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Abstract

To achieve high performance, autonomous systems,
such as science explorers, should adapt to the environ-
ment to improve utility gained, as well as robustness.
Flexibility during temporal plan execution has been ex-
plored extensively to improve robustness, where flex-
ibility exists both in activity choices and schedules.
These problems are framed as conditional constraint
networks over temporal constraints. However, flexibil-
ity has been exploited in a limited form to improve util-
ity. Prior work considers utility in choice or schedule,
but not their coupling. To exploit fully flexibility, we
introduce conditional simple temporal networks with
preference (CSTNP), where preference is a function
over both choice and schedule.
Enumerating best solutions to a CSTNP is challenging
due to the cost of scheduling a candidate STPP and the
exponential number of candidates. Our contribution is
an algorithm for enumerating solutions to CSTNPs ef-
ficiently, called A star with bounding conflicts (A*BC),
and a novel variant of conflicts, called bounding con-
flicts, for learning heuristic functions. A*BC interleaves
Generate, Test, and Bound. When A*BC bounds a can-
didate, by solving a STPP, it generates a bounding
conflict, denoting neighboring candidates with similar
bounds. A*BCs generator then uses these conflicts to
steer away from sub-optimal candidates.

Introduction
Complex autonomous vehicle missions, in space, air, and
sea, are enabled through temporal plan executives that per-
form coordinated, time-critical missions both robustly and
with high utility. Past work has focused significantly on
achieving robustness. In this paper we extend planning and
execution systems to achieve high levels of utility as well.

This research is developed in support of autonomous
ocean observing, in joint collaboration with the Woods Hole
Oceanographic Institute. Autonomous underwater vehicles
exploit on board instruments to perform surveys over a pe-
riod of several days. A mission involves several survey ac-
tivities over different areas of interest, where activities in-
clude bathymetric mapping, characterization of physical and
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chemical attributes, and classification of biological phenom-
ena. Scientists specify preference in terms of the areas to be
explored, phenomena to be mapped, time allocated to each
area and the relative importance of these science activities.
Additional operational constraints are introduced, for exam-
ple, due to weather, resupply operations, and traffic in the
area. High utility and robustness are both key to these mis-
sions, in terms of science information gained, and risk of
mission loss.

Research on flexible execution has focused dominantly on
robustness. In this approach, mission coordination is speci-
fied through temporal plans that include both concurrent and
sequential activities, related through metric temporal con-
straints. Robustness is achieved by introducing flexibility in
the temporal plan representation, which is exploited by the
executives to make run-time decisions.

Flexibility typically takes two forms. First, flexibility in
the metric temporal constraints is used to specify a family
of consistent schedules to start times and duration of ac-
tivities. Two commonly used formalisms are temporal con-
straint and simple temporal constraint networks (Dechter,
Meiri, and Pearl 1991). Additional flexibility is commonly
achieved by representing a family of alternative plans, by
expressing a “contingent choice” between activities or sub-
plans. Two commonly used representations for offline plan-
ning and online temporal plan execution, respectively, are hi-
erarchical task networks (HTN) (Tate 1976; Nau et al. 2003)
and temporal plan networks (TPNs) (Kim, Williams, and
Abramson 2001). For TPNs these two forms of flexibility,
contingent choice and metric temporal constraints, are en-
coded as a conditional, simple temporal network (CSTN),
a conditional constraint network (CCN) restricted to sim-
ple temporal constraints.1 Solutions to CSTNs are extracted
efficiently by using conflict-directed search to identify and
prune large sets of infeasible candidates (Ginsberg 1993;
Dago and Verfaillie 1996; Williams and Ragno 2003; Effin-
ger and Williams 2006), and by using incremental temporal
consistency algorithms to test consistency quickly, while ex-
tracting conflicts(Shu, Effinger, and Williams 2005).

