
Subset Minimization in Dynamic Programming on Tree Decompositions

Bernhard Bliem and Günther Charwat and Markus Hecher and Stefan Woltran
Institute of Information Systems 184/2, TU Wien

Favoritenstrasse 9–11, 1040 Vienna, Austria
[bliem,gcharwat,hecher,woltran]@dbai.tuwien.ac.at

Abstract

Many problems from the area of AI have been shown tractable
for bounded treewidth. In order to put such results into prac-
tice, quite involved dynamic programming (DP) algorithms
on tree decompositions have to be designed and implemented.
These algorithms typically show recurring patterns that call
for tasks like subset minimization. In this paper, we provide a
new method for obtaining DP algorithms from simpler princi-
ples, where the necessary data structures and algorithms for
subset minimization are automatically generated. Moreover,
we discuss how this method can be implemented in systems
that perform more space-efficiently than current approaches.

Introduction
Many prominent NP-hard problems in the area of AI have
been shown tractable for bounded treewidth. Thanks to Cour-
celle’s theorem (Courcelle 1990), it is sufficient to encode a
problem as an MSO sentence in order to obtain such a result.
To put this into practice, tailored systems for MSO logic are
required, however. While there has been remarkable progress
in this direction (Kneis, Langer, and Rossmanith 2011) there
is still evidence that designing DP algorithms for the consid-
ered problems from scratch results in more efficient software
solutions (cf. (Niedermeier 2006)).

The actual design of these algorithms can be quite te-
dious, especially for problems located at the second level
of the polynomial hierarchy like the AI problems circum-
scription, abduction, answer set programming or abstract
argumentation (see (Dvořák, Pichler, and Woltran 2012;
Jakl, Pichler, and Woltran 2009; Jakl et al. 2008; Gottlob,
Pichler, and Wei 2010)). In many cases, the increased com-
plexity of such problems is caused by subset minimization or
maximization subproblems (e.g., minimality of models in cir-
cumscription). It is exactly the handling of these subproblems
that makes the design of the DP algorithms difficult.

What we aim for in this paper is thus the automatic gen-
eration of intricate DP algorithms from simpler principles.
To the best of our knowledge, there is only a little amount of
work in this direction. The D-FLAT system (Abseher et al.
2014) – a declarative framework for rapid prototyping of DP
algorithms on tree decompositions – offers a few built-ins for

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cost minimization and the handling of join nodes in standard
DP algorithms; the LISP-based Autograph approach (see,
e.g., (Courcelle and Durand 2013)) on the other hand makes
it possible to obtain a specification of the problem at hand
via combinations of (pre-defined) fly-automata.

What we have in mind is different and motivated by recent
developments in the world of answer set programming (ASP)
(Brewka, Eiter, and Truszczyński 2011): For exploiting the
full expressive power of ASP, a saturation programming tech-
nique (see, e.g., (Leone et al. 2006)) is often required for
the encoding of co-NP subproblems. Several approaches for
relieving the user from this task have been proposed (Eiter
and Polleres 2006; Gebser, Kaminski, and Schaub 2011;
Brewka et al. 2015) that employ metaprogramming tech-
niques. For instance, in order to compute minimal models
of a propositional formula, one can simply express the SAT
problem in ASP together with a special minimize statement
(recognized by systems like metasp). In this way, one obtains
a program computing minimal models. Unfortunately, easy-
to-use facilities like such minimize statements had no analog
in the area of DP so far.

In this paper, we propose a solution to this issue: We
provide a method for automatically obtaining DP algorithms
for problems requiring minimization, given only an algorithm
for a problem variant without minimization. For example,
given a DP algorithm for SAT (Samer and Szeider 2010), our
approach enables us to generate a new algorithm for finding
only subset-minimal models. Making minimization implicit
in this way makes the programmer’s life considerably easier.

The contributions of this paper are the following:
• We introduce a formal model of DP computations, abstract-

ing from concrete algorithms. Our results are therefore
generally applicable, not just to a particular problem.

• We show how our model captures typical DP computations
for subset minimization problems.

• We discuss how computations can be compressed to ensure
fixed-parameter tractability.

• Our main contribution is a formal definition of a trans-
formation that turns non-minimizing computations into
ones that perform minimization. We identify under which
conditions this procedure is sound and give a formal proof.

