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Abstract

Residential and commercial buildings are responsible
for about 40% of primary energy consumption in the
United States, hence improving their energy efficiency
could have important sustainability benefits. The de-
sign of a building has tremendous effect on its energy
profile, and recently there has been an increased in-
terest in developing optimization methods that support
the design of high performance buildings. Previous ap-
proaches are either based on simulation optimization or
on training an accurate predictive model that is queried
during the optimization. We propose a method that more
tightly integrates the machine learning and optimization
components, by employing active learning during opti-
mization. In particular, we use a Gaussian Process (GP)
model for the prediction and active learning and multi-
objective genetic algorithm NSGA-II for the optimiza-
tion. We develop a comprehensive and publicly avail-
able benchmark for building design optimization. We
evaluate 5 machine learning approaches on our dataset,
and show that the GP model is competitive, in addition
to being well-suited for the active learning setting. We
compare our optimization approach against the 2-stage
approach and simulation optimization. Our results show
that our approach produces solutions at the Pareto fron-
tier compared to the other two approaches, while using
only a fraction of the simulations and time.

Introduction
Residential and commercial buildings are responsible for
about 40% of primary energy consumption in the United
States, and reducing this consumption will play an impor-
tant role in taking practical steps toward a sustainable so-
ciety and the reduction in usage of the corresponding non-
renewable resources (Pérez-Lombard, Ortiz, and Pout 2008;
Yu et al. 2010). Enhancement of the energy efficiency of
buildings is certainly a key task contributing to an immedi-
ate reduction of energy consumption and carbon emissions
(Zhang et al. 2013). In particular, the design of the building
has a major impact on its energy footprint. There are sev-
eral factors affecting the building energy efficiency, such as
floor plan design, building orientation, construction materi-
als, daylight and solar control measures, and activity-related
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parameters. These have to be considered during the concep-
tual stage of a project, since any attempts to improve energy
efficiency in the later stages could be more costly or impos-
sible.

Several software packages have been developed to accu-
rately simulate building energy consumption (e.g. Energy-
Plus, DOE-2, and Green Building Studio) and to support de-
cision makers at the design phase to produce more energy
efficient structures. However, in reality, simulation tools are
mainly used to validate the performances of the final de-
sign of a building rather than exploring multiple design pos-
sibilities (Flager and Haymaker 2009). To achieve optimal
energy performance and reduce manual efforts of explor-
ing design options, several optimization techniques, such as
Genetic Algorithms (Caldas 2008; Lin and Gerber 2014;
Wang, Zmeureanu, and Rivard 2005; Tuhus-Dubrow and
Krarti 2010; Magnier and Haghighat 2010), have been pro-
posed. Most computational tools for building design opti-
mization support workflows, which directly combine genetic
algorithms with accurate building simulation software (Cal-
das 2008; Lin and Gerber 2014; Tuhus-Dubrow and Krarti
2010; Wang, Zmeureanu, and Rivard 2005). The major dis-
advantage of such approaches is that simulations are com-
putationally expensive. One way to address this is to re-
place the expensive simulations with surrogate fast methods
for estimating the energy consumption of the proposed de-
sign. A couple of recent papers have investigated the use of
genetic algorithms coupled with a predictive model of en-
ergy consumption. The predictive model is pre-trained on
simulated data, and is used to quickly evaluate candidate
solutions without directly interfacing the simulation during
search. (Magnier and Haghighat 2010) developed a feed-
forward neural network model to energy consumption of a
building, and use it in the context of an NSGA-II (Deb et al.
2002) genetic algorithm to optimize with respect to energy
consumption and comfort objectives. (Asadi et al. 2014) fol-
lowed a similar approach based on a neural network and a
genetic algorithm to optimize decisions about retrofitting a
building. Although these approaches already improve upon a
simulation-optimization strategy, the use of neural networks
as the predictive model demands large enough training data
for accurate prediction over many design variables.

Exploiting data-driven models to predict the energy con-
sumption of buildings from their design variables has drawn
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Figure 1: Schematic view of the building geometry of the
benchmark model

the attention of many researchers in recent years. Many vari-
ations of supervised regression approaches have been uti-
lized for this purpose (for a survey see (Zhao and Magouls
2012)): neural networks (Neto and Fiorelli 2008; Mag-
nier and Haghighat 2010; Yang, Rivard, and Zmeureanu
2005; Zemella et al. 2011); support vector machines (SVM)
(Dong, Cao, and Lee 2005; Li et al. 2009), decision trees(Yu
et al. 2010; Tso and Yau 2007), random forests (Tsanas
and Xifara 2012), Gaussian Processes (Zhang et al. 2013;
Kolter and Ferreira 2011), and others.