This paper focuses on developing temporal planners that
1A conditional constraint network is one in which variables and

constraints are “activated” by assignments to variables. A consis-
tent assignment to a CCN is an assignment to active variables that
satisfies active constraints.
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exploit flexibility, for example in TPN specifications, to
achieve high utility, and that generate solutions quickly us-
ing novel conflict learning methods that focus on utility,
rather than feasibility. High utility, as well as robustness, can
be achieved by exploiting flexibility in plan choice and its
schedule. The activities chosen can substantially influence
utility. For example, when performing an observing mission,
the information gained by performing the mission can be
influenced significantly by the area that is selected for ob-
servation, and the search pattern used to observe that area;
for example, edge-following patterns versus “lawn mower”
patterns. Both choices can be encoded through a choice
between alternative activities or sub-plans, and utility can
be associated with the activities that comprise the alterna-
tive sub-plans. In addition, utility is often a function of the
time allocated to each plan activity, where this function de-
pends on the activities selected for the plan. For example,
the amount of time allocated to a particular search area in-
fluences the resolution at which the area is observed, and
hence the information gained.

TPN planners, for example, associate utility with activi-
ties and choice, and return the optimal consistent plan, by
performing conflict-directed branch and bound or best-first
search (Effinger and Williams 2006; Williams and Ragno
2003). These planners, however, do not associate utility with
duration. Conversely, significant attention has been devoted
to developing scheduling algorithms that return the schedule
with highest utility for problems framed as simple tempo-
ral problems with preference (STPPs) (Khatib et al. 2001;
Morris et al. 2004). However, these schedulers do not al-
low alternative activities to be chosen. In this paper we unify
these formalisms by introducing conditional simple tempo-
ral networks with preference (CSTNP), which can be used,
for example, to encode TPNs with preference.

Mission operators often prefer to be supplied a set of
good alternative options to choose from, rather than a sin-
gle “best” option. Hence we frame our problem as one of
best-first enumeration, rather than simply optimization.

Our main contribution is a new search algorithm for enu-
merating the best solutions to CSTNPs efficiently, called
A* with bounding conflicts (A*BC), and a novel variant of
conflicts, called bounding conflicts, which are used to learn
heuristic functions. The technical challenge of enumerating
CSTNPs is the significant computational cost of finding the
optimal schedule for a single candidate solution, coupled
with the large number of candidate solutions considered,
which is worst case exponential in the number of discrete
choices. Our approach begins with a conflict-directed best-
first search algorithm, similar to those employed in past op-
timal TPN planners. (Feasibility) conflicts are used to learn
and prune large sets of infeasible candidates, while an ad-
missible heuristic (equivalently a bounding function) is used
to guide the search for an optimal plan. Computing a bound
by solving a simple temporal problem with preference can
be costly; for some preference models it involves solving a
linear or convex program.

Our solution is to learn a heuristic bounding function au-
tomatically through a process analogous to feasibility con-
flicts. Traditionally, whenever conflict-directed search finds

an infeasible candidate, it learns sets of infeasible states,
which it encodes as a (feasibility) conflict, denoting a small
partial assignment that is inconsistent with a problems con-
straints. The search algorithm’s candidate generator then use
these conflicts to generate candidates outside the known con-
flicts.

Likewise, whenever A*BC bounds a candidate by solv-
ing a STPP, it analyzes the STPP solution to learn a bound
over similar candidates. The results are then recorded as a
bounding conflict, a set of states, denoted by a partial as-
signment, and a corresponding bound over that set. A*BC’s
candidate generator then uses both bounding and feasibility
conflicts to efficiently guide search away from sub-optimal
and infeasible sets of candidates, towards the next best fea-
sible candidate. As our empirical results illustrate, the use of
these two types of conflicts substantially reduce the number
of candidates that need to be tested for bounding and con-
sistency. The remaining generated candidates are then tested
through incremental temporal consistency, and bounded us-
ing an STPP algorithm that is suitable to the particular pref-
erence function being employed.

In the remainder of this paper we first elaborate on re-
lated work. We next introduce a pedagogical example taken
from our ocean observing research, and use this example to
illustrate our problem statement, consisting of the best-first
enumeration of solutions to a Conditional Simple Temporal
Network with Preferences. The core of our paper is a pre-
sentation of bounding conflicts and the A* with bounding-
conflicts algorithm, for enumerating CSTNPs. Finally, we
compare the results of enumerating CSTNP problems using
A*BC and a mixed-integer linear program encoding, illus-
trating a significant improvement using A*BC.

