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Abstract

This paper introduces a novel autonomous interac-
tive learning cooperative (ILCP) who receives expected
value and variance of load from consumers and partic-
ipates in the electricity market on their behalf. Using
an axiomatic approach, the share of each consumer’s
payment as well as its weight in calculating the mod-
ification of total day-ahead load are formulated. This
scheme applies double-seasonal smoothing exponen-
tial, a recent load forecasting technique, and a clas-
sifier for real-time to day-ahead price direction fore-
casting (Gaussian Nave Bayes). In addition to this,
the ILCP employs interactive cooperative algorithms
for both trading cooperative and consumer side. The
ILCP scheme is investigated and its performance is
compared to those of non-cooperative real-time pric-
ing (RTP), LCP (non-interactive learning cooperative)
and CP (non-interactive non-learning cooperative). The
developed system was implemented using PJM(world’s
largest wholesale electricity market) real-time and day-
ahead data for 2013 and half of 2014; real load profiles
were selected from a set of 579 residential and commer-
cial consumers, and weather data were applied to fore-
casting electricity price direction. We demonstrate the
advantages of ILCP to lower the average electricity cost
and to reduce unit price variations.

Introduction

Putting ’smart’ in electricity Demand Side Management
(DSM) is one of the concerns for future electricity networks
and smart grids (Ramchurn et al. 2012). Pricing schemes
such as real-time or ‘dynamic’, in comparison to the main-
stream ‘flat-rated‘, demand response (DS) or time of use
(TOU) rates, are proposed and criticized extensively in lit-
erature (Albadi and El-Saadany 2008; Borenstein, Jaske,
and Rosenfeld 2002; Conejo, Morales, and Baringo 2010;
Mohsenian-Rad and Leon-Garcia 2010; Allcott 2009). In
addition, smart grids allow real-time interactions between
utility companies and consumers which introduce intelligent
autonomous agents to these markets (Davito, Tai, and Uh-
laner 2010; Peters et al. 2013; Ketter, Collins, and Reddy
2013).
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Though it appears that Real-Time Pricing (RTP) com-
bined with autonomous agents is effective in demand shift-
ing, this method is not sufficient without using sophisticated
adaptive approaches to any particular situation that ‘can look
ahead and predict® (Allcott 2009; Piette et al. 2009). In-
stead, computationally efficient learning algorithms, as one
of the artificial intelligence challenges, is to put intelligence
in autonomous units who provide consumers with profitable
opportunities (Ramchurn et al. 2012). Nonetheless, few re-
searches have proposed and investigated cooperative and in-
teractive mechanisms that provide consumers with DSM op-
portunities.

Recently proposed cooperative for demand side manage-
ment (CDSM) model enables consumers to cooperate and
participate in wholesale electricity market (Kota et al. 2012).
However, this model relies on demand reduction scheme
(rather than demand shifting) which can be an unrealistic
assumption for regular consumers. Another cooperative idea
is based on simplified wholesale market model with assump-
tion of discrete electricity prices or group price discount be-
side a known and determined demand threshold for price
shift (Akasiadis and Chalkiadakis 2013; Veit et al. 2013).
However, these models don’t address the dynamic, contin-
uous and competitive electricity pricing in reality. In some
other works, consumers are assumed to actively participate
in the wholesale electricity market; nonetheless, in reality,
retail electricity consumers including residential and com-
mercial, are not allowed to join and bid in wholesale mar-
ket; indeed, a good practice in demand side management is
to manage aggregated behavior (Mohsenian-Rad and Leon-
Garcia 2010).

In this paper we introduce a non-profit interactive learn-
ing cooperative (ILCP) to which residential and commercial
consumers can subscribe. The ILCP receives expected value
and variance of next day load profiles and participate in the
electricity market on behalf of its consumer members. The
rest of this paper is organized as follows: in the first section,
we describe our framework; in the second and third sections,
the predictive methods applied for load and price prediction
are described and justified; then, the interactive algorithms
applied to cooperative agent and consumers for load modifi-
cations are illustrated, and finally, two axiomatic models for
cost and risk (load deviation) disaggregation are formulated.



