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Abstract

Clustering agents by their behaviour can be crucial for build-
ing effective agent models. Traditional clustering typically
aims to group entities together based on a distance metric,
where a desirable clustering is one where the entities in a
cluster are spatially close together. Instead, one may desire
to cluster based on actionability, or the capacity for the clus-
ters to suggest how an agent should respond to maximize their
utility with respect to the entities. Segmentation problems ex-
amine this decision-theoretic clustering task. Although find-
ing optimal solutions to these problems is computationally
hard, greedy-based approximation algorithms exist. How-
ever, in settings where the agent has a combinatorially large
number of candidate responses whose utilities must be con-
sidered, these algorithms are often intractable. In this work,
we show that in many cases the utility function can be fac-
tored to allow for an efficient greedy algorithm even when
there are exponentially large response spaces. We evaluate
our technique theoretically, proving approximation bounds,
and empirically using extensive-form games by clustering op-
ponent strategies in toy poker games. Our results demonstrate
that these techniques yield dramatically improved clusterings
compared to a traditional distance-based clustering approach
in terms of both subjective quality and utility obtained by re-
sponding to the clusters.

1 Introduction
In domains where maximizing an agent’s utility is the pri-
mary goal, agents may need to model other agents or enti-
ties in their environment to improve their utility. Clustering
techniques can be beneficial in these settings by allowing the
agent to partition the set of entities into similar groups called
clusters. In this setting, a clustering’s actionability — its ca-
pacity to suggest responses with high utility to the agent —
is the fundamental clustering objective. Contrast this with
many traditional clustering problems, such as k-means and
k-medians, where similarity is measured by some notion of
spatial distance between the entities within the same clus-
ter. For instance, the k-means objective is to minimize the
within-cluster sum of squared Euclidean distances between
each of the entities and their cluster’s centroid. Despite an
abundance of spatial clustering techniques, these techniques

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Rock

Paper Scissors

P

S

RE
2

3

1

Figure 1: Rock-paper-scissors strategy simplex partitioned
into best response regions. Despite the spatial proximity of
1 and 2, they fall in distinct best response regions (P and S).

may fail to capture similarity in how the agent should re-
spond to the entities.

To illustrate, we briefly examine the game of Rock-Paper-
Scissors. In this game, a static agent’s behaviour can
be specified by their probability distribution over choosing
rock, paper, and scissors. Figure 1 depicts a simplex repre-
senting the space of possible probability distributions over
these three actions. The point E is the game’s Nash equi-
librium of 1/3 for each action. Consider the points labelled
1,2, and 3. Although 1 and 2 are spatially close, an agent’s
response for how to act with respect to them should be dif-
ferent as their strategies do not share the same best response.
In contrast, 1 and 3 share the same best response (always
play paper) despite being spatially distant.

Although this type of decision-theoretic clustering may
appear to be a niche problem at first glance, it is actually re-
lated to a range of optimization problems. Kleinberg and
colleagues (1998) introduced and formalized this style of
clustering problem in the data mining community as seg-
mentation problems. Their work showed an equivalence be-
tween a form of maximum coverage optimization and this
type of clustering. Lu and Boutilier (2011) also highlighted
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several parallels between their budgeted social choice model
and segmentation problems.

Due to the computational complexity of segmentation
problems (and many other similar maximum coverage based
problems) one typically forgoes exact solutions for effi-
cient approximate solutions to these problems. In particu-
lar, greedy approximations related to Nemhauser and col-
leagues’ (1978) greedy algorithm for maximizing mono-
tone submodular functions are commonly used to attack
a segmentation problem’s maximum coverage formulation.
These techniques iteratively construct a solution by evaluat-
ing the marginal gain of each feasible response and adding
the greedy-best response. Unfortunately, as Kleinberg et
al. (2004) noted, such greedy algorithms may not be effi-
cient as even a single step can be an NP-complete problem.

In this paper, we examine segmentation problems where
the response space is either exponential or infinite and the
standard greedy approximation is computationally infeasi-
ble. We show that despite this, in certain cases where the
utility function can be factored, an efficient response oracle
can be constructed. We then use such a response oracle to
operate directly on the partitioning formulation of a segmen-
tation problem by greedily merging clusters together in an
agglomerative (i.e., “bottom up”) clustering algorithm. Fi-
nally, we evaluate our technique both theoretically and em-
pirically. Our theoretical results provide a guarantee on the
worst case performance of our greedy algorithm relative to
the optimal clustering into k sets. This approximation bound
is shown to be tight within a factor of 2. We empirically eval-
uate our technique using extensive-form games by clustering
agent strategies in two toy games of poker: Kuhn poker and
Leduc hold’em. Our results highlight the benefit of cluster-
ing strategies based on their actionability rather than their
spatial similarity by contrasting our greedy method with a
traditional k-means clustering approach.

