ V between pairs
of nodes (i.e. individuals) based on two network inference
procedures:

Linear threshold kernel (PD) For each time step, this
model calculates the pairwise Euclidean distance between
nodes ni and nj , i 6= j. A linear threshold kernel con-
structs an edge if and only if a distance threshold is met:
〈ni, nj〉 ∈ E ⇔ d(ni, nj) ≤ γ. We apply TWIN (Sulo,
Berger-Wolf, and Grossman 2010) to discover the distance
threshold γ = 10 meters, which provides maximum sta-
bility over time (optimizing network measure variance vs.
compression ratio). We then construct a time-evolving net-
work (at 1Hz) under threshold γ. For each time window
w (|w| = 3600 = one hour), we apply a second “persis-
tence” threshold λ, which we later vary for sensitivity anal-
ysis. We aggregate the time-varying graph defined on this
time window into a static network for prediction. To do this,
for each edge we count the number of time steps the edge

exists on the time window, and build a distribution over all(|V |
2

)
edge counts. An edge exists in the aggregatedEw edge

set if and only if its count is above the λ-th percentile in the
frequency distribution. Note that this threshold is adaptive
to the edge occurrences over w. |(〈ni, nj〉)w| ≥ λk,w de-
notes the occurrences of 〈ni, nj〉 greater than the kth per-
centile measured on the window w. For simplicity, we use
λk to threshold each w according to k; We do our analyses
on: {λ90, λ80, λ70, λ60}. For clarity, this set of thresholds
loosens from left to right.

Gaussian Mixture Model (GMM) This method is an ex-
tension to 2D geographic space from previous work for in-
ferring time-varying graphs from time series event data over
a set of discrete points (i.e. disjoint sensor sites) (Psorakis et
al. 2012). This method is parameter-free, and learns a min-
imal set of (µ, σ)s, a variable-number of Gaussian distribu-
tions which best cluster the data. For each time step on the
window w, this method assigns a cluster label to each node.
We then construct a clique among all nodes with the same
label (i.e. at each time step, this graph contains exactly s
connected components). We follow the same procedure as
(PD) to construct hourly networks on all windows using the
percentile threshold set {λ90, λ80, λ70, λ60}.

Experimental Design
In order to test our initial question, “can knowing the lo-
cation of my friends be used to accurately predict my loca-
tion?”, we first formulate two precise definitions of “friends”
on our networks. We then formulate a baseline null model
using bootstrapped samples of nodes. Bootstrapping (Efron
and Tibshirani 1993) is a common statistical technique infor-
mally equivalent to “random sampling with replacement.” In
this case, the baseline model measures the predictability of
the population in aggregate, without any detailed social in-
formation. Our sampling strategies then directly measure the
predictive power of our inferred networks.

Network sampling
We construct a regression model for each individual ni ∈
V , based on the locations of a subset of other individuals,
X = 〈latw,C , lonw,C〉, C ⊆ V \ ni. We define the subset
C according to three sampling strategies:

1. Neighborhood, C = N(ni) := {v|〈v, ni〉} ∈ E , the
nodes v adjacent to ni,

2. Community,C = {L(v) = L(ni), v 6= ni|Louvain(G)},
nodes sharing the same label output assignment from
the Louvain community detection method (Blondel et al.
2008).

3. Null,Crand = {Rand(V \ ni)}k is defined relative to the
Neighborhood or Community set C, where Crand con-
tains k = |C| random nodes, sampled without replace-
ment.

We will now describe the procedure to build the boot-
strapped sample and calculate the percentile error statis-
tic. For each individual, for each training/test window pair
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〈wi, wj〉, i 6= j we build a distribution of bootstrapped Eu-
clidean distance errors by samplingCrand from V , then run-
ning the regression model with location data of individu-
als in Crand as input, and reporting the mean error over all
predictions on wj . Crand is sampled with replacement for
K(= 150) trials. Let {e(Crand, wi, wj)}K denote this null
distribution.

We calculate location prediction error of each network
sampling method in a similar procedure as above. For each
individual, for each training/test window 〈wi, wj〉, i 6= j we
sample C according to the network sampling method, us-
ing location data of all individuals in C as input to the re-
gression, and report the mean error over all predictions on
wj , denoted e(C,wi, wj). Figure 2 illustrates querying the
percentile of the network sampling error e(C,wi, wj) (red)
within the {e(Crand, wi, wj)}K (blue) null distribution. A
well-performing predictor falls within a low percentile of the
null error distribution (i.e. the area within the distribution to
the left of the red line is small). Specifically, in Figure 2,
e(C,wi, wj) performs better than random, in the 26th per-
centile of the null distribution. This percentile error statistic
is adaptive to arbitrary null distribution models. Because it
is a relative measure, it is adaptive to the relative hardness of
prediction without social information. To abstract one step
further, we can summarize this error percentile statistic as
E(i, 〈wi, wj〉, S) for individual i, on training/test windows
wi, wj , and where S is a 3-tuple encoding the network set-
ting: (e.g.: S = 〈 PD, Neighborhood, λ60〉). These error per-
centile values serve as the basic units of our entire analysis.