We propose a method that more tightly integrates the ma-
chine learning and optimization components, by employing
active learning during optimization. To achieve computa-
tion savings, we train our predictive model on a small set of
simulated samples. However during the optimization, addi-
tional configurations are simulated and added to the training
data. In particular, we use a Gaussian Process model for the
prediction, and multi-objective genetic algorithm NSGA-II
for the optimization of building energy and cost. We de-
velop a comprehensive and publicly available benchmark for
building design optimization, representing a realistic com-
mercial building with many design parameters along with
corresponding energy consumption and cost. We evaluate 5
machine learning approaches that have been proposed for
building energy prediction on our dataset, and show that
the Gaussian Process model is a competitive predictive ap-
proach to building energy consumption, in addition to be-
ing well-suited for the active learning setting. We compare
our active learning optimization approach against the previ-
ously proposed 2-stage approach of (passive) learning and
optimization, as well as against a baseline where each con-
figuration explored during search is simulated. Our results
show that our approach produces solution at the Pareto fron-
tier, compared to the solutions obtained with the other two
approaches, while using only a fraction of the simulations.

Dataset Description: Building Design Model
We aim to create a benchmark building model with consid-
erable number of decision variables to match closely near
real-case design scenarios. Our benchmark is based on an
open-plan side-lit building plan (OD), shown in Figure 1, de-
veloped as one of four UK office buildings archetypal mod-
els analyzed in (Korolija et al. 2013). The major drawback

Table 1: Parameter list and values for the developed bench-
mark building model

Parameter Values
Orientation {0,45,90,135,180,225,270,315}
Heating Set Point {21,22,23}
Cooling Set Point {23,24,25}
Building Fabric: Floors {BF1,BF2,BF3,BF4,BF5}
Building Fabric: Roof {BF1,BF2,BF3,BF4,BF5}
Building Fabric: Walls* {BF1,BF2,BF3,BF4,BF5}
Glazing Ratio: Walls* {25,50,75}
Glazing Coating: Walls* {Non-Reflective, Reflective}

*Assigned to the four exterior walls of the model independently.

of the original model is that many of the design parameters
were applied uniformly to the whole building. In practice,
designers often assign different building materials, window
types, etc to different building parts in order to meet project
requirements. In our benchmark, different parameters were
assigned to each of the four individual exterior faces. The
parameters and their associated values are presented in Ta-
ble 1. All the other parameters in the model has been fixed
to default values. For the meanings and the details of val-
ues, please refer to the description in (Korolija et al. 2013).
Our benchmark model has a total of 2,916,000,000 possible
designs, forming a very large search space.

We considered two performance measures for a design:
energy and cost. Energy consumption was simulated us-
ing the EnergyPlus toolbox (Crawley et al. 2001). In ad-
dition to energy, the cost for material and labor associ-
ated with each design option is also an important fac-
tor to be considered during the design development cy-
cles. The unit costs for selected parameters were identi-
fied based on a widely used construction cost database
(http://www.rsmeansonline.com/). While cost details were
not available for some of the materials, approximated unit
costs were obtained by interpolation. To evaluate different
predictive models for energy consumption in our bench-
mark, we generate two datasets of size 5000 (train) and 1000
(test) samples using Latin hypercube sampling (LHS) (Iman
2008). To this aim, we used the jEPlus parametric study tool-
box (Zhang 2012) for accelerating the simulation process
and generating the input files for EnergyPlus. Further de-
tails, the models, scripts and precompiled datasets are avail-
able from http://www.cc.gatech.edu/∼bdilkina/#Projects.

Energy Consumption Prediction
We first use our benchmark dataset to evaluate several mod-
els for predicting energy consumption using the building de-
sign parameters as input features: ensemble methods of ran-
dom forest (RF) (Breiman 2001) and least squares boost-
ing (LSBoost) (Hastie et al. 2009); neural network (NN)
(Hastie et al. 2009); support vector regression (SVR) (Vap-
nik, Golowich, and Smola 1997); and Gaussian process (GP)
(Rasmussen 2004). The details of the methods and their pa-
rameters are listed in Table 2. Moreover, in the experiments,
we used MATLAB’s toolboxes for NN, RF, and LSBoost,
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Table 2: ML approaches and their parameters

Model Learning Parameters
NN Multilayer feed-forward structure with one

or two hidden layers of {10,20,30,40,50}
neurons, Levenberg-Marquardt back prop-
agation algorithm, hyperbolic tangent sig-
moid function and linear transfer function
for hidden and outer layers.

RF Number of trees of {10,20,30,40,50}.
LSBoost Weak learner of tree, Number of trees of

{10,20,30,40,50}.
SVR Regularization C ∈ [2−5, 25], RBF kernel

with γ ∈ [2−15, 23], ε ∈ [0.01, 1].
GP Covariance function: Matern kernel with

ν = {3/2, 5/2} and automatic relevance
determination, Gaussian likelihood, exact
inference.

