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Abstract
While great strides have been made in collecting pres-
ence data and developing accurate species distribution
models, much less is known about the migratory pro-
cess that guides the spatio-temporal changes in distri-
butions for migrating species, especially birds. In this
work, we address a challenging inference task, where
given only aggregate and noisy data of the volume of
birds for each spatial pixel and time window, we predict
the likely transition links with their associated probabil-
ities. We propose a framework to build such migration
networks for different bird species and present a real
world example of constructing a network using our ap-
proach.

Introduction
Understanding migration behavior and migratory patterns
for bird species is critical to mitigating risks to bird popula-
tions caused by factors like climate change, urban expansion
etc. and facilitating efficient conservation efforts. Obtaining
data on bird migrations is challenging and data collected us-
ing ringed birds has been the most popular source of migra-
tion data. Recent work by (Ambrosini et al. 2014) uses ring-
ing data to fit Conditional Autoregressive Models to assess
changes in migration over different time periods.

Data based on observations at field locations is much
easier to obtain and allows much larger amounts of data
to be collected. But it is harder to infer migratory pat-
terns from such aggregated data. The Spatio-Temporal Ex-
ploratory Model (STEM) (Fink et al. 2010) uses aggre-
gated data on millions of bird observations from the eBird
database (Sullivan et al. 2009) to provide fine-scale raster
predictions across US for weekly presence of a bird species.
These predictions provide some indirect insight into migra-
tion patterns for that species on a weekly scale.

In this paper, we propose a framework to infer actual
likely movement segments for species using the STEM
predictions. Similar work has been done by (Elmohamed,
Kozen, and Sheldon 2007) and (Sheldon and Dietterich
2011) where variants of graphical models are used to infer
migratory routes using synthetic and eBird datasets. We con-
struct a migration network by identifying nodes as spatio-
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temporal clusters and computing edges using variations of
Markov chains. We present our results on data for the Tree
Swallow (Tachycineta bicolor) bird species from the STEM
species distribution model.

Methodology
Our framework goes through the following pipeline to get
from STEM predictions to a migration network,

1. Define migration regions (K-means clustering)

2. Determine time-varying abundance levels in regions

3. Infer time-varying transitions model (Markov chains)

4. Measure accuracy for different models and interpret their
results

Data
We use weekly presence scores (STEM predictions) for Tree
Swallow on points sampled from a 3 × 3 km grid across
US. We model the fall migration of tree swallows cover-
ing a period from early August to end of December for the
year 2011. We restrict our study area to Eastern US extend-
ing from a latitude of 25◦ to 50◦ and longitude of −97◦ to
−67◦. To discard points that are clearly not part of the Tree
Swallow fall migratory range, we filter the raw STEM data
by removing all points which lie below a weekly presence
threshold (80 percentile in our case) for every week. Fig-
ure 1 shows the points that remain after filtering.

Figure 1: STEM data after threshold
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Migration Regions
We use K-means clustering (MacQueen and others 1967) to
partition the STEM locations into migration regions for tree
swallows. Each STEM location i is associated with a feature
vector (xi, yi, ρ

1
i , ..., ρ

T
i ) corresponding to its spatial coordi-

nates xi, yi (longitude and latitude) and the weekly presence
scores at i across the T weeks. A custom distance function
is used for the clustering to capture temporal correlation as
well as spatial coherence between STEM locations. For two
locations i and j, the distance function is given by:

Dij = wDspij +Dtmij

Dtmij =

1−
∑T
t=1(ρti − ρ̄i)(ρtj − ρ̄j)√∑T

t=1(ρti − ρ̄i)2
√∑T

t=1(ρtj − ρ̄j)2


where Dspij represents the Euclidean distance between lo-
cations i and j based on their spatial coordinates and Dtmij
represents the Pearson distance for the temporal features. ρ̄i
is the mean of the weekly presence scores at location i. A
weight w is used to adjust for the desired spatial coherence
of the clusters.

We experiment with different number of clusters and
use the gap statistic metric (Tibshirani, Walther, and Hastie
2001) and prior domain knowledge to choose appropriate K
value for the number of clusters. We also adjust the weightw
to assess spatial coherence. Figure 2 shows clusters obtained
using K = 11 and w = 4.

Figure 2: Spatio-temporally coherent clusters obtained from
k-means. K = 11, w = 4.

Abundance Curves
We compute the abundance for a cluster k in week t as the
sum of presence scores across all locations Ck assigned to
the cluster:

qt(k) =
∑
i∈Ck

qti ,

where qti is the STEM presence score for location i in week
t. Every cluster is therefore associated with an abundance

curve (time series), where we use the sum of presence scores
as a surrogate for the expected number of birds across the
cluster region in a particular week. In future work, we hope
to replace this surrogate measure with actual abundance es-
timates for each location in each week.