Related Work
Existing work addresses many of the elements of our prob-
lem individually, but not in combination. As discussed
above, temporal plan networks (TPNs) (Kim, Williams, and
Abramson 2001; Effinger 2006; Robertson, Effinger, and
Williams 2006) combine nested discrete choice with tempo-
ral constraints, and include preference over choice, but not
over duration, meanwhile Simple Temporal Problems with
Preference (Khatib et al. 2001; Morris et al. 2004) offer a
rich preference model over duration, but not over discrete
choices. (Santana and Williams 2013) generalizes TPNs to
both controllable and uncontrollable choice, but associates
preference with choice only, not duration.

Turning to other temporal representations, disjunctive
temporal problems with preference (Peintner and Pollack
2004) provide preference over individual simple temporal
constraints, and a choice between simple temporal con-
straints, but these choices can not be nested or coupled, as in
a TPN or conditional CSP.

Controllable conditional temporal problems (Yu and
Williams 2013) include conditional choice and preference
over time, conditioned on choice, but preference is on the
degree of relaxation of a temporal constraint, rather than du-
ration itself.

Conditional temporal problems with prefer-
ence (CTPPs)(Falda, Rossi, and Venable 2007;
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Figure 1: Minimum travel times between starting position,
science locations (A-D), and satellite uplink location (S).

2010) include events and constraints that are activated
by assignments to discrete variables, and offer a rich set
of preference functions over durations that are conditioned
on discrete choice. However, CTPPs presume that these
assignments are made by the environment, and hence
are uncontrollable.2 Our motivation is instead to support
controllable decisions, made by the agent.

Ocean Observing Example
Throughout this presentation we illustrate our work with a
simplified underwater science example. Consider a mission
to observe several areas of the ocean with an underwater
glider. There are four different areas of the ocean to observe:
A, B, C, and D. Additionally, there is a special safe location
(S) where the glider can surface, achieve a satellite link, and
upload its data. The scientists in charge of the expedition
have decided that surveying each region is optional. How-
ever, due to prevailing currents, any science locations vis-
ited must be visited in alphabetical order (A before the rest,
B before C and D, and C before D). Additionally, the glider
must upload any data it has before proceeding to C or D.
Figure 1 shows the minimum travel times in hours between
all regions.

If a location is observed, the glider must spend at least one
hour at the location to justify the visit. Additionally, the sci-
entists would like to spend as much time as possible at each
site, but no more than two hours. The scientists express their
preference on the duration at each site as a linear function of
the duration, specifically:

r(d) = 5d− 4 (1)

where d is the time spent in the region.
Due to constraints on the satellite uplink, the glider much

reach location S within five hours (we assume for the pur-
poses of this example that the uplink is instantaneous). Last,
due to battery constraints, the entire mission must last no
more than ten hours.

2(Tsamardinos et al. 2003) introduced the term “conditional
temporal problem” to refer to temporal constraints that are con-
ditioned on uncontrollable, sensing actions. In this paper we adopt
the more common use of the term “conditional,” introduced in the
constraint programming community, in which choices are control-
lable.

The goal of the solver is to enumerate decisions regard-
ing which regions to visit, together with the most preferred
schedule for each decision, in decreasing order of the scien-
tists’ preference.

Problem Statement
Past work specifies a temporal plan with choice as a TPN,
which maps simply to a conditional STN. In this paper we
extend CSTNs to preference. The analogous extension to
TPNs is straight forward. A Conditional Simple Temporal
Network with Preference (CSTNP) describes a set of tem-
poral events, constraints, and discrete decisions. Each con-
straint, event and decision can be guarded so that it becomes
active only if certain decisions are made, represented by an
assignment to finite domain decision variables. Additionally,
a CSTNP provides a preference function that, given a set of
decisions and a schedule for the events, returns a reward.
A CSTNP extends a Conditional Simple Temporal Network
(CSTN)(Yu and Williams 2013) to include preferences over
both decision variables and events.