Interactive Learning Cooperative

We introduce a framework based on a non-profit interactive
learning cooperative (ILCP) to which residential and com-
mercial electricity consumers can subscribe. The ILCP re-
ceives the next-day expected load profile and risk (expected
load variance) from subscribed consumers, forecasts the ag-
gregated load and real time electricity price, places bid in
day-ahead market, informs consumers about any financial
opportunities in load modifications (according to the pre-
dicted real time load and price), and applies a formulation
for cost sharing and risk disaggregation to calculate con-
sumers’ payments. The ILCP collects the expected load pro-
files for next day from each consumer in cooperation and
calculates the aggregated load and places bid in day-ahead
market on their behalf. Then, in real-time market, it calcu-
lates all eventual day-ahead and real-time payments using:
aggregated day-ahead bid and real-time electricity consump-
tion, market prices, consumers expected profile announce-
ments (received during day-ahead information exchanges),
individual and aggregated imbalances. Finally, we introduce
Interactive Algorithms, which enable the cooperative agent
to interact with consumers and inform them of financial
opportunities for profile modifications (load shifting). Be-
ing concerned with this issue, we devise interactive request-
offer-approve algorithms for ILCP and consumer members;
also, we simulate a real-world-driven consumer preferences
using stochastic formulation for consumers’ amount and
timing of load shifting.

In this paper, a day consists of 24 time intervals consistent
with settlement periods in PJM market. Each consumer in-
forms a day-ahead expected load profile (24 sequential val-
ues) Lj per day and consumes Li,, in real-time, where ¢
is the time interval and ¢ is the consumer index. The mar-
ket announces the day-ahead price (ppa()) by 12PM a day
before each settlement and the real-time price (prr(y)) after
the real-time actual electricity consumption; since the later
price is calculated based on real time bids by generators and
consumers, cost of reserved capacity and ancillary services,
etc..

Short Term Load Forecasting

(Taylor 2003) introduced the double seasonal exponential
smoothing method, which has adapted Holt-Winters ap-
proach in (Chatfield 1978) for short term forecasting of elec-
tricity load. Since then, in literature its performance has been
compared to other regular short term load forecasting meth-
ods such as ARIMA, SARIMA, PCA etc. (Taylor and Mc-
Sharry 2007) which indicates its competitive performance
in short term hourly load forecasting. Multiplicative formu-
lation of double seasonal formulation can be described as:

Sy =a(Li/(Di—saWi—s2) + (1 — ) (Se—1 + Ty—1)
Ty =v(Se = Se—1) + (1 —7)Ti—1

Dy = 6(Le/(StWi—s2)) + (1 = 6) Dy g2

Wi = w(L¢/(SiDi—s1)) + (1 —w)Wi_s2

Lpwy (k) = (St + kTt) Dy 141 Wi —so1k )
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in which S; is the level learning part, 7} is the trend, D,
is the first seasonal component and W; is the second sea-
sonal component. Time interval ¢ shows the time to which
we train our model and k refers to steps ahead for forecast-
ing.The last expression is the final forecasting formulation
that combines all the above together in multiplicative ap-
proach. Our time interval parameter is hourly (24 per day),
the first seasonal component is 24 hours and the second sea-
sonal component is 168 hours (1 week). In our context, we
use slightly more than one year of historical load for learning
purpose. We tuned our parameters approximately o = 0.1,
v = 0.4,6 = 0.5,w = 0.3 using similar method applied in
(Taylor 2010).