2 Background
We begin our exposition by introducing segmentation prob-
lems, followed by a brief description of our experimental
domain of extensive-form games.

2.1 Segmentation Problems
Segmentation problems examine the challenge of determin-
ing how an agent should respond to maximize utility given
information about different entities (Kleinberg, Papadim-
itriou, and Raghavan 1998)1. For example, a commercial
enterprise with information about their customers could act
homogeneously across the customers, but the enterprise may
be able to increase its utility by tailoring their response
(e.g., marketing strategy, product line) to each customer’s
preferences. While such individual personalization is often
impractical, a more limited form of personalization where
the market of customers is segmented (i.e., clustered) into k
groups may still be beneficial.

One way to view segmentation problems is as clustering
problems where the desired clustering depends on a utility

1Kleinberg and colleagues referred to the entities and responses
as customers and decisions, respectively.
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Figure 2: Matrix view of a segmentation problem with an
objective value of 30.

function u(e, r) that specifies the utility of response r ∈ R
with respect to an entity e ∈ E being clustered. Unlike
traditional clustering approaches, this approach directly op-
timizes for the actionability of the clustering.

More formally, let E, R be sets (E finite), and u : E ×
R→ R a utility function. For convenience, we let Part(E)
denote the set of partitions of E:

Part(E) =

{
P ⊂ 22

E

:
∪P = E,
A,B ∈ P ⇒ A ∩B = ∅

}
.

For k ∈ N, we shall also use Partk(E) to denote
the set of k-element partitions of E: Partk(E) =
{P ∈ Part(E) : |P | = k} .

We abuse notation slightly to define several recurring
terms for utility over subsets and partitions of E. For
P ∈ Part(E), C ⊂ E, r ∈ R, let

u(C, r) =
∑
e∈C

u(e, r),

u(C) = max
r∈R

u(C, r), and

u(P ) =
∑
C∈P

u(C).

In words, u(C, r) is the total utility of a “cluster” of entities
C ⊂ E when the response is r, u(C) is the utility of C and
u(P ) is the utility of partition P .

Then the partitioning form of a segmentation problem
considers the problem of finding a partition of E that gives
the highest utility amongst all k-element partitions:

P ∗k = argmax
P∈Partk(E)

u(P ) = argmax
P∈Partk(E)

∑
C∈P

max
r∈R

∑
e∈C

u(e, r).

(1)
Finally, we let u∗k denote the utility of an optimal k-
element partition: u∗k = maxPi∈Partk(E) u(P ).

To provide more visual intuition of this problem, we also
describe it as an optimization over the following matrix. Let
U be an |E| × |R| matrix where the (i, j)-th entry Ui,j =
u(ei, rj). Then, given k < |E|, the goal of the optimization
is to find a partition P = {C1, . . . , Ck} of the rows of U
that maximizes the sum of the utilities over the rows when
all rows in the same cluster must share the same response
column rj . Figure 2 depicts an example of this matrix form.

Kleinberg and colleagues showed that this partitioning
view of a segmentation problem is also equivalent to the fol-
lowing maximum coverage based optimization,

argmax
R′⊆R
|R′|=k

∑
e∈E

max
r∈R′

u(e, r). (2)
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In our matrix view of this problem, one can think of Equa-
tion 2 as choosing the set of k columns of the matrix U that
maximally cover the rows of the matrix. The utility of opti-
mal solutions to these two views of a segmentation problem
not only have equal value, u∗k, but it is also straightforward to
construct a solution to Equation 2 given a solution to Equa-
tion 1, and vice versa.

The equivalence of these two problems means that tech-
niques for solving the maximum coverage based problem in
Equation 2 can also be used to solve the partitioning prob-
lem in Equation 1. Unfortunately, this type of weighted
maximum coverage problem is known to be computationally
hard. Cornuejols et al. (1977) showed that when u is a non-
negative utility function, the weighted maximum coverage
optimization in Equation 2 is NP-complete. Kleinberg et al.
also showed on several constrained response spaces that for
u a general linear function, the segmentation problems are
still NP-complete (1998), or more specifically MAXSNP-
complete (2004).