• Finally, we discuss implementation issues. Compared to
naive DP algorithms with minimization (which often suffer

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Beyond NP: Technical Report WS-16-05

300

φEx : (u ∨ v) ∧ (¬v ∨ w ∨ x) ∧ (¬w) ∧ (¬x ∨ z) ∧ (¬x ∨ y ∨ ¬z)

GEx : u
v

w
x

y

z

TEx : ∅n5

{x}n4

{v, w, x}n2

{u, v}n1

{x, y, z} n3

Figure 1: Primal graph GEx and a TD TEx of φEx .

from a naive check for subset minimality) we propose an
implementation that avoids redundant computations.

Background
In this section we outline DP on tree decompositions. The
ideas underlying this concept stem from the field of parame-
terized complexity. Many computationally hard problems be-
come tractable in case a certain problem parameter is bound
to a fixed constant. This property is referred to as fixed-
parameter tractability (Downey and Fellows 1999), and the
complexity class FPT consists of problems that are solvable
in f(k) · nO(1), where f is a function that only depends on
the parameter k, and n is the input size.

For problems whose input can be represented as a graph,
an important parameter is treewidth, which measures “tree-
likeness” of a graph. It is defined by means of tree decompo-
sitions (TDs) (Robertson and Seymour 1984).

Definition 1. A tree decomposition of a graphG = (V,E) is
a pair T = (T, χ) where T = (N,F) is a (rooted) tree and
χ : N → 2V assigns to each node a set of vertices (called
the node’s bag), such that the following conditions are met:
(1) For every v ∈ V , there exists a node n ∈ N such that
v ∈ χ(n). (2) For every edge e ∈ E, there exists a node
n ∈ N such that e ⊆ χ(n). (3) For every v ∈ V , the subtree
of T induced by {n ∈ N | v ∈ χ(n)} is connected.

The width of T is maxn∈N |χ(n)| − 1. The treewidth of a
graph is the minimum width over all its tree decompositions.

Although constructing a minimum-width TD is intractable
in general (Arnborg, Corneil, and Proskurowski 1987), it is
in FPT (Bodlaender 1996) and there are polynomial-time
heuristics giving “good” TDs (Dechter 2003; Dermaku et al.
2008; Bodlaender and Koster 2010).

Example 2. Let us consider the enumeration variant of the
SAT problem. Given a propositional formula φ in CNF, we
first have to find an appropriate graph representation. Here,
we construct the primal graph G of φ, that is, vertices in
G represent atoms of φ, and atoms occurring together in
a clause form a clique in G. An example formula φEx , its
graph representation GEx and a possible TD TEx are given
in Figure 1. The width of TEx is 2.

TD-based DP algorithms generally traverse the TD in post-
order. At each node, partial solutions for the subgraph in-
duced by the vertices encountered so far are computed and
stored in a data structure associated with the node. The size
of the data structure is typically bounded by the TD’s width
and the number of TD nodes is linear in the input size. So if

r D P

5:I (4:I), (4:II)
n5

r D P

4:I x (2:I, 3:I), (2:II, 3:I)
4:II (2:III, 3:II), (2:III, 3:III), (2:III, 3:IV), (2:III, 3:V)

n4

r D P

2:I v, x (1:I), (1:III)
2:II x (1:II)
2:III (1:II)

n2

r D P

1:I u, v ()

1:II u ()

1:III v ()

n1

r D P

3:I x, y, z ()

3:II y, z ()

3:III y ()

3:IV z ()

3:V ()

n3

Figure 2: DP computation for SAT.

the width is bounded by a constant, the search space for sub-
problems is constant as well, and the number of subproblems
only grows linearly for larger instances. We now illustrate
the DP for SAT (Samer and Szeider 2010) on our running
example; formal details are given in the next section.

Example 3. The tables in Figure 2 are computed as follows.
For a TD node n, each row r stores data D(r) that contains
partial truth assignments over atoms in χ(n). Here, D(r)
only contains atoms that get assigned “true”, atoms in χ(n)\
D(r) get assigned “false”. In r, all clauses covered by χ(n)
must be satisfied by the partial truth assignment. The set
P(r) contains so-called extension pointer tuples (EPTs) that
denote the rows in the children where r was constructed
from. First consider node n1: here, χ(n1) = {u, v} covers
clause (u∨v), yielding three partial assignments for φEx . In
n2, the child rows are extended and the partial assignments
are updated (by removing atoms not contained in χ(n2) and
guessing truth assignments for atoms in χ(n2)\χ(n1)). Here,
clauses (¬v ∨ w ∨ x) and (¬w) must be satisfied. In n3 we
proceed as before. In n4, we join only partial assignments
that agree on the truth assignment for common atoms. We
continue like this until we reach the TD’s root.