Table 3: Accuracy of Energy Prediction

Model Training Testing
RMSE R2 RMSE R2

RF 5809 0.9731 5615 0.9718
LSBoost 4257 0.9841 4364 0.9822

NN 1405 0.9982 1306 0.9984
SVR 5791 0.9704 5746 0.9690
GP 1406 0.9983 1331 0.9984

the LIBSVM toolbox (Chang and Lin 2011) for SVR, and
the GPML toolbox (Rasmussen and Nickisch 2014) for GP.
The performance was evaluated based on root mean square
error (RMSE) and correlation coefficient (R2).

Input variables were normalized to the range [0, 1] for bet-
ter training performance. The model selection was done with
10-fold cross validation on the 5000 samples, and perfor-
mance was measured on the additional 1000 samples, re-
ported in Table 3. The Neural Network performs slightly
better than GP on RMSE, and they both have the best corre-
lation coefficient. While GP is competitive on performance
with big enough training set, it also has a fast learning curve
as can be seen in Fig. 2. The learning curve is obtained by
training the GP model based on different number of samples
and then measuring its performance on 1000 independent
testing samples.

Building Design Optimization Coupled with
Active Learning

In order to facilitate fast building design optimization that
does not require many simulations, we propose to couple
the optimization with active learning. First, the predictive
model is pre-trained with a small number of simulated sam-
ples. Then, during the optimization, new configurations are
evaluated using the predictive model, and a small fraction
of them are selected, their energy consumption is evaluated
using the simulation model (labeled), and they are added to

Figure 2: GP learning curve: Number of training samples vs.
Accuracy (best in color)

Figure 3: Schematic illustration of optimization coupled
with learning.

the training dataset. The schematic process of optimization
coupled with learning is depicted in Figure 3.

In order to select active learning queries in an informed
way, we will use a Gaussian Process model as our predictive
approach.

Active learning with Gaussian Processes
Gaussian process (GP), as a stochastic process, provides
a powerful tool for probabilistic inference on a infinite-
dimensional space of functions, {f(x)}, where any finite
collection of random variables have a joint multi-variate
Gaussian distribution, and the random variables in GP rep-
resent the value of f(x) at x. Generally, GP is classified as a
non-parametric supervised learning method defining a prior
on the space of functions, which could be written as f(x) ∼
GP(m(x), k(x, x′)), and is defined by its mean m(x) and
covariance function k(x, x′). Common covariance functions
are linear, squared exponential, γ-exponential, and Matérn
with automatic relevance determination (ARD). Matérn co-
variance functions with ARD (Abramowitz, Stegun, and oth-
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ers 1965), where the degree of Matérn covariance function
is d = {3, 5}, simplifies to:

kd(x, x
′) = gd(

√
dr)exp(−

√
dr) (1)

where g3(z) = 1 + z, g5(z) = 1 + z + z2/3, and r de-
fines the distance between the two points as follows: r =√
(x− x′)′ ∗ P ∗ (x, x′), where P is a diagonal matrix with

ARD parameters {`1, . . . , `D} and D is the data input di-
mension.

The main concept behind active learning is to query points
which are the most informative to the learning algorithm.
(Seo et al. 2000) studied a method, proposed by (Cohn
1994), for active learning with GPs based on the minimiza-
tion of the generalization error. The goal is to choose the
query x̂ that when added minimizes the overall variance of
the estimator. The variance on a reference data point ξ after
adding a query candidate x̂ to the training dataset is defined
by σ2

ŷ(ξ)(x̂). Therefore, the change in variance is:

4σ2
ŷ(ξ)(x̂, Xtr) = σ2

ŷ(ξ) − σ
2
ŷ(ξ)(x̂)

=
(KC−1m− k(x̂, ξ))2

(k(x̃, x̃)−mTC−1m)
(2)

In the above equation, C is the covariance matrix of
the training dataset Xtr = {xi, i = 1, ..., n}, K =
[k(x1, ξ), ... , k(xn, ξ)] is the vector of covariances between
the training data and a reference data point ξ. The overall im-
pact of adding x̂ is measured as the average4σ2

ŷ(ξ)(x̂, Xtr)

over a set of reference points, as a surrogate for the expecta-
tion of the overall variance. High value means high reduction
in variance, and so such candidate points should be preferred
for active labeling.

Optimization Coupled with Learning
We utilized the non-dominated sorting genetic algorithm
(NSGA-II) (Deb et al. 2002) for the multi-objective opti-
mization. The algorithm proceeds in generations, where a
new population of candidate configurations is produced at
each step. We evaluate the effect of adding each candidate
to the training dataset by Eq. 2 using the rest of the new can-
didate solutions as reference points. If a candidate solution’s
average variance reduction exceeds a specified threshold δ,
then this configuration is simulated and added to the training
set. At each population, no more than 50% of all candidates
are selected for active learning. After adding more than 25
new points to the training dataset, we re-train the GP. Af-
ter updating the GP model, the new candidate solutions are
evaluated for energy using the predictive model. Finally, the
population is updated. The pseudocode of optimization cou-
pled with learning is given in Algorithm 1.