Due to these negative complexity results, approximate
solutions to segmentation problems are typically sought in
lieu of exact solutions. Nemhauser and colleagues (1978)
showed that when u is constrained to nonnegative values, the
weighted maximum coverage problem is submodular and
a (1 − 1/e)-approximation to the optimal solution can be
computed using a greedy approximation algorithm. Their
greedy algorithm iteratively constructs R′ ⊆ R by adding
r ∈ R \ R′ that maximally increases the objective given
the previously selected elements in R′. In many natural set-
tings the response space R is either exponential or infinite
and solving even a single step of such a greedy algorithm
may be NP-complete. Kleinberg et al. (2004) introduce sev-
eral approximation algorithms for segmentation problems.
In addition to some greedy approximations, which greed-
ily add the response that maximizes the marginal gain like
Nemhauser and colleagues’ algorithm, they also introduce
efficient approximation algorithms for certain domains that
avoid enumerating the response space by exploiting proper-
ties of the entities being segmented.

Next, we provide a high-level description of our experi-
mental domain of extensive-form games.

2.2 Extensive-form Games
Extensive-form games provide a general model to represent
sequential interactions between agents in an environment.
Extensive-form games can be viewed as a tree consisting
of nodes corresponding to states of the game where some
player acts, and edges representing each of the actions avail-
able to a player. Leaves of the tree represent the end of the
game and assign utilities to each of the players. In stochas-
tic games, a special chance player acts according to a known
distribution. In games of imperfect information, some ac-
tions cannot be observed by some of the players. These
players are then unable to distinguish which of several game
states they are in. A set of these indistinguishable states is
called an information set. A strategy for a player speci-
fies a distribution for each information set over the available
actions.

3 Exploiting Structured Utility
In settings where the response space is too large to enumer-
ate efficiently, algorithms that avoid enumerating the candi-
date responses are necessary. We examine problems where
structure in the utility function u allows the best response
for a given set of entities to be efficiently computed despite
a prohibitively large response space. Next, we formalize this
response oracle, provide examples of problems where such
an oracle exists, and show how one can incorporate a re-
sponse oracle into an efficient greedy agglomerative cluster-
ing algorithm.

3.1 Response Oracles
In some settings the utility function u can be factored to en-
able the efficient computation of the response (i.e., column
ofU ) that maximally covers a given set of entities. Formally,
given C ⊆ E a response oracle f : 2E → R is defined as

f(C) ≡ argmax
r∈R

u(C, r).

By definition, this means u(C, f(C)), the utility obtained by
the response oracle on C, is u(C).

We provide some domains where such a response oracle
can be computed efficiently, taking time logarithmic in the
size of the response space, and then present a greedy algo-
rithm that capitalizes on this oracle.
Example: Extensive-form Games.

Let the entities E consist of observed opponent strategies
and let the response space R be the possible strategies that
our agent could employ. Even if our agent only considers
pure strategies (where a player acts deterministically at each
of the game’s information sets) the size of the response space
is exponential in the number of the game’s information sets.
The response oracle f(C) in this setting is a best response
to the average of the sequence-form representations (Koller,
Megiddo, and von Stengel 1994) of the strategies in C. Due
to an extensive-form game’s tree structure, this can be com-
puted in time linear in the number of information sets.
Example: Budgeted Social Choice.

In the case of maximizing social welfare, Lu and
Boutilier’s (2011) limited choice model of budgeted social
choice is equivalent to the segmentation problem optimiza-
tion in Equation 2 (with entities and responses instead called
agents and alternatives, respectively). In their formulation,
they assume that the responses can be enumerated and use
Nemhauser and colleagues’ greedy algorithm. Suppose the
responses consist of products represented by feature vec-
tors r = (r1, . . . , rn) ∈ R1 × . . . × Rn and that the util-
ity function can be factored into u(e, r) =

∑n
i=1 ui(e, ri)

where ui : E × Ri → R. Then the response ora-
cle f(C) can compute each ri of the optimal response as
argmaxri∈Ri

∑
e∈C ui(e, ri). Instead of enumerating the∏n

i=1 |Ri| possible responses in R, the response oracle can
be computed efficiently in time O(|C|

∑n
i=1 |Ri|).