To decide satisfiability of a formula, it suffices to check if
the table in the root node is non-empty. The overall proce-
dure is in FPT time as the number of TD nodes is bounded by
the input size (i.e., the number of atoms) and each node n is
has a table of size at most O(2χ(n)) (i.e., the possible truth
assignments). To enumerate models of φEx with linear delay,
we start at the root and follow the EPTs while combining
the partial assignments associated with the rows. For in-
stance, we obtain {u, v, x, y, z} (i.e., the model where atoms
{u, v, x, y, z} are true, and {w} is false) is constructed by
starting at 5:I and following EPTs (4:I), (2:I, 3:I) and (1:I).

A Formal Account of DP on TDs
The algorithms that are of interest in this paper take a problem
instance along with a corresponding TD as input and use DP
to produce a table at each TD node such that existence of
solutions can be determined by examining the root table.
Such algorithms obtain complete solutions by recursively
combining rows with their predecessors from child nodes
(cf. (Niedermeier 2006)). We call the resulting tree of tables

301

a computation, which we now formalize.
Definition 4. A computation is a rooted ordered tree whose
nodes are called tables. Each table R is a set of rows and
each row r ∈ R possesses
• some problem-specific data D(r),
• a non-empty set of extension pointer tuples (EPTs) P(r)

such that each tuple is of arity k, where k is the number of
children of R, and for each (p1, . . . , pk) ∈ P(r) it holds
that each pi is a row of the i-th child of R,
• a subtable S(r), which is a set of subrows, where each

subrow s ∈ S(r) possesses
– some problem-specific data D(s),
– a non-empty set of EPTs P(s) such that for each
(p1, . . . , pk) ∈ P(s) there is some (q1, . . . , qk) ∈ P(r)
with pi ∈ S(qi) for 1 ≤ i ≤ k,

– an inclusion status flag inc(s) ∈ {eq,⊂}.
For rows or subrows a, b we write a ≈ b, a ≤ b and a < b
to denote D(a) = D(b), D(a) ⊆ D(b) and D(a) ⊂ D(b),
respectively. For sets of rows or subrows R,S we write
D(R) to denote

⋃
r∈RD(r), and we write R ≈ S, R ≤ S

and R < S to denote D(R) = D(S), D(R) ⊆ D(S) and
D(R) ⊂ D(S), respectively.

The reason that each row possesses a subtable is that we
consider subset-optimization problems, and we assume that
algorithms for such problems use subtables to store poten-
tial counterexamples to a solution candidate being subset-
minimal. The intuition of each subrow s of a row r is that
s represents all solution candidates that are subsets of the
candidates represented by r. If one of these subset relations
is proper, we indicate this by inc(s) = ⊂.
Example 5. Let us now consider⊆-MINIMAL SAT (i.e., enu-
merating models that are subset-minimal w.r.t. the atoms that
get assigned “true”). Figure 3 illustrates the computation
for parts of our example. At n1, R is computed as before.
For any r ∈ R, each subrow s ∈ S(r) represents a partial

“true” assignment that is a subset of the one in r (i.e., D(s) ⊆
D(r)), and inc(s) is set appropriately. Now consider 2:I.
Here, 2:I:1 represents the same partial assignment (therefore
marked with eq). However, although 2:I:4 ≈ 2:I, we have
inc(2:I:4) = ⊂ since P(2:I:4) = {(1:I:3)} with inc(1:I:3) =
⊂ (i.e., inc(2:I:4) = ⊂ because D(2:I:4)∪D(1:I:3) = {v, x}
is a subset of D(2:I) ∪ D(1:I) = {u, v, x}). Furthermore,
consider 2:II and 2:III. They both stem from 1:II, but yield
different rows since x is either contained in the partial “true”
assignment, or not. Thus, also the subrows differ.