Results
We conducted a comparative study between simulation-
based optimization (Opt-Sim), optimization using predictive
models (Opt-PL), and our method, active learning for op-
timization (Opt-AL). After studying the learning curve for
GP, we set the training size for Opt-PL to 2000 as a good

Algorithm 1: Optimization coupled with active learning
using NSGA-II and GP.

input : {Xtr, Ytr} = {(xi, yi), i = 1, ..., n}: samples
used for pre-training GP
np = population size
nmg = maximum number of generations
δ = threshold for active query selection

Initialize P0 population of size np
Xtr ← Xtr

⋃
ActiveQuery (P0, Xtr)

Retrain GP using Xtr

Evaluate P0 using GP
for p← 1 to nmgdo

Generate new population Pp of size np
Xtr ← Xtr

⋃
ActiveQuery (Pp, Xtr)

Retrain GP using Xtr

Evaluate Pp using GP
Combine Pp and Pp−1
Extract new population using fast non-dominated
sorting

end for
Function Q = ActiveQuery (P , Xtr):

Q← ∅
for x̂ ∈ P do

R← P − {x̂}
for ξ ∈ R do

Compute4σ2
ŷ(ξ)(x̂, Xtr)

end for
if AVGξ∈R[4σ2

ŷ(ξ)(x̂, Xtr)] > δ then
Q← Q

⋃
x̂

end if
end for

compromise between quality and time. For optimization us-
ing NSGA-II, the maximum number of generations was 40
and the population size was set to 50, which implies that for
Opt-Sim there could be upto 2000 simulations during the
optimization procedure. Having in mind that the goal of this
paper is to propose a faster method for building energy op-
timization, for Opt-AL we start with just 500 training sam-
ples, we limit the total number of additional queries to 1000
(at most half of each generation), and set the threshold δ for
active learning to 0.2 ∗ 104. The Pareto curve of Energy vs
Cost of the final non-dominated solutions obtained using all
three approaches is shown in Figure 4. The number of sim-
ulations and run-times have been summarized in the Table
4. Our results indicate that our approach Opt-AL has pro-
duced a very competitive Pareto curve in comparison with
the other two approaches (in terms of ground truth energy
and cost), while taking less than one third of their running
time. It can be also observed that the discrepancy between
the predicted energy and the simulated (ground truth) energy
for the Pareto solutions is much smaller for Opt-AL than for
Opt-PL. Evaluating the Pareto solutions obtained by Opt-PL
trained only on the 500 initial samples used in Opt-AL, we
obtain inferior solutions and much greater discrepancy be-
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Figure 4: The Pareto front between cost and energy obtained
by Opt-Sim, Opt-PL and Opt-AL. Best seen in color.

Table 4: Number of simulations and run-times for Opt-Sim,
Opt-PL and Opt-AL.

Approach # of Simulations Time
Before Opt. During Opt. Total (Min)

Opt-Sim - 2000 2000 4310
Opt-PL 2000 - 2000 4325
Opt-AL 500 320 820 1283

tween predictions and ground truth (results omitted). Hence,
the active learning component, which simulated an addi-
tional 320 configurations during the optimization, is critical
to the performance of Opt-AL.

Conclusion
The results presented in this preliminary work indicate that
combining active learning and optimization approaches is a
promising direction for achieving scalable building design
optimization. The use of genetic algorithms like NSGA-II
allows us to optimize multiple objectives, such as energy
and cost. Future extensions to this work will explore how
to automatically tune the parameters that guide the rate of
active learning. We will explore how the size of the starting
training set impacts the final performance. Also we would
like to investigate whether other predictive models in addi-
tion to GPs could be easily employed under our optimization
+ active learning framework. We would like to extend our
benchmark with other building performance measures, such
as environmental impact and comfort.

Our approach falls in the class of methods that address
multi-objective optimization problems, in which evaluating
the objective functions is unaffordably expensive. Recently,
(Zuluaga et al. 2013) proposed the Pareto active learning
(PAL) method, which gradually classifies all points in the

search space as Pareto optimal, non-Pareto optimal, and un-
classified based on their evaluations and associated uncer-
tainty bounds using a GP trained on a small subset of the
search space. However, the measure used to choose the next
sample to add to the training set needs to evaluate a covari-
ance matrix over all points in the search space, limiting the
applicability of this method to small search spaces. In con-
trast, our method uses the current population as the reference
samples in the active learning selection, and hence can po-
tentially scale up to larger search spaces.
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