Figure 2: A comparison of the location prediction error us-
ing network Neighborhood information (red) vs. the null er-
ror distribution of 150 sets of randomly selected individuals
of equal size to each neighborhood. The area of the distribu-
tion to the left of the red line are random trials which out-
perform prediction with Neighborhood information. A well-
performing location prediction method relative to random
sampling minimizes this area.

Figure 3: Summary of hours vs. hours prediction error, re-
porting the network regression error percentile relative to the
null distribution (lower is better).

Experimental Results
Hour-pairs performance distribution

We now have all the tools we need to formulate the full
experiment comparing Neighborhood and Community sam-
pling against Null. For each ofM (= 20) individuals, and all
〈wi, wj〉 ordered training/test hour window pairs: i× j, i 6=
j, we compare e(C,wi, wj) against {e(Crand, wi, wj)}K if
and only if C 6= ∅. Figure 3 visualizes these errors over
a particular network setting: 〈PD, Neighborhood, λ90〉 for a
particular baboon. We call this baboon Karl (= UID 1). Since
we will follow him through the rest of this experiment, we
should be on familiar terms with him. Note that some rows
in Figure 3 are empty. This occurs when Karl has no neigh-
bors (C = ∅) in the inferred network over training window
wi. Also note that some rows have consistently poor per-
formance against random (e.g. rows 19 and 42). This sug-
gests Karl’s inferred neighborhood on these hours is typi-
cally more distant than random. This analysis may be ex-
tended for network anomaly detection under a node label or
location prediction task.

Cumulative distribution of hour-pairs

Figure 4 directly summarizes Figure 3, reporting the cumu-
lative distribution of error percentiles over all hour-pairs for
the same network settings, 〈PD, Neighborhood, λ90〉. For
example, for the best 10% of null distributions (x = 10),
23% (y = .2324) of hour-pair errors fall within this distribu-
tion for the network setting 〈PD, Neighborhood, λ90〉. Alter-
natively, one-fourth of the time knowing only a few of Karl’s
“friends” is more predictive than even very lucky guesses.
This is in a moderately large combinatorial space for 20 indi-
viduals. Figure 4 can be interpreted similar to an ROC curve,
where a line above the diagonal indicates prediction perfor-
mance better than the bootstrapped null distribution.
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Figure 4: Cumulative distribution function comparing the
distribution of all pairwise hour performance vs. a boot-
strapped sample. Similar to an ROC curve, area above the
diagonal is the improvement over random.

Average predictability of the whole population

We also conduct a sensitivity analysis on the param-
eter λ to see how the “quality” of edges—measured
in frequency over the window—affects prediction un-
der Neighborhood and Community sampling. We compare
the population mean of individual median network per-
formance vs. random. For clarity, this mean given by:
Meani(Medianj×k(E(i, 〈wj , wk〉, S)) i = 1...20 (all in-
dividuals), and j × k = 〈1...48× 1...48〉, j 6= k (all ordered
hour-pairs), where functional subscripts define the indices
which the function aggregates on. To measure change in per-
formance under different λ thresholds, we subtract these me-
dians and report the mean difference across the population
under different λ (more negative is better). This can be in-
terpreted as how much the individual hour-pairs error dis-
tribution changes on average. Table 1 summarizes a subset
of changes in λ. We see that tightening the threshold mono-
tonically increases performance on average; looking at the
underlying performance per individual, there are very few
that have poorer performance after any threshold tightening
across all increasing combinations. Note that this mean dif-
ference is a signed measure, so unbiased noise across the
population cancels to ≈ 0.

S→ λ(top) λ70 λ80 λ90
〈 PD, Neighborhood, λ60〉 -.014 -.021 -.051
〈 PD, Community, λ60〉 -.028 -.045 -.063
〈 GMM, Neighborhood, λ60〉 -.004 -.042 -.066
〈 GMM, Community, λ60〉 -.035 -.068 -.076

Table 1: Each cell reports the change in population mean
of individual median network percentile vs. random, when
moving from λ60 (left) to a higher threshold (top), (more
negative is better).

Figure 4 raises an important question about the popula-
tion: is the greater performance of Neighborhood relative
to Community consistent across other individuals and net-
work settings? Table 2 follows a similar evaluation as Table
1, reporting the change in mean error across the population,
this time changing Community to Neighborhood sampling.
The results show that at all λ thresholds, performance is
better for Neighborhood sampling. This result follows our
intuition because non-adjacent neighbors of the same com-
munity have strictly lower persistence than adjacent neigh-
bors (by the persistence threshold definition λ), and we see
these Community edges are “weaker” with respect to loca-
tion prediction as well. However, Figure 4 illustrates that
Community sampling still improves predictive performance
over Null.