3.2 A Greedy Heuristic
Since both exact solutions and algorithms similar to
Nemhauser and colleagues’ greedy algorithm are infeasible
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on segmentation problems with a large response space, we
propose an alternative greedy algorithm. Our algorithm is
efficient, requiring a polynomial number of oracle queries,
provided an efficient response oracle. Although our algo-
rithm also acts greedily based on the marginal change in
utility, it does so when considering how to merge clusters
in an agglomerative hierarchical clustering algorithm (Ward
1963).

In an agglomerative clustering algorithm, one starts with
a partition of singletons and builds a solution in a “bot-
tom up” manner by iteratively coarsening the partition. Un-
like Nemhauser and colleagues’ greedy algorithm, which
acted greedily according to the maximum marginal gain, we
greedily merge clusters that incur the minimal marginal loss.
This is because the objective value of Equation 1 is vacu-
ously maximized by the initial partition of singletons (when
the size of the partition is unconstrained). One can view this
as a greedy heuristic for the following optimization.

min
P∈Partk(E)

[∑
e∈E

max
r∗∈R

u(e, r∗)− u(P )

]
(3)

Conceptually, this objective function represents the loss suf-
fered due to clustering entities together as opposed to re-
sponding to the entities individually. Note that a partition
that optimizes our original objective in Equation 1 also opti-
mizes Equation 3, and vice versa.

Our algorithm starts with the trivial partition P0 =
{{e} : e ∈ E} where every entity is in its own set. On
each iteration we coarsen the partition by greedily merging
together the two sets in the current partition that incur the
minimal marginal loss in the objective value of Equation 3.
This is repeated until we have a partition that satisfies the
cardinality constraint k.

More formally, let Coarse(P ) be all the 1-step coarsen-
ings of partition P = {C1, . . . , Ck}:

Coarse(P ) = {Merge(P,Ci, Cj) : 1 ≤ i < j ≤ k} ,

where

Merge(P,Ci, Cj) = P \ {Ci, Cj} ∪ {Ci ∪ Cj}.

is the partition that results from P by merging Ci and Cj .
Then, the greedy algorithm can be written as in Algorithm 1.
Note that the combination of sets Ci, Cj ∈ P that pro-
duce the optimal coarsening are exactly those for which the
marginal loss u(Ci) + u(Cj)− u(Ci ∪ Cj) is minimal.

A naive implementation of this algorithm must compute
the marginal loss for all combinations Ci, Cj ∈ P on each
of the |E| − k iterations. This implementation would re-
quire O(|E|3) calls to the oracle. By noticing some struc-
ture in the computation, we can use memoization to improve
this. After computing the marginal loss for all combinations
Ci, Cj ∈ P of candidate merges on the first iteration, the
marginal losses for all candidates can be updated after each
merge with at most O(|E|) calls to the response oracle. If
Ci and Cj are merged, we need only compute the marginal
losses for all pairs of clusters that involve the new cluster
Ci ∪ Cj . This memoization implementation only needs a
total of O(|E|2) calls to the oracle. Additionally, since we

Algorithm 1 Greedy response oracle clustering

Require: SetE of entities, a response oracle f , utility func-
tion u, k
Initialization: G = P0 = {{e} : e ∈ E}
while |G| > k do
G← argmaxP∈Coarse(G) u(P )

end while
return G

know that u(Ci) + u(Cj)− u(Ci ∪ Cj) ≥ 0, we can lazily
evaluate the marginal losses (only evaluating them while no
zero loss candidate exists) to further reduce computation. Fi-
nally, each marginal loss computation is independent from
the others and therefore amenable to parallelization.

Unlike clustering algorithms where the desired number
of clusters k needs to be specified in advance (e.g., Lloyd’s
algorithm for k-means), our greedy algorithm’s iterative and
deterministic nature means that it could be run a single time
for |E| iterations, reporting the partitions and objective value
on each iteration. This enables users to directly evaluate the
trade-off between the objective and the number of clusters.

In the remainder of the paper, we evaluate our greedy al-
gorithm both theoretically, proving approximation bounds
on the solution quality, and empirically by clustering agent
strategies in toy poker games. We begin with our theoretical
analysis.