The EPTs of a table row r are used for recursively com-
bining the problem-specific data D(r) with data from “com-
patible” rows that are in descendant tables. The fact that
each set of EPTs is required to be non-empty entails that
for each (sub)row r at a leaf table it holds that P(r) = {()}.
We disallow rows with an empty set of EPTs because in the
end we are only interested in rows than can be extended to
complete solutions, consisting of one row per table. For this
we introduce the notion of an extension of a table row.
Definition 6. Let C be a computation and R be a table in C
with k children. We inductively define the extensions of a row

R S(r)

r D P s D P inc
2:I v, x (1:I) 2:I:1 v, x (1:I:1) eq

2:I:2 x (1:I:2) ⊂
2:I:3 (1:I:2) ⊂
2:I:4 v, x (1:I:3) ⊂

2:II x (1:II) 2:II:1 x (1:II:1) eq

2:II:2 (1:II:1) ⊂
2:III (1:II) 2:III:1 (1:II:1) eq

2:IV v, x (1:III) 2:IV:1 v, x (1:III:1) eq

n2

R S(r)

r D P s D P inc
1:I u, v () 1:I:1 u, v () eq

1:I:2 u () ⊂
1:I:3 v () ⊂

1:II u () 1:II:1 u () eq

1:III v () 1:III:1 v () eq

n1

Figure 3: (Partial) DP computation for ⊆-MINIMAL SAT.

r ∈ R as E(r) = {{r} ∪ A | A ∈
⋃

(p1,...,pk)∈P(r){X1 ∪
· · · ∪Xk | Xi ∈ E(pi) for all 1 ≤ i ≤ k}}.

Note that any extension X ∈ E(r) contains r and exactly
one row from each table that is a descendant of R. If r is a
row of a leaf table, E(r) = {{r}} because P(r) = {()}.

While the extensions from the root table of a computation
represent complete solution candidates, the purpose of sub-
tables is to represent possible counterexamples that would
cause a solution candidate to be invalidated. More precisely,
for each extensionX that can be obtained by extending a root
table row r, we check if we can find an extension Y of an
element s ∈ S(r) with inc(s) = ⊂ such that every element
of Y is listed as a subrow of a row in X (i.e., we check if for
every y ∈ Y there is some x ∈ X with y ∈ S(x)). If this is
so, then Y witnesses that X represents no solution because
Y then represents a solution candidate that is a proper subset.
For this reason, we need to introduce the notion of extensions
(like Y) relative to another extension (like X).

Definition 7. Let C be a computation, R be a table in C with
k children, r ∈ R be a row and s ∈ S(r) be a subrow of r. We
first define, for any X ∈ E(r), a restriction of P(s) to EPTs
where each element is a subrow of a row in X , as PX(s) =
{(p1, . . . , pk) ∈ P(s) | ri ∈ X, pi ∈ S(ri) for all 1 ≤
i ≤ k}. Now we define the set of extensions of s relative
to some extension X ∈ E(r) as EX(s) = {{s} ∪ A | A ∈⋃

(p1,...,pk)∈PX(s){Y1 ∪ · · · ∪ Yk | Yi ∈ EX(pi) for all 1 ≤
i ≤ k}}.

We can now formalize that the solutions of a computation
are the extensions of those rows that do not have a subrow
indicating a counterexample.

Definition 8. Let R be the root table in a computation C. We
define the set of solutions of C as sol(C) = {D(X) | r ∈
R, X ∈ E(r), @s ∈ S(r) : inc(s) = ⊂}
Example 9. If n2 in Figure 3 were the root of the TD, only
2:III and 2:IV would yield solutions. We would obtain {u}
and {v, x}, respectively. These represent indeed the subset-

302

minimal models of the formula consisting of the clauses en-
countered until n2, i.e., (u ∨ v) ∧ (¬v ∨ w ∨ x) ∧ (¬w).

Next we formalize requirements on subrows and their in-
clusion status to ensure that subrows correspond to subsets
of their parent row, that each potential counterexample is
represented by a subrow and that inc(·) is used as intended.
Definition 10. A tableR is normal if the following properties
hold:

1. For each r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s),
it holds that Y ≤ X , and Y < X holds if and only if
inc(s) = ⊂.

2. For each r ∈ R, s ∈ S(r) and Y ∈ E(s) there is some
r′ ∈ R and X ′ ∈ E(r′) such that s ≈ r′ and Y ≈ X ′.

3. For each q, r ∈ R, Z ∈ E(q) and X ∈ E(r), if Z ≤ X
holds, then there is some s ∈ S(r) and Y ∈ EX(s) with
s ≈ q and Y ≈ Z.