Price Direction Forecasting

We apply different approaches to classify real-time to day-
ahead price direction. Aiming for the feature variables
of price direction forecasting, we use the historical day-
ahead and real-time prices, pr7(;) and pp a(¢), the historical
weather parameters such as temperature, relative humidity,
dew point temperature and weather categories (e.g. sunny,
cloudy), and date parameters such as weekday and time of
day. For the later parameters we converted the categorical
variables to numerical datasets and combined them with nu-
merical data for learning applications. Finally, we applied
two approaches. At first, we created a price direction binary
parameter (1 if price goes up and O otherwise), we trained
our data using multiple machine learning methods such as
Logistic Regression (LR), Support Vector Classifier - linear
kernel (SVC) and Gausian Naive Bayes (GNB) and com-
pared the results. In our second approach, in order to exploit
the numerical difference between real-time and day-ahead
prices, we tried Least Square Regression (OLS) combined
with a logistic function. For each time interval, the day-
ahead price is known and APrice;y = Prr(t) — PDA(t)
is subject to learning:

APriceqy = Bo + BrX1 + . + B Xom

Then, a logistic function and a bias parameter is applied to

classify APrice ) direction.
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Adjusting the B parameter, we plot the ROC curve of
learning test data according to Figure 1. Figure 1a indicates
performance of well known learning methods such as logis-
tic regression. For the sake of better comparison, we plot
learning performance of these methods, moving the train-
ing window on the historical data; each time step shows
72 hours shift in learning window. However, performance
of well known learning methods such as logistic regression
is below random classifier. In theory, this looks like an op-
portunity to do better than random classifier using the oppo-
site classes, but Figure 1b shows that this is not applicable
since its performance is swinging between underperform-
ing and outperforming the random classifier. According to
(Mon 2014, p. 92) the participation of financial companies
in the PJM market has increased significantly throughout

Logistic(APricewy) = 1/(1 + eAP”“(ﬂ‘*‘B)
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Figure 1: performance of classifiers on forecasting real-time
to day-ahead price direction

2013; this implies the possibility of applying regular learn-
ing algorithms on this market excessively (herding effect in
learning). SVC has a performance slightly better than ran-
dom classifier. Also, our OLS algorithm shows noticeable
improvement over logistic regression and random classifier,
but it falls short of GNB’. At last, GNB gives the best overall
performance in terms of classification accuracy and stability.

Seeking a formulation to put both forecasting techniques
in effect, we introduce day-ahead bid coefficient (C}) for
day-ahead aggregated bids:

Ct = 0~7+0~3*Pr0bGNB(t) (3)
in which Probg () is the probability score of price direc-
tion classification using GNB in time interval ¢. The proba-
bility 1 and O indicate all but ensured positive and negative
price direction in order. We propose our final formulation for
aggregated day-ahead bid:

Lpa =Cy* Ly 4)

where Ly is the forecasted load in Equation 1.
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Interactive Algorithms

We introduced ILCP, which applies its cooperative, learning
and interactive capabilities to modify aggregated day-ahead
bid (for the sake of lower total payment for consumers).
Here, we propose novel request-offer-approve interactive al-
gorithms for ILCP.

Data: historical load and market price data

Result: day-ahead bid

while not in the last time interval and it is 12pm do
collects day-ahead profiles;

for every consumer agent do

send consumers the day-ahead price;
receive the consumers’ offers;

end
rank consumers according to their contribution ;
go to the first ranked consumer;
while aggregated load constraints is not violated do
‘ add to aggregated modification;
go to the next consumer
end
forecast the next day aggregated load;
modify day-ahead bid;
calculate aggregated deviation;
disaggregate load deviation;
calculate current payments for all consumers
previous announcement, modifications and price;

end
Algorithm 1: interactive algorithm of ILCP

We devised an interactive scheme where the autonomous
trading cooperative unit sends expected price signal to all
the consumers and receives their offer which is a daily zero
sum load shifting with positive and negative values for load
reductions and increments respectively. On the other side,
we model consumers’ offering behavior using a stochastic
algorithm which receives the financial opportunities, finds
the plausible pairs of time intervals (for shifting) accord-
ing to its own financial constraint, and chooses a pair with
a probability relative to its potential financial benefit (Al-
gorithm 2). Sum of all of the individual changes shows the
final load shifting curve achieved by interactive cooperative.
The ILCP sends the price signal using the day-ahead price
and real-time price predictive method (Equation 1), predicts
aggregated load (Equation 4) and places day-ahead bids and
calculates payments using the cost disaggregation approach
(Equation 8) and risk sharing approach (Equation 5). We im-
plemented interactive Algorithms 1 and 2 for ILCP and con-
sumers.