4 Theoretical Results
Our theoretical analysis examines the worst-case behaviour
of our greedy clustering algorithm. Theorem 1 establishes
a lower bound on the utility of a clustering produced by our
greedy algorithm, relative to the optimal clustering into k
sets. Theorem 2 then shows that this lower bound is tight
(within a factor of 2) and cannot be improved substantially.

In this section we fix E and we denote its cardinality by
m. Using the subsequent three lemmas, we prove the fol-
lowing result:

Theorem 1. Let u be a nonnegative valued utility function,
1 ≤ k ≤ m. Then u(Gk) ≥ max

(
1
k ,

k
m

)
u∗k ≥ 1√

m
u∗k,

where Gk is a k-element partition of E returned by the
greedy algorithm.

Note that the second inequality follows trivially from
max

(
1
k ,

k
m

)
≥ mins>0

(
1
s ,

s
m

)
= 1√

m
. Hence, it remains

to prove the first inequality. We prove this by showing that
u(Gk) ≥ k

mu
∗
k in Lemma 2, and that u(G) ≥ 1

ku
∗
k in

Lemma 3. We begin by proving a lower bound on the utility
for a single coarsening step of the greedy algorithm.

Lemma 1. Let u be a nonnegative valued utility func-
tion, G ∈ Part(E), C = argminC∈G u(C). Then,
for any C ′ ∈ G, C ′ 6= C, maxP∈Coarse(G) u(P ) ≥
u(Merge(G,C,C ′)) ≥

(
1− 1

|G|

)
u(G) .

Proof. The first inequality holds by the definition of Coarse.
Hence, it remains to prove the second. For this, let k =
|G|. By the choice of C and the definition of u(G), u(G) ≥
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ku(C), or u(C) ≤ u(G)/k. Pick any C ′ ∈ G, C ′ 6= C and
set G′ = Merge(G,C,C ′). Let r′ = argmaxr∈R u(C

′, r).
Then,

u(G′) =
∑
A∈G′

u(A)

=

u(G)︷ ︸︸ ︷∑
A∈G

u(A)+u(C ∪ C ′)− (u(C) + u(C ′))

≥ u(G) + u(C ∪ C ′, r′)− (u(C) + u(C ′))

= u(G) + u(C, r′) +����
u(C ′, r′)− u(C)−�

��u(C ′)

≥ u(G)− u(C) (since u is nonnegative)

≥
(
1− 1

k

)
u(G) . (by the choice of C)

Lemma 2. Assume that u is nonnegative valued. Fix 1 ≤
i ≤ m and let Gi denote the i-element partition returned by
the greedy algorithm. Then, u(Gi) ≥ i

mu(Gm) ≥ i
mu
∗
i .

Proof. By using Lemma 1 (m− i)-times, we get

u(Gi) ≥

m−1∏
j=i

j

j + 1

 u(Gm) ,

which proves the first half of the lemma. For the second part
just combine this with u(Gm) = u∗m ≥ u∗m−1 ≥ · · · ≥
u∗i .

It remains to prove that the following lemma holds:
Lemma 3. Assume that u is nonnegative valued. Let G ∈
Partk(E). Then, u(G) ≥ 1

ku
∗
k.

Proof. Let P ∗k = argmaxP∈Partk(E) u(P ), and C =

argmaxC′∈P∗k u(C
′). Then, u∗k = u(P ∗k ) ≤ ku(C),

hence it suffices to show that u(G) ≥ u(C). Let rC =
argmaxr∈R u(C, r). We have

u(G) =
∑
C′∈G

u(C ′)

≥
∑
C′∈G

u(C ′, rC) =
∑
e∈E

u(e, rC)

≥ u(C, rC) (since u is nonnegative)
= u(C) .

The next result establishes that the bound in Theorem 1
cannot be substantially improved:
Theorem 2. Let k be a positive integer. For each ε > 0,
there exists a nonnegative utility function on a set of entities
E of m = k2 elements and on a set R of k2 + k responses
such that if Gk is the k-element partition returned by the
greedy algorithm when fed with k and u then u(Gk) − ε ≤
2√
m
u∗k.

Proof. We will construct a matrix of size k2×(k2+k) hold-
ing the values of the utility function. Let E = {1, . . . , k2},
I denote the k×k identity matrix, ε > 0 and define the k×k
matrix Qε by

Qε =


2 + ε ε . . . ε
ε 2 + ε . . . ε
...

...
. . .

...
ε ε . . . 2 + ε

 .