In this paper, we describe a solver for CSTNPs that uses
bounding conflicts to direct its enumeration of the best can-
didate solutions.
Definition 1. A CSTNP solver based on bounding conflicts
receives as input:
• a CSTNP,
• an admissible heuristic H : E → < for preference func-

tion R of CSTNP, and
• an STNP solver: STNP → S×B, where S is an optimal

consistent schedule of STNP, andB is a bounding conflict
of S and STNP.

It then enumerates consistent assignments to the CSTNP’s
decision variables in best-first order, based on the value of
the assignment’s most preferred schedule, generated by the
STNP solver for the assignment’s active constraints.

We now define CSTNPs.
Definition 2. A conditional simple temporal net-
work with preference (CSTNP) is defined by a tuple
〈D,E,C,LD, LE , LC , R〉, where:
• D is a set of finite domain decision variables,
• E is a set of events, ranging over the reals, representing

time points,
• C is a set of simple temporal constraints between pairs of

events e1, e2 ∈ E, of the form e2 − e1 ∈ [l, u],
• LD : D → Q is a function that attaches guards, conjunc-

tions of assignment to variables in Q ⊆ D, to decision
variables D,

• LE : E → Q is a function that attaches guards, con-
junctions of assignment to variables in Q ⊆ D, to events
E,
• LC : C → Q is a function that attaches guards, conjunc-

tions of assignments to variables in Q ⊆ D, to temporal
constraints C,
• R : D × T → R is a preference function that maps a

complete assignment to the decision variables and events
(a schedule) to the reals.

79



St

EA

[1,
∞

]VA

LA

[1, 2]

VA

EB

[1.5,∞
]V

B

[1
,∞

]
V
A
∧
V
B

LB

[1,2]

VB

S

[1,∞
]V

A

[1
,∞

]

VB

EC

[1,
∞

]

VC

LC

[1,2]

VC

ED

[2,∞
]

V
D

[1
,∞

]
V
C
∧
V
D

LD

[1,2]

VD

End

V
C

VD

[0,10]

Figure 2: The example problem, modeled as a CCTPP. The
variables VA, VB , VC , and VD represent the decision to ex-
plore regions A, B, C, and D, respectively.

The functions LD, LE and LC describe conditions under
which discrete variables, events, and constraints are active,
in the form of guards. This allows decision variables, events
and constraints to be conditioned (“guarded”) on the deci-
sions made over other variables in D. Each guard is a partial
assignment to the decision variablesD. Given an assignment
A to D an event or discrete variable is considered active if
its guard holds in A. A constraint is considered active if its
guard holds, and if both temporal events in its scope are ac-
tive as well.

Additionally, we assume that the dependency diagram for
the activation of decision variables through guards contains
no cycles. That is, the activation of variable Di cannot de-
pend on variable Dj being assigned a certain value if the
activation of Dj is dependent on variable Di taking on a
specific value.
Definition 3. A consistent solution to a CSTNP is described
by a pair 〈D,T 〉, where:
• D is a full assignment to all active decision variables of

the CSTNP and
• T is a schedule consisting of a full assignment to all ac-

tive events of the CSTNP that is consistent with all active
constraints.
Figure 2 shows the example problem modeled as a

CSTNP. The decisions in the example are whether re-
gions A, B, C, and/or D should be visited. To represent
these decisions, we introduce the binary valued variables
VA, VB , VC , andVD. Events such as EA and LA represent
entering region A and leaving region A, respectively. These
events are guarded on the choice to explore that region (not
pictured). The arcs between events represent simple tempo-
ral constraints. If a constraint is guarded, its guard appears
next to the constraint. Note that, in the example, no decision
variable is guarded.

Approach
Our proposed approach splits the enumeration problem
into two components. The first component is a best can-
didate generator. In this component, a discrete, best-first
search algorithm produces a candidate best assignment to

the CSTNP’s decision variables. The generator uses an A*-
like algorithm and a heuristic function to guide search as
partial assignments are extended. In addition, as candidates
are tested, the generator uses bounding and infeasibility con-
flicts learned during testing, to improve its search. This is the
key to the efficiency of our method.