Axiomatic Risk Disaggregation Model

In cooperative scheme, in more than one situation the sum
of expected loads announced by consumers is different from
day-ahead bid by cooperative. Then, the cooperative needs
to disaggregate any deviation (risk) between all of those
consumers. Some reasons for this deviation, which neces-
sitate this formulation, are risk management, load forecast-



Data: Day-ahead and real-time prices
Result: profile modification offer
Select consumer threshold;
while not in the last time interval and day-ahead price
received do
rank day-ahead time interval prices;
calculate max price difference;
while max price difference > threshold do
assign the top and bottom price to separate lists
remove those from price ranking calculate max
price difference
end
randomly pair top and bottom list elements;
p=selection probability by relative pair price
difference;
for i in pairs do

if random number< p then

select randomly among [10, 20, 30] percent
for modification update total modification;
else
| continue the loop;

end
end
send offer to cooperative;

end
Algorithm 2: interactive algorithm of consumers

ing, price forecasting and day-ahead bid modifications. We
propose the following axioms for deviation disaggregation:

Axiom 1 - Directed: individual deviation shall have the
same sign as the aggregated deviation.

sgn(Lpac) — L}) = sgn(Lpagy — Lt)

Axiom 2 - Fixed-Sum: sum of individual deviations shall
be equal to aggregated deviation:Zi\[=1 LiDA(t) = Lpag)
Axiom 3 - Increasing: given other conditions, the individ-
ual deviation amount shall be partially increasing to both
individual announced load variance and expected load.
I(L; Ly) OLp 4y — Lt)

DA(t) —
doy ’ oL

and >0

where o} and L are respectively the ‘relative load variance
(normalized by the load value) and ‘expected load value‘
announced by consumer ¢ to ILCP in day-ahead information
exchange for time interval . We define the formulation for
calculation of day-ahead share of each consumer (disaggre-
gation) as:

N
Lpaw =Li+ o+ Lyx (Lpawy — L)/ Y ol « L] (5)
j=1
where Lp;) is calculated using Equaiton (4), Et =
> j Lg ; LjD AQt) and L{ are respectively day-ahead bid and
announced expected load by consumer j for time t.

This formulation ensures all of the above axioms. It is Di-
rected since if LbA(t) — L} has the same sign with Lp 4(¢) —
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Ly. Tt is fixed-sum in formulation since Zjvzl L]b A =
Lpa(t)- And the deviation function is increasing with both
announced variance and expected load.

Axiomatic Cost Sharing Model

According to (PJM 2014), total payment is calculated based
on day-ahead bid, real-time consumption and market prices:

Puy = Lpaw *Ppaw) + (Lrr@)y — Lpaw) *Prr) (6)

where Lp 4(y) is the day-ahead load bid in day-ahead mar-
ket, pp a(r) is the day-ahead electricity unit price, L gy () is
the real-time load consumption, and prr(;) is the real-time
electricity unit price. In this formula, the day-ahead bid and
real-time consumption values can be either individual or ag-
gregated. For aggregated cases (which includes ILCP), in or-
der to disaggregate the total payment among consumers, we
apply and devise few reasonable axioms. (Herzog, Shenker,
and Estrin 1997) each of which describes an aspect of a cost
sharing:

Axiom 1 - Increasing: given other consumers’ load, a con-
sumer’s payment shall be strictly increasing corresponding
to its own consumption.