Finally, as in Section 2.1, the k2 × (k2 + k) matrix repre-
senting the utility function u is given by

U =


I Qε 0 . . . 0
I 0 Qε . . . 0
...

...
...

. . .
...

I 0 0 . . . Qε

 .

Let C1 = {1, . . . , k}, C2 = {k + 1, . . . , 2k}, . . ., Ck =
{k2−k+1, . . . , k2}. Note that {C1, . . . , Ck} ∈ Partk(E).
We claim that the greedy algorithm returns the k-element
partition Gk = {C1, . . . , Ck}.

To show this, let Gi denote the i-element partition com-
puted by the greedy algorithm. We claim that for any C ∈
Gi, C ⊂ Cp for some 1 ≤ p ≤ k (i.e., Gi is a refinement of
Gk). This clearly suffices to prove thatGk = {C1, . . . , Ck}.
Since Gm = {{1}, . . . , {k2}}, the claim holds for i = m.

Let us assume that it holds up to k < i ≤ m. Consider
C,C ′ ∈ Gi. By the induction hypothesis, Gi is a refinement
of Gk and therefore C ⊂ Cp and C ′ ⊂ Cq for some 1 ≤
p, q ≤ k. Then, u(C) = 2+ |C|ε and u(C ′) = 2+ |C ′|ε. If
C and C ′ were merged, the marginal loss due to merging is
`(C,C ′) = u(C)+u(C ′)−u(C∪C ′). The greedy algorithm
merges the two elements of Gi that minimize this loss. If
p = q then u(C ∪ C ′) = 2 + (|C|+ |C ′|)ε and `(C,C ′) =
2. If p 6= q then u(C ∪ C ′) = 2 + max(|C|, |C ′|)ε and
`(C,C ′) = 2+(|C|+ |C ′|−max(|C|, |C ′|))ε. Since ε > 0,
the loss due to merging two clusters within the same block
is always smaller than that of when the two clusters belong
to different blocks. Hence, the greedy algorithm will choose
to merge clusters within the same block. This shows that the
induction hypothesis also holds for i− 1, finishing the proof
of the claim.

We also claim that as long as ε is small enough, the
optimal k-element partition is P ∗k = {{1, k + 1, 2k +
1, . . . , k2 − k + 1}, {2, k + 2, 2k + 2, . . . , k2 − k +
2}, . . . , {2k, 3k, . . . , k2}}. Let C∗i be the ith cluster in
P ∗k . Then, for any C ⊂ E, if ni = |C ∩ C∗i |, 1 ≤
i ≤ k, n(C) = max(n1, . . . , nk), we have n(C) ≤ k
and u(C) = max(n1, . . . , nk, 2 + n1ε, . . . , 2 + nkε) =
max(n(C), 2 + n(C)ε) ≤ max(k, 2 + kε) ≤ k, as long
as ε ≤ 1 − 2

k . Hence, for such an ε, for any k-element
partition, P = {A1, . . . , Ak}, u(P ) =

∑k
i=1 u(Ai) =∑k

i=1 max(n(Ai), 2 + n(Ai)ε) ≤ k2 = u(P ∗k ), showing
that P ∗k is indeed an optimal partition.

Now, u(Gk) = k(2 + kε) = 2k + k2ε, while u∗k =
u(P ∗k ) = k2. Hence, 2√

m
u∗k = 2

kk
2 = 2k ≥ u(Gk) − k2ε,

finishing the proof.
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While these theoretical results provide guarantees about
our greedy algorithm’s worse-case performance, it can per-
form much better in practice. In the next section, we empiri-
cally evaluate our greedy algorithm’s practical performance
by clustering agent strategies in two toy poker games.

5 Empirical Results
We demonstrate the performance of our greedy heuristic
algorithm by clustering agent strategies for extensive-form
games. In particular, our experiments examine poker: a pop-
ular family of games that can be modelled as extensive-form
games. We begin with a brief introduction of poker and the
two small poker games used in our experiments: Kuhn poker
and Leduc hold’em. We then describe how we cast this prob-
lem as a segmentation problem, the design of our empirical
evaluation, and finally present our results.