Once the best-first search algorithm generates a full candi-
date assignment to the decision variables, the second compo-
nent performs optimal scheduling to both test feasibility of
the candidate and to bound its value, returning the results to
the generator. In addition, the second component generalizes
the scheduling results to similar candidates, through a pro-
cess of conflict learning. If a schedule exists, candidates are
identified whose optimal schedules have similar bounds, and
this set is summarized as a bounding conflict. If no schedule
exists, candidates are identified that are similarly infeasible,
and this set is summarized by a standard (feasibility) con-
flict. Bounding and feasibility conflicts are both returned to
the generator, to help focus search.

This process generalizes upon the generate and test
process, performed by conflict-directed A*(Williams and
Ragno 2003), which is used, for example, to enumerate
the preferred plans of a TPN. Several differences are key.
First, conflict-directed A* was designed to solve problems in
which utility is a function of the discrete decision variables
alone. Our constraint networks, CSTNPs, specify utility over
a combination of discrete decision variables and real-valued
events. Second, the tester for Conflict-directed A* tests con-
sistency, but does not need to solve an optimization problem
or compute a bound. This is because only the discrete de-
cision variables influence cost. Our approach, however, re-
quires that the tester solve an optimization sub-problem, in
order to compute a bound, as well as to test feasibility. Third,
as discussed earlier, solving this optimization sub-problem is
often costly, hence our tester learns conflicts that generalize
the results of bounding, as wells as consistency tests. Finally,
the learned conflicts passed to the generator improve upon
the generator’s heuristic, through bounding conflicts, as well
as the generator’s constraints, through feasibility conflicts.

Thus far, for pedagogical purposes we have introduced
bounding and feasibility conflicts as two separate concepts.
In our development below we encode feasibility conflicts as
a special case of bounding conflicts, by making their cost
bound infinitely positive, or equivalently, their utility bound
infinitely negative. With this treatment, bounding conflicts
and the A*BC algorithm offer strict generalizations of fea-
sibility conflicts and the conflict-directed A* algorithm.

In the following, we first describe the optimal scheduling
and conflict learning module (Tester). In addition, we define
bounding conflicts and explain how they can be used as a
bounding function. We then describe the search algorithm
underlying the best candidate generator. To remain consis-
tent with the example problem, we present the algorithms as
maximizing utility. The modifications to minimize cost are
straightforward.

Optimal Scheduling and Conflict Learning
The role of the tester is to determine an optimal schedule,
given a set of decisions made by the generator. The separa-
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tion of the scheduler from the generator allows for a range of
schedulers to be used, and a range of corresponding tempo-
ral constraint and preference representations, without modi-
fying the core reasoning algorithms in the generator.

The input to the scheduler is a CSTNP and D an assign-
ment to the problem’s decision variables. Given this assign-
ment, the scheduler simplifies the CSTNP to a simple tem-
poral network with preference (STNP) (Khatib et al. 2001),
by removing all events and constraints whose guards are not
activated by the decisions. We denote the resulting STNP by
CSTNPD.

Once the CSTNPD is determined, the scheduler extracts
its optimal schedule. Any STPP scheduler can be used that
supports the preference function provided. In our experi-
ments we use a linear preference function per simple tempo-
ral constraint, and employ a Linear Program solver to com-
pute the optimal schedule.

The same approach applies to more general temporal con-
straint formulations as well. If disjunctive constraints were
employed, then a DTPP scheduler, such as the one described
in (Peintner and Pollack 2004), can be used. If looping tem-
poral constraints are employed, a looping temporal problem
with preference (LTPP) scheduler, such as the one described
in (Paterson, Timmons, and Williams 2014), can be used.

The scheduler is also responsible for extracting bounding
conflicts, which are supplied to the best candidate generator.

Bounding Conflicts A key innovation of our approach
is to enable the discrete search algorithm (generator) to
learn and exploit a tighter bounding function, as it performs
search. We accomplish this by representing the learned
bounding function using a set of rules, which we have al-
ready referred to as bounding conflicts. The rule antecedent
is a partial assignment to decision variables, while its conse-
quent is a bounding function. A rule triggers on any partial
assignment that contains its antecedent.