Network Inference
The migration network is a graphG(V,E), where each node
is one of the K spatially-explicit migratory regions (clusters
of STEM locations) and each edge connects a pair of regions
that are close enough to be reachable within one week of mi-
gratory movement. For each pair of nodes i and j, Pij(t) is
the transition probability from region i to region j in week
t. It is zero for all (i, j) /∈ E. Our goal is to infer transi-
tion probabilities on the edges of the network G that best
explain the region abundance scores qt(k) across weeks. We
use two different models to infer the transition probability
matrix P : 1) a stationary Markov chain where the transition
probabilities on the edges do not change across weeks, and
2) a non-stationary Markov chain where the transition prob-
abilities change as a function of time-varying features of the
migration regions.

Stationary Markov Chain
We estimate the stationary Markov chain model, by solving
a constrained linear least squares problem. The mathemati-
cal formulation is,

minimize
P

T∑
t=1

‖qtP − qt+1‖22 (1)

subject to Pij ≥ 0, i, j ∈ {1, ...,K} (2)
K∑
j=1

Pij ≤ 1, i ∈ {1, ...,K} (3)

Pij = 0, (i, j) /∈ E or lat(i) ≤ lat(j) (4)

Constraint 3 indirectly models an outgoing edge to an ad-
ditional sink node. A sink node is required since our system
is not closed, but is essentially only a part of the full mi-
gration range. The Tree Swallow migratory range is broader
than the US, and includes Canada to the North and Mexico
to the South (Butler 1988).

Constraint 4 imposes the edge restrictions and the direc-
tionality of the migratory movement. Since the period we
consider is the fall migration, it is known that the birds will
move from North to South across the US. So the constraint
forbids transitions from any node at a lower latitude to any
other node at a higher latitude. The objective is to minimize
the error in predicted regional abundance levels at each week
based on the abundance levels of the previous week and the
assigned transition probabilities.

Non-stationary Markov Chain
The non-stationary Markov chain is used to capture the de-
pendence of transition probabilities on time-varying proper-
ties, such as temperature and wind, availability of food and
other factors, which impact migration across regions. This
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time-varying model is a more accurate representation of the
dynamics of bird migration.

We use the multinomial logit function (MacRae 1977) to
parameterize the transition probabilities in terms of time-
varying environmental features of the source and destination
migration region. We define Xij(t) as the features for edge
(i, j) at week t based on features of the regions i and j. Un-
der the multinomial logit representation,

Pij(t) =
eβ

TXij(t)

1 +
∑k
j′=1 e

βTXij′ (t)
,∀i, j ∈ {1, ...,K}

Pis(t) =
1

1 +
∑k
j=1 e

βTXij(t)
,∀i ∈ {1, ...,K}

ln

(
Pij(t)

Pis(t)

)
= βTXij(t),∀i, j ∈ {1, ...,K}

We explicitly add a sink node s in this model. Under
this form, the non-negativity constraint and the sum-to-one
constraint for estimating a transition probability matrix are
automatically modeled. This allows us to frame an uncon-
strained nonlinear least squares problem to solve for the
transition probability matrix. The formulation is defined as,

minimize
β

W∑
t=1

‖qtP (β, t)− qt+1‖22

where Pij(β, t) =
eβ

TXij(t)

1 +
∑
j′=1..k:lat(i)>lat(j′) e

βTXij′ (t)

∀i, j : lat(i) > lat(j)

Pis(β, t) =
1

1 +
∑
j′=1..k:lat(i)>lat(j′) e

βTXij′ (t)

Pij(t) = 0,∀i, j : lat(i) ≤ lat(j)
The environmental features used for our model were the

weekly mean temperature, precipitation obtained from the
WorldClim database (Hijmans et al. 2005) and Normal-
ized Difference Vegetation Index (NDVI) from the eMODIS
database (Jenkerson, Maiersperger, and Schmidt 2010). We
also used the inverse of the distance between the nodes as
a feature where the distance is computed as the Euclidean
distance among the coordinates of the nodes. To obtain the
weekly D-dimensional environmental feature vector Xk(t)
for each cluster (node) k, we took the mean value of the
point-wise weekly d feature fdi (t) over all points i in the set
of STEM locations Ck in cluster k:

Xd
k (t) =

1

|Ck|
∑
i∈Ck

fdi (t)

The edge features Xij(t) were computed as the gradient
of the environment features between node i at week t and
node j at week t+ 1:

Xij(t) =

{
1,

1

1 + dij
, {Xd

j (t+ 1)−Xd
i (t)}d=1...D

}
where dij is the distance between node i and node j and
Xi(t) is the feature vector of environment features for clus-
ter i at week t.