A computation is normal if all its tables are normal.
This definition ensures that it suffices to examine the root

table of a normal computation in order to decide a subset min-
imization problem correctly, provided that the rows represent
all solution candidates.

We will later show how a non-minimizing computation
(i.e., one with empty subtables) satisfying certain proper-
ties can be transformed into a normal computation. In this
transformation, we must avoid redundancies lest we destroy
fixed-parameter tractability. For this, we first introduce how
tables can be compressed without losing solution candidates.

Table Compression
To compress tables by merging equivalent (sub)rows, which
is required for keeping the size of the tables bounded by the
treewidth, we first define an equivalence relation on rows, as
well as one on subrows.
Definition 11. Let R be a table and r ∈ R. We define an
equivalence relation≡r over subrows of r such that s1 ≡r s2
if s1 ≈ s2 and inc(s1) = inc(s2).

We use this notion of equivalence between subrows to
compress subtables by merging equivalent subrows.
Definition 12. Let R be a table and r ∈ R. We define
a subtable S∗(r) called the compressed subtable of r that
contains exactly one subrow for each ≡r-equivalence class.
For any s ∈ S(r), let [s] denote the ≡r-equivalence class
of s and let s′ denote the subrow in S∗(r) corresponding to
[s]. We define s′ by s′ ≈ s, inc(s′) = inc(s) and P(s′) =⋃
t∈[s] P(t).

Once subtables have been compressed, we can compress
the table by merging equivalent rows. For this, we first need
a notion of equivalence between rows.
Definition 13. We define an equivalence relation ≡R over
rows of a table R such that r1 ≡R r2 if r1 ≈ r2 and there is
a bijection f : S∗(r1)→ S∗(r2) such that for any s ∈ S∗(r1)
it holds that s ≈ f(s) and inc(s) = inc(f(s)).

When rows are equivalent, their compressed subtables
only differ in the EPTs. We now define how such compressed
subtables can be merged.

Definition 14. Let R be a table, r ∈ R, and let [r] denote
the ≡R-equivalence class of r. For any r′ ∈ [r] , let fr′ :
S∗(r)→ S∗(r′) be the bijection such that for any s ∈ S∗(r)
it holds that s ≈ fr′(s) and inc(s) = inc(fr′(s)). (The
existence of fr′ is guaranteed by Definition 13.) We define
a subtable mst([r]) (for “merged subtable”) that contains
exactly one subrow for each element of S∗(r). For any s ∈
S∗(r), let s′ denote the subrow in mst([r]) corresponding
to s. We define s′ by s′ ≈ s, inc(s′) = inc(s) and P(s′) =⋃
r′∈[r] P(fr′(s)).

We use these equivalence relations to compress tables in
such a way that all equivalent (sub)rows (according to the
respective equivalence relation) are merged.

Definition 15. Let R be a table. We now define a ta-
ble compr(R) that contains exactly one row for each ≡R-
equivalence class. For any r ∈ R, let [r] denote the ≡R-
equivalence class of r and let r′ be the row in compr(R)
corresponding to [r]. We define r′ by r′ ≈ r, P(r′) =⋃
q∈[r] P(q) and S(r′) = mst([r]). For any computation
C, we write compr(C) to denote the computation isomorphic
to C where each table R in C corresponds to compr(R).

Lemma 16. If a table R is normal, then so is compr(R).