Definition 4. A bounding conflict is a pair 〈z, b〉 where:

• z, the antecedent, is a partial assignment to the decision
variables of an informed search problem and

• b : Pz → R, the consequent, is a function that maps
partial assignments that are extensions of z to an upper
bound on the utility for any extension to the partial as-
signment.

A*BC applies the “learned bounding function” to the par-
tial assignment of a search node when it is queued for ex-
pansion. Given a partial assignment, y, the bound of y is
the minimum of the original bounding function (b0) and the
bounding functions of each triggered bounding conflict. A
bounding conflict γ is triggered if partial assignment y is an
extension of γ’s partial assignment. That is if:

y ⊆ γ[z] (2)

This leads to the following algorithm (Algorithm 1) used
by A*BC to compute the bound on the utility of a search
node.

In our experiments, we use CPLEX to both optimally
schedule and learn bounding conflicts. A bounding conflict
learning phase is entered when the utility of the optimal

Input: Partial assignment y, set of bounding conflicts
Γ, original bounding function b0

Output: Optimistic bound on the cost of y
1 return min ({b0(y)} ∪ {γi[b](c) | γi ∈ Γ ∧ y ⊆ γi[z]})

Algorithm 1: ABC-BOUND

schedule differs from the bound provided by Algorithm 1
by more than a specified threshold. In our experiments, we
chose a threshold of 10%.

Intuitively, if the actual utility does not match the util-
ity predicted by the bounding function, it means there are
some active constraints in the problem that are squeezing
the duration between some pairs of events that have a tem-
poral constraint with preference relating them. To learn the
bounding conflict, these constraints that are squeezing the
constraints with preference must be found. This is accom-
plished by first re-solving the linear program with the objec-
tive modified so that the objective function contains only the
preferences from the squeezed constraints with preference.
Next, a constraint is added to the problem stating that the ob-
jective function must return a higher utility than the utility
obtained from solving this smaller LP.

This added constraint causes the problem to become in-
feasible and a feasibility conflict is extracted that specifies
which constraints are involved. The assignments to the deci-
sion variables that activate these constraints are then deter-
mined (z). This is the antecedent of the bounding conflict.

A new scheduling problem is then constructed, contain-
ing only events and constraints activated by these decisions.
The difference between the optimal utility (r∗) provided by
this subproblem is then compared to the bound provided by
the original bounding function b0 for this partial assignment.
The function b(x) = b0(x)− (b0(z)− r∗) becomes the con-
sequent of the bounding conflict.

Generator
The generator is responsible for producing candidate assign-
ments to the decision variables and querying the tester for
the optimal schedule. The generator uses a new algorithm,
called A* with Bounding Conflicts (A*BC) to enumerate
candidates.

The A*BC algorithm operates on an informed search
problem.

Definition 5. An informed search problem is described by
the tuple 〈Y,D, r, b〉, where :

• Y = {y1, . . . , ym} is a set of m decision variables with
finite domains D = {d1, . . . , dm}.

• r : Y → R is the reward function. r maps full assign-
ments to the decision variables to a real valued reward.

• b : Y → R is the bounding function. b maps partial as-
signments to the decision variables to an upper bound on
the reward of any full assignment containing that partial
assignment.

A*BC is an optimal, best first search and enumeration
algorithm. Optimal best first search algorithms operate by
ranking candidate search nodes with respect to a function b
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Figure 3: Conceptual image of A*BC.

that is an upper bound on the reward of any goal node reach-
able from that search node. So long as the bounding function
is always optimistic, optimal best first search algorithms will
find the optimal solutions.

A* uses a bounding function, in the form of an admissible
heuristic, to generate candidate assignments to decision vari-
ables. When the exact reward is expensive to compute, the
corresponding bounding function used is likely to be quite
optimistic, as it represents an abstraction of the exact reward
that is selected for speed of computation.

For example, in the underwater exploration example, de-
termining the reward received by making a set of decisions
requires determining an optimal schedule for all events. An
upper bound on the reward can be quickly computed by as-
suming the constraints do not interact and by simply sum-
ming the maximum reward for each constraint that is acti-
vated by the set of decisions.