5.1 Poker
Poker is a family of stochastic imperfect information games
where each agent’s goal is to maximize their winnings
against some opponents. While there are numerous poker
variants, their rules share similar structure. A game begins
with chance dealing cards from a deck to each player, and
typically one or more players are forced to place bets. All
bets contribute to the pot which is paid to the winner. The
game proceeds through a number of betting rounds consist-
ing of actions by the players. Players can fold (conceding
the pot), call (matching the maximum previous bet), or raise
(increasing the maximum bet). A betting round ends when
all players have matched the last bet, or all but one player
folds. If only one player remains, they win the pot and the
game ends. Between betting rounds, players’ hands change
in some way due to chance events. One common way this
happens is that chance deals some number of “community”
cards which are visible and usable by all players. At the end
of the final betting round, if more than one player remains,
a showdown occurs. In a showdown, all remaining players
reveal their cards, evaluate their hands based on their cards
and any community cards, and the player with the strongest
hand is awarded the pot (or it is split in the event of a tie).
In limit poker variants, bets are of a fixed size and the maxi-
mum number of bets within a betting round is limited.

Kuhn Poker Kuhn poker is a toy variant of poker that is
small enough that game theoretic analysis of it is tractable
and exists (Kuhn 1950). It is a two-player zero-sum poker
game with a deck of three cards: jack, queen, and king. In
Kuhn poker, both players must make an initial forced bet
(ante) and are dealt a single private card. Betting occurs in a
single betting round with betting limited to at most a single
bet of a fixed size.

In his analysis, Kuhn showed that strategies playing some
of the actions were dominated. For example, when holding
the king (the strongest card) a player should never fold. If all
such actions are eliminated, then strategies in the resulting
undominated version of Kuhn poker can be parameterized
with three parameters (α, β, γ) for player one, and two pa-
rameters (η, ξ) for player two. Our experiments examine
this undominated Kuhn poker game.

Leduc Hold’em Leduc hold’em (Southey et al. 2005) is
another two-player zero-sum variant of poker which, though
larger than Kuhn poker, is still small relative to common
poker games played by humans. As in Kuhn poker, the game
begins with both players forced to bet an ante and being dealt
a single private card. The deck in Leduc hold’em consists of
six cards with three ranks (jack, queen, and king) and two
suits. Leduc has two betting rounds with betting limited to
a maximum of two fixed-size bets per round. After the first
betting round, chance deals a public community card. In a
showdown, holding the king is no longer the best hand as a
pair of cards beats any other hand.

5.2 Experimental Design
To evaluate our greedy decision-theoretic clustering algo-
rithm, we contrast its performance with a k-means clustering
algorithm in the domains of Kuhn and Leduc hold’em poker.
We start by describing how clustering agents in an extensive-
form game can be cast as a segmentation problem, and then
detail our benchmark k-means algorithm before moving on
to our empirical data.

In this setting, we seek a partition of a set E of static
agent strategies that optimizes Equation 1. In our experi-
ments, we generate the agents in E by sampling 200 strate-
gies uniformly at random from the strategy space. Though
not constructed explicitly, the utility matrix U can be viewed
as having a column for each possible strategy and entries
u(e, r) corresponding to the expected utility of playing strat-
egy r against static agent e. As mentioned previously, the
response oracle f(C) for a set of strategies C is the best re-
sponse to the average of the sequence-form representations
of the strategies in C.

Each of our experiments contrasts our greedy algorithm
with the standard k-means clustering algorithm, i.e. Lloyd’s
algorithm (Lloyd 1982), using the sequence-form represen-
tation (Koller, Megiddo, and von Stengel 1994) of an agent’s
strategy as its feature vector. We initialize the cluster cen-
troids using the k-means++ algorithm (Arthur and Vassilvit-
skii 2007). Note that while the locally optimal clustering
found by Lloyd’s algorithm may be arbitrarily bad in terms
of the k-means objective, initializing with k-means++ pro-
vides an approximation guarantee on the solution quality.
Despite this, the stochasticity of the k-means initialization
impacts which local optimum is found. In our experiments,
k-means is restarted 50 times and the clustering with the
best k-means objective (i.e., minimal within-cluster sum of
squared Euclidean distances) is reported.

5.3 Results
We begin the analysis of our greedy clustering algorithm
by examining both its qualitative and quantitative perfor-
mance when clustering player two’s strategies in undomi-
nated Kuhn poker.