Plya > Ploy For YLiarwa > Lrrayp

Axiom 2 - Fixed sum: in a non-profit cooperative, sum of
all payments shall be equal to Equation 6: Zivzl P(it) = Py

Axiom 3 - Continuity: given other consumers’ load, for a
consumer, small variation in consumption should result in
small variation in payment:

VLrro €R  lim  PY(Lgrr)= P (Lgro)

Lrr—LRT0

Axiom 4 - Responsibility: any aggregated cost or ben-
efit in payment due to a load deviation shall be charged
or credited to contributors to that deviation: assume that
ALy = Lipyy — Lpaqy and ALwy = Lrr@) — Lpag)
are individual and aggregated load deviations. Notice that
individual day-ahead bid (L, A( t)) is calculated according
to Equation (5). Then this axiom states that:

pi_ [ Tpa(t) if sgn(ALj) # sgn(ALy)
K f(ppa(t),prr(t)) if sgn(ALy) = sgn(ALy)
According to the above axioms, we divide the solution
into two scenarios. The first one occurs if the total imbalance

and the individual imbalance are in opposite directions in
which case the formulation is:

)

and the second scenario is when imbalances have the same
direction:

P(it) = L%T(t) * PDA(t)

P(Zt) = L%T(t) >kaA(t)"_

> ALy,

N

ALy (Prry — Ppa@) * p_ ALY, /
j=1 JESII

()
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Figure 2: Monte-Carlo simulation of payment sharing ax-
iomatic Formulation

where S indicates set of consumers for Scenario II. This
formulation satisfies all of the four axioms. Axioml] is true
because:

First, we assume AL’(' 1 > 0, for the sake of simplicity we
put:

f= ALt)*ZAL /> ALY

JESII
=(z— C)($+ a)/(z+ B)

when z = L%T(t), ¢ L"DA(t), o < Band z > c (since
the denominator is sum of only positive deltas). Then, we
prove that the first derivative of payment function is strictly
positive:

df /dz = (22 + 2Bz + af — cf + ca) /(2% + 28z + B?)

since aff — cB +ca < af —cf +cB = af < B2 then
df /dx < 1 and since dP, t)/da: = ppaw) + (Praw) —
PpA))*df /dx and prp ) > 0 then dPl /da: > 0. Similar
logic applies to the AL% f < 0 case. The formulation is fixed
sum and the sum is equal to Formula 6 since:

Z (t) = Lrrt) * PDAM)

+ (PrAG) — PDAW)) * (Lrr(t) — LDAR)) = P

Also, this formula is a continuous function of
L%,/T(t)(axiom 3), the second term in the formula re-
lies on the fraction of individual imbalance to sum of
imbalances with similar direction (axiom 4). Figure 2 illus-
trates the dynamic of a individual payment corresponding to
its own load deviation from day-ahead bid for few real-time
prices.

Experimental Results

We study the performance of interactive learning coopera-
tive using the real world electricity day-ahead and real-time
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Figure 3: cumulative savings of cooperatives over RTP dur-
ing 2014 trading period

prices, the real residential and commercial measured load
profile, and a variety of weather parameters of Pittsburgh
(a central PJM city, geographically). We collected 547 resi-
dential sample load profiles and 32 commercial ones out of
which we used 100 and 10 profiles respectively. In our sim-
ulation, for the sake of having baseline for comparison, we
define three other schemes:

e Real-time pricing (RTP): each consumer places bid in
the day-ahead market individually and the payoff is cal-
culated according to a his day-ahead bid, real-time con-
sumption, and market prices.

o Cooperative (CP): it simply aggregates the load profiles
of consumers and places bids in the day-ahead market,
calculates the real-time consumption by each consumer
and applies the cost sharing formula (Equation (8)) to dis-
aggregate total payment among consumers. However, this
scheme doesn’t apply aggregated load and market price
predictive models and interactive algorithms.

e Learning Cooperative (LCP): this scheme is the ILCP
without the interactive algorithms. So, it combines all the
functionalities of above CP scheme with aggregated load
and market price predictive models (Equations (1) and

).