Due to the tendency of b to be overly optimistic in real
world problems, a search algorithm such as A* may spend
inordinate amounts of effort exploring a region of the search
space that according to b is promising, but is of very low
reward according to the actual reward function r. The main
idea behind bounding conflict directed search is that a tighter
bounding function can be learned for these regions based on
experience.

As previously discussed, in A*BC, these tighter bounds
are represented using bounding conflicts. Recall that a
bounding conflict compactly represents a region of the
search space and a tighter bounding function that is valid
for that region. The learned bounding conflicts are then
used during the search to proactively avoid exploring the re-
gions covered by them until absolutely necessary. This is
illustrated conceptually in Figure 3. In the search tree on
the left, a bounding conflict has been learned that offers a
tighter bound on the red, explored leaf node to the left, and
three pink, unexplored leaf nodes sitting below a black, un-
expanded node. In the figure on the right, the unexpanded
node is expanded based on the bounding conflict. One child
is introduced that contains the three pink leaf nodes of the
bounding conflict; that child receives the tighter bound of
the bounding conflict. The other children cover the remain-
der of the space; the bounding conflict bound does not apply
to these children. In contrast, for a feasibility conflict, the
child that contains the three pink leaf nodes of the conflict
would be pruned.

A* with Bounding Conflicts
A*BC uses the bounding conflicts to focus search in a man-
ner similar to Conflict-directed A*. This is accomplished by
modifying the child expansion function, so that descendants
in which a bounding conflict apply are pushed further down
on the search queue, according to their learned bound.

A*BC builds on top of constraint-based A* (Williams
and Ragno 2003). Constraint-based A* generates full as-
signments in best-first order, by expanding partial assign-
ments through assigning unassigned variables, and by or-
dering search according to an optimistic bound over partial
assignments. A*BC differs from constraint-based A*, in that
it expands search nodes by splitting on unresolved conflicts,
as well as unassigned variables. Given both options, A*BC
chooses to split on unresolved conflicts first. A*BC splits on
a conflict by adding assignments to the parent so that the
children either manifest or avoid the conflict, while parti-
tioning the parent’s descendants into subtrees.

The process of splitting on a conflict is described later.
The terms manifest, avoid and unresolved are defined as fol-
lows:
Definition 6. Given partial assignment x and a conflict with
partial assignment y:
• x manifests y if y ⊆ x,
• x avoids y if x ∪ y is inconsistent, and
• y is unresolved in x, otherwise.

For example, given conflict assignment y = VC , then
VCVAVB manifests VC , VAVC avoids VC , and VC is unre-
solved in VA.

Init: open← {MAKE-ROOT-NODE()}
Γ← {}

1 n← argmaxni[f ], ni ∈ open;
2 open← open − n;
3 if n[z] is full assignment then
4 return n;
5 else
6 Γn ← UNRESOLVED-CONFLICTS (n[z],Γ);
7 if Γn not empty then
8 children← SPLIT-ON-CONFLICT(n,Γn);
9 else

10 children← SPLIT-ON-VARIABLE(n);
11 end
12 foreach child ∈ children do
13 if child[z] is full assignment then
14 child[f ]← c(child[n]);
15 else
16 child[f ]← ABC-BOUND(child[z]);
17 end
18 open← open ∪ {child};
19 end
20 end

Algorithm 2: A* with Bounding Conflicts

Algorithm 2 describes the A* with Bounding Conflicts
algorithm. In the remainder of this section, we explain the
algorithm and demonstrate it on the AUV example problem.
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A*BC starts off with an empty search queue. At this point,
no bounding conflicts are known, so nodes popped off the
search queue are expanded by choosing a variable unas-
signed in the node and by extending the search node’s partial
assignment to every possible assignment of the chosen vari-
able. This is the SPLIT-ON-VARIABLE function. This pro-
cess continues until the first full solution, VAVBVCVD, is
found. The state of the search at this point is shown in Fig-
ure 4. The maximum reward attainable in a single region is 6
units, so the bounding function provides an optimistic bound
of 24 for VAVBVCVD and 18 for the remaining nodes.