Results
We use the Root Mean Squared Error (RMSE) metric to as-
sess the fit of our models. The RMSE is calculated as,

RMSE =

√√√√ k∑
i=1

W∑
t=1

(qit − qOptit)2

where qit is the presence score and qOptit is the estimated
presence score by the optimization solution at cluster i at
week t.

Table 1 gives the overall RMSE values for the stationary
and gradient Markov Chain models. A detailed summary for
RMSE (overall, grouped by week and by cluster) is given in
Table 3 in the Appendix. The coefficients for the features
obtained from the non-stationary gradient model are given
in Table 2.

A visual comparison among the weekly estimates for all
clusters is provided in Figure 4 in the Appendix. Due to
space constraints we show the trends in the weeks 40-50
from our data of weeks 32-52. It shows the expected frac-
tion of the population (actual and estimated) which is the
presence score for each week normalized by the total pres-
ence score in the initial week, which we assume corresponds
to the maximum population in the time period considered.

Group Stationary Gradient
RMSE 0.0111 0.0120

Table 1: RMSE values for the Stationary and Gradient MC
models

Features Coefficients (β)
Intercept 2.6056
Distance 1.5560
Mean Temperature 0.4384
Precipitation -0.0500
NDVI 0.7935

Table 2: Coefficients for the Gradient MC model

The migration networks obtained from the two models are
shown in Figure 3. To display edges in the gradient model,
for each possible edge between two clusters, we compute the
maximum estimated transition probability across all weeks
as Pmax

ij = maxt Pij(t). We display only transition edges
with Pmax

ij > 0.01.

Observations
We can make the following observations about the RMSE,
the coefficients and the obtained migration networks,

• The Stationary model performs better than the Gradient
model overall but both have particular clusters or weeks
where one performs better or worse than the other.

• Both the models have bad estimates for the initial clus-
ters in the later weeks where the abundance decreases a
lot. The stationary model overestimates abundance more
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Figure 3: Migration Networks estimated by the Stationary and Gradient MC models, based on clusters shown in Fig. 2.

in such cases compared to gradient model. The gradient
model underestimates abundance around weeks 40-44 but
improves later on.

• All the features were normalized to have mean zero and
standard deviation one for the optimization in the gra-
dient model. This allows us to comment on the relative
importance of features in determining transition. We see
that the gradient model prefers shorter distances, higher
NDVI, higher temperatures and lower precipitation for
higher probabilities of transition.

• The stationary model network has an edge going from a
node around the Connecticut region to a node near Lake
Michigan. This is unexpected and might suggest that birds
from Canada are coming into northern US around this
time and the model is trying to compensate for this rise
by sending birds from the Connecticut region.

• The network from the stationary model has much fewer
edges than the gradient model network. The gradient
model network spreads the probabilities across a lot of
edges. We see that most of the edges going from nodes
extreme north to south have higher transition probabili-
ties in the gradient model. This might be related to higher
differences in temperature and NDVI in such locations.

Conclusions
We present a framework to tackle the challenging problem of
inferring migration structure from aggregate data about bird
migration. We build a processing pipeline involving clus-
tering data into migration regions, constructing a Markov
chain to model transitions between such regions using both
a stationary and non-stationary approach to capture depen-
dence on time-varying environmental features. The frame-
work is flexible enough to include domain knowledge at var-
ious stages and hence can be applied to study migrations for
diverse species.

Future Work
There are some issues in our preliminary study that we wish
to address in the future work.

• We currently use the STEM presence scores as a proxy to
determine the abundance in a migration region.

• We do not consider mortality of the birds in our analy-
sis. The migration out of the system into the sink node
does not differentiate between population that was alive or

dead. In future work, we would like to cover the complete
migration area for tree swallows and specifically deal with
mortality issues.

• Coverage of the whole migration range would also likely
improve the estimated networks by removing unexpected
edges like the Connecticut to Lake Michigan one in the
stationary model since all population will be accounted
for.

• Currently the model does not include any distance con-
straints, i.e the distances over which birds can fly in a
week. Including distance constraints in the model would
potentially reduce the number of edges in the gradient
model and increase local transition probabilities.

• The current estimates of the environmental features for
temperature and precipitation are interpolations of ob-
served data, representative of years 1950-2000. We would
like to include conditions for current years and take
yearly/monthly variations into account.
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Figure 4: Comparing stationary and gradient models. The bars show the expected population fraction in red and the estimates
from the models in blue.
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