Proof sketch. Let R be a normal table and R′ = compr(R).
We prove conditions 1–3 of normality of R′ separately. Let
r′ ∈ R′, s′ ∈ S(r′), X ′ ∈ E(r′) and Y ′X′ ∈ EX′(s′). Then
we can find r ∈ R, s ∈ S(r), X ∈ E(r) and Y ∈ EX(s)
such that r ≈ r′, s ≈ s′, X ≈ X ′ and Y ≈ Y ′X′ . As
R is normal, Y ≤ X holds, and Y < X if and only if
inc(s) = ⊂. This entails Y ′X′ ≤ X ′, and Y ′X′ < X ′ if
and only if inc(s′) = ⊂ because inc(s′) = inc(s). This
proves condition 1. Let Y ′ ∈ E(s′). Then we can find
Y ∈ E(s) such that Y ≈ Y ′. As R is normal, there is a
row t ∈ R with t ≈ s and an extension T ∈ E(t) such
that T ≈ Y . Then there is some t′ ∈ R′ with t′ ≈ t and
(T \ {t}) ∪ {t′} ∈ E(t′), which proves condition 2. Let
q′ ∈ R and Z ′ ∈ E(q′) such that Z ′ ≤ X ′. Then we can find
q ∈ R and Z ∈ E(q) such that Z ≈ Z ′, so Z ≤ X . As R is
normal, there are u ∈ S(r) and U ∈ EX(u) such that u ≈ q
and U ≈ Z. Then there is some u′ ∈ S(r′) with u′ ≈ u and
(U \ {u}) ∪ {u′} ∈ EX′(u′), which proves condition 3.

Normalizing Computations
Before we introduce our transformation from “non-
minimizing” computations to “minimizing” ones, we define
certain conditions that are prerequisites for the transforma-
tion. For this, we first define the set of all data of rows that
have occurred in a table or any of its descendants.

Definition 17. Let R be a table in a computation such that
R1, . . . , Rk are the child tables of R. We inductively define
D∗(R) =

⋃
r∈RD(r) ∪

⋃
1≤i≤kD

∗(Ri).

Now we define conditions that the tables in a computation
must satisfy for being eligible for our transformation.

Definition 18. Let R be a table in a computation such that
R1, . . . , Rk are the child tables of R, and let r, r′ ∈ R. We
say that d ∈ D(r) has been illegally introduced at r if there

303

are (r1, . . . , rk) ∈ P(r) such that for some 1 ≤ i ≤ k it
holds that d /∈ D(ri) while d ∈ D∗(Ri). Moreover, we say
that d ∈ D(r′)\D(r) has been illegally removed at r if there
is some X ∈ E(r) such that d ∈ X .

We now define the notion of an augmentable table, i.e., a
table that can be used in our transformation.
Definition 19. We call a tableR augmentable if the following
conditions hold:

1. For all rows r ∈ R it holds that S(r) = ∅.
2. For all r, r′ ∈ R with r 6= r′ it holds that D(r) 6= D(r′).
3. For all r ∈ R, (r1, . . . , rk) ∈ P(r), 1 ≤ h < j ≤ k, H ∈

E(rh) and J ∈ E(rj) it holds that D(H) ∩D(J) ⊆ D(r).
4. No element of D(R) has been illegally introduced.
5. No element of D(R) has been illegally removed.

We call a computation augmentable if all its tables are aug-
mentable.

These requirements are satisfied by reasonable TD-based
DP algorithms (cf. (Niedermeier 2006)) as these usually do
not put arbitrary data into the rows. Rather, the data in a
row is typically restricted to information about bag elements
of the respective TD node. For instance, condition 3 mir-
rors condition 3 of Definition 1, and condition 2 is usually
satisfied by reasonable FPT algorithms because they avoid
redundancies in order to stay fixed-parameter tractable.

Now we describe how augmentable computations can au-
tomatically be transformed into normal computations that
take minimization into account. For any table R in an aug-
mentable computation, this allows us to compute a new table
aug(R) if for each child table Ri the table aug(Ri) has al-
ready been computed and compressed to compr(aug(Ri)).
Definition 20. We inductively define a function aug(·) that
maps each table R from an augmentable computation to a
table. Let the child tables of R be called R1, . . . , Rk. For
any 1 ≤ i ≤ k and r ∈ Ri, we write res(r) to denote
{q ∈ compr(aug(Ri)) | q ≈ r}. We define aug(R) as the
smallest table that satisfies the following conditions:

1. For any r ∈ R, (r1, . . . , rk) ∈ P(r) and (c1, . . . , ck) ∈
res(r1) × · · · × res(rk), there is a row q ∈ aug(R) with
q ≈ r and P(q) = {(c1, . . . , ck)}.

2. For any q, q′ ∈ aug(R) such that q′ ≤ q, P(q) =
{(q1, . . . , qk)} and P(q′) = {(q′1, . . . , q′k)} the following
holds: If for all 1 ≤ i ≤ k there is some si ∈ S(qi) with
si ≈ q′i, then there is a subrow s ∈ S(q) with s ≈ q′ and
P