{}

VC

VA

VB

VD VD

VB

VA

VC

Figure 4: State of the search for the AUV example when the
first full assignment to the decision variables is found.

At this point, the tester is invoked with the set of deci-
sions corresponding to the AUV exploring all regions. The
optimistic bounding function indicates a reward of 24, how-
ever the tester reports this only has a reward of 4, due to
the amount of AUV travel between regions. In addition,
analysis shows that any decision to have the AUV survey
both regions A and B has a reward that is at least two units
lower than the reward that the optimistic bounding function
predicts. Hence the tester returns a bounding conflict with
partial assignment VAVB , and a bounding function that de-
creases the original bounding function by 2.
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Figure 5: State of the search for the AUV example when
the first bounding conflict is used to split. Each child of
VCVAVB includes the conflict’s tighter bounding function.

At this point A*BC has a bounding conflict to process.
Assume that A*BC next pops off the queue the node con-

taining the partial assignment VC . At this point, the new
conflict is unresolved by this node. Hence the SPLIT-ON-
CONFLICT algorithm (Algorithm 4) is then used to generate
new child nodes that either avoid or manifest the conflict,
and places them on the queue. The child that manifests the
conflict is generated by unioning the conflict’s partial assign-
ment with that of the parent node being expanded. The chil-
dren that avoid the conflict are generated through the identi-
cal process to conflict-directed A* (see (Williams and Ragno
2003)). The children are generated such that they partition
the space of all extensions to the parent’s partial assignment.
The state of the search at this point is shown in Figure 5. Two
children are generated such that they avoid the conflict. The
last child (VCVAVB) is generated such that it manifests the
conflict. Any descendant of this last child VCVAVB can use
the tighter bound provided by the bounding conflict, which
subtracts 2 from the heuristic.

This process continues until an optimal solution of
VAVBVCVD is found.

Input: Node to expand n, set of conflicts Γ
Output: Exhaustive children of n

1 γ ← choose conflict in Γ;
2 children← {MAKE-NODE(n[z] ∪ {γ[z]}, n)};
3 temp← {};
4 foreach assignment ∈ γ[z] do
5 x← variable of assignment;
6 y ← value of assignment;
7 foreach v ∈ (dom(x)− y) do
8 children← children ∪

MAKE-NODE({n[z] ∪ temp ∪ {x = v}}, n);
9 end

10 temp← temp ∪ assignment;
11 end
12 return children;

Algorithm 3: SPLIT-ON-CONFLICT

Experimental Results
To benchmark our CSTNP solver and the impact of bound-
ing conflicts on solution time, we compared its performance
to a solver with the same generate and test framework that
used only feasibility conflicts to guide the search.Our test
scenarios were randomly generated CSTNP instances with
the same structure as the glider example in this paper. Pa-
rameters varied include the number of required uplinks, the
number of regions that can be surveyed between uplinks, and
the number of gliders being planned for in parallel.

The preference functions on the duration spent surveying
each site are linear in the duration. The optimal scheduling
problem was encoded as a linear program and solved using
CPLEX. Additionally, CPLEX was used to learn bounding
conflicts as described in previous sections. The results are
summarized in Figure 6. The tests were run with a timeout
of 30 seconds. With this timeout, the non-bounding conflict
directed approach was able to solve only 63% of the test
cases that A*BC was able to solve.
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Figure 6: Performance of candidate generator with bounding
conflicts (A*BC) vs without bounding conflicts (CDA*).

Conclusion
In this paper we introduced conditional simple temporal
networks with preference (CSTNP) in order to represent
real-world contingent planning and scheduling problems in
which preference is a function of both discrete choice and
schedule. In addition, we provided a solution method for
enumerating the best solutions to the CSTNP, through best-
first generate and test. Our key contribution underlying this
method is a new algorithm, A* with bounding conflicts,
A*BC, that uses bounding conflicts, learned when bounding
a candidate solution, to learn an improved heuristic func-
tion, used to guide the candidate generator. A*BC offers a
strict generalization of the conflict-directed A* algorithm.
Experiments demonstrate substantive runtime gains over a
feasibility conflict directed best-first search approach.
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