Real world datasets of PIM electricity market and load
profiles are used for our experimental results. To better com-
pare the results, we consider the same set of consumers for
each type of cooperative. Consequently, aggregated load in
each time interval is the same for all of our schemes. For
trading time frame, we select 3600 hourly time intervals (out
of 13104) starting from early 2014. For the LCP, we consider
relearning period of 240 hours. This indicates that the trad-
ing agetns fits its GNB classifier every 10 days. We assume
that in PJM geographical area, weather data are linearly cor-
related point to point and that weather forecasting is reason-
ably accurate up to the next 36 hours at each time interval.

The measures for comparison include the aggregated sav-
ing in total payment, average electricity unit price, and unit
price variation during the test period. Since all of our trading
agents are non-profit, any presumable trading profit trans-



Total Payment (USD)

Average Electricity Unit Price (USD/MWH)
Consumers Unit Price Relative Std (percent)

Table 1: simulation results for non-profit cooperative

lates to a lower electricity unit price. Figure 3 shows the
weekly cumulative savings of our cooperative agents. First
of all, CP doesn’t show any payoff over real-time pricing.
This is because no imbalance or transaction fee is directly
applied to agents who buy electricity in PJM market; also,
the day-ahead bid doesn’t place any obligation for actual
transaction in real-time. In other words, if the day-ahead
bid is less or more than real-time consumption, the differ-
ence in the real-time price will be charged or credited to the
trading agent in order. As soon as we place those fees or
obligations (that is usual in some other wholesale markets)
in our model, the cooperative scheme starts to show advan-
tage over RTP baseline in terms of total payment (assum-
ing a normal distribution for consumer profiles, the relative
aggregated load’s deviation is lower than those of individu-
als). The LCP shows about 0.5% saving during the trading
period. Nonetheless, market disturbances has major effects
on its performance. The ILCP gives more than 3.4% total
cost reduction and performs well during periods in which
LCP falters (e.g. late Febuary). This indicates ILCP’s steady
advantage over other cooperatives and RTP scheme. Fur-
ther, since the total daily load consumption is equal for all
schemes, ILCP offers lower average electricity prices to its
consumers proportionately.

For more comprehensive comparison, we need a measure
for price variation which compares the weighed average of
relative standard deviation of unit prices over trading period.
Having this goal in mind, our measure should have this def-
inition:

T T
RelativeStd = Z upriceStdy/ Z Lrre

t=1 t=1

&)

in which upriceStd; = std{UnitPrice] : j = 1toN}, T
is number of time steps and [V is number of consumers.

Figure (4) shows the position of our non-profit coopera-
tives and RTP in the average price value vs relative price
standard deviation space. Though theoretically, CP cannot
give any advantage over RTP in terms of average electricity
price, it shows advantage in terms of lower relative price
variations among consumers. The reason for this lies in
Equation (8) in which the variation of payment for small
variations of real-time load is proportionate to day-ahead
price rather than the real-time price. LCP gives slightly
lower average price and relative variance than RTP’s. The
ILCP shows considerable advantage in terms of unit price
but not unit price variations. This is because consumers have
different preferences and thresholds for cooperation, so, the
financial incentive encourages those with low price thresh-
olds to shift their load profile and lower their unit price while
it is not the case for all; this issue reduces the overall unit
price but increase the unit price variation.

ILCP LCP CP RTP
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Figure 4: average electricity unit price value vs relative stan-
dard deviation for cooperatives and RTP

Conclusion

In this paper, we contributed to (i) a framework for inter-
active learning cooperative scheme (ii) axiomatic model for
cost sharing, (iii) axiomatic model of risk disaggregation,
(iv) interactive algorithms and (v) predictive models of ag-
gregated load and real-time market price with learning from
historical load and price data. We tested and validated our
contributions with real world historical data of PJM markets
and realistic consumer profiles. We demonstrated the per-
formance of ILCP compared to LCP, CP, and RTP schemes.
In future, we extend this model to simulate the behavior of
trading and consumer agents and its implications.
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