S→ Neighborhood λ60 λ70 λ80 λ90
〈PD,Community, :〉 -.036 -.050 -.060 -.048
〈GMM,Community, :〉 -.027 -.058 -.054 -.037

Table 2: Each cell in this table reports the change in pop-
ulation mean of individual median network percentile vs.
random, when moving from a Community sampling (left) to
Neighborhood sampling, reported over all thresholds (top),
(more negative is better).

Comparing predictability of individuals
Figure 5 summarizes performance for each network set-
tings for each individual, at λ90. Figure 5 (a) summarizes
the mean of the hour-pair performance distribution visual-
ized in Figure 3, for each network setting (lower is better).
For a pair of bars on the same network model (e.g. yellow,
red for GMM), Neighborhood outperforms Community sam-
pling across nearly all individuals. Furthermore, we see in-
dividual differences in performance both in absolute terms
across all models (e.g. Individual 4 is less predictable than
the population), and in relative terms where either the dif-
ferences between GMM and PD or Neighborhood and Com-
munity are high. Figure 5 (b) reports the fraction of the hour-
pair error distribution which falls under the bottom half of its
bootstrapped sample (higher is better). For example, the blue
bar for Karl (UID = 1) summarizes his CDF (Figure 4) at the
50th percentile of random (x = 50). The range is between
57.45% and 79.30%, again showing individual differences
in predictability using “friends.”

Predictability of population demographics
We now test the predictability of an explicit biological net-
work defined on the population compared our network mod-
els. For the network Demographics, two nodes ni, nj are ad-
jacent if and only if they share labels for both Sex and Age
(on the categorical vocabulary {‘adult’, ‘subadult’, ‘juve-
nile’}). However, any biological hypothesis testing v.s. co-
location network models could be incorporated in this type
of analysis. Because the Demographics network is a disjoint
set of cliques, both Neighborhood and Community sampling
are equivalent, and because it is static, all λ thresholds yield
the same network. We do the same bootstrapped analysis
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Figure 5: (a) the mean of the hour-pair performance distribution, for each network setting, for each individual (lower is better).
(b) the fraction of the hour-pair performance distribution which falls under the bottom half of its bootstrapped sample (higher
is better).

as above. Table 3 reports the change in population mean of
individual median percentile when substituting the Demo-
graphics network with PD or GMM networks, on each sam-
pling strategy constructed at varying λ. Both Community and
Neighborhood sampling outperform Demographics suggest-
ing that inferred social structure from repeated interaction is
not merely a surrogate for this particular demographic struc-
ture. A closer look shows that of the five demographic pairs
in our population, only the adult female class has a mean er-
ror better than random (.459). Comparing with Figure 5 (a),
this subgrouping mean is worse than any of our reported in-
dividual errors for our network models, suggesting that the
demographic information is much weaker relative to even
the most predictive demographic. The mean error for Demo-
graphics across the entire population is .511 (random).

Demographics→ S (left) λ60 λ70 λ80 λ90
〈PD,Neighborhood, :〉 -.142 -.171 -.189 -.206
〈PD,Community, :〉 -.107 -.122 -.128 -.158
〈GMM,Neighborhood, :〉 -.134 -.168 -.202 -.210
〈GMM,Community, :〉 -.107 -.109 -.149 -.173

Table 3: Each cell reports the change in population mean of
individual median network error vs. random, when moving
from the Demographics network to the network setting S
(left), at varying thresholds for S (top), (lower is better).

Conclusions and Future Work

In this paper, we have analyzed how social information can
improve location prediction performance. Two important ex-
tensions are to discover rules for “when” and “where” a par-
ticular network is more predictive. In an intuitive sense, we
can think of co-workers and family as predictive of location
in different times and places. Empirically, in Figure 3 we
want to identify predictors for well-performing hour-pairs
based on network topology, location, or periodic patterns
(Lahiri and Berger-Wolf 2010).

In this analysis, we construct two different net-
work models (PD, GMM) on four different thresholds
{λ90, λ80, λ70, λ60}. But, which of these is the correct net-
work? These and many other networks could be constructed
from location data. Choosing the most appropriate one is an
open problem for statistically inferred networks where no
explicit, unambiguous edge relation exists. Our future work
aims to tune the network definition according to predictive
performance, under the assumption that the most predictive
network best-represents one dimension of social interaction.
This is a difficult problem which balances predictive accu-
racy against the semantic interpretability of edge definitions.
Across both network models there is a consistent trade-off
between predictability and sparsity according to the quality
of edges (see: Table 1). Investigating different quality crite-
ria may help formulate a principled tuning solution.
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