Kuhn Poker Figure 3 contrasts clusterings produced by
k-means and our greedy algorithm to demonstrate the quali-
tative differences in these clustering approaches. These fig-
ures visualize each of the 200 agent strategies according to
their two parameters, η and ξ. The marker shape and colour
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(b) Greedy agglomerative clustering

Figure 3: Clusters of player two Kuhn poker agents found using k-means clustering over the sequence-form representations and
our greedy heuristic algorithm (k = 6). Marker shape and colour indicate cluster membership.

correspond to which cluster each strategy is assigned to. As
with the rock-paper-scissors example, the boundary lines be-
tween each of the best response regions are plotted. This par-
titions the strategy space into six regions each with a distinct
best response. The k-means and greedy algorithms were run
with k = 6 clusters as this is sufficient to optimally partition
the strategies. Figure 3a illustrates how k-means tends to
produce relatively spherical clusters of similar size. Unsur-
prisingly, k-means’ optimization of spatial distances results
in clusters that fail to respect these boundaries. In contrast,
our greedy algorithm (Figure 3b) is able to exactly partition
the agents according to the best response regions.

Next, we examine the quantitative performance of these
algorithms in terms of the utility lost due to responding to
agents in clusters rather than as individuals (as in Equa-
tion 3). Figure 4a shows the loss incurred by k-means and
our greedy algorithm as we vary the number of clusters for
undominated Kuhn poker. In this domain we also com-
pute the optimal clustering through enumerating all possible
combinations of k of the six best responses and then induc-
ing the corresponding partition. Results have been averaged
over 50 trials each sampling a new set of 200 agents. The
trend lines show the mean value for the loss and the sur-
rounding shaded region indicates the 95% confidence inter-
val (which is occasionally difficult to see as it is smaller than
the line width). Values are in milli big blinds per game (i.e.,
thousandths of the initial ante). While the greedy algorithm
manages to achieve zero loss once allowed the six clusters
required to guarantee the points can be properly partitioned,
k-means is unable to reach zero loss even after being given
twice as many clusters. This result also highlights how our
greedy algorithm can obtain considerably more of the opti-
mal clustering’s utility than is guaranteed by our worst-case
approximation bound.

Leduc Hold’em Though Kuhn poker provides a conve-
nient domain for visualizing strategies and best response re-
gions, clustering agents in such small domains can be done
through direct analysis of the game or brute force enumer-
ation of a player’s pure strategies. Leduc hold’em better
demonstrates the value of a response oracle as the game is
sufficiently large that such enumeration is infeasible. Fig-
ure 4b shows similar quantitative performance results for the
domain of Leduc hold’em where strategies for player one are
being clustered. Note that the results in Figure 4 exploit the
fact that the greedy algorithm’s performance can be com-
puted for each k with little additional computation (though
Figure 4b omits values over 64). It is clear in these results
that our greedy clustering algorithm substantially outper-
forms k-means. In particular, the greedy algorithm achieves
approximately the same performance with 7 clusters as k-
means does with 64.

Finally, it is interesting to note the rate of improvement
as we allow for more clusters. In particular, although the
greedy algorithm initially improves rapidly as we increase
the number of clusters, the rate of improvement quickly lev-
els off and leaves a very long tail compared to Kuhn poker.
This is likely due both to the increased complexity of the
game and also the uniform random sampling of the strat-
egy space. Unlike Kuhn poker where we would expect
each best response region to contain multiple samples of the
200 strategies, the more complex strategy space of Leduc
hold’em likely means any given best response region is (at
best) sparsely sampled. If the agents being clustered were
covered by relatively few of a game’s best response regions,
then this long tail may not be present.

6 Conclusion
Agents seeking to maximize their utility may be able to
improve their performance by exploiting models of other
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Figure 4: Performance of different clustering techniques in small poker domains

agents or entities in their environment. In these settings,
clustering techniques can be beneficial for extracting simi-
lar groups of entities. Despite the ubiquity of spatial clus-
tering techniques, spatial similarity may be insufficient for
capturing similarity in how an agent should respond to these
groups. Although work on segmentation problems provide
techniques to optimize for actionable clusters, these tech-
niques may be computationally infeasible for domains with
large response spaces. We introduce an efficient greedy al-
gorithm for this type of decision-theoretic clustering that can
exploit the structure of certain domains. We prove worst
case approximation bounds on the quality of solutions pro-
duced by our greedy algorithm. Finally, we show how to ap-
ply this technique to extensive-form games, and empirically
demonstrate the value of this approach by comparing it to
k-means for clustering agent behaviours in two toy games of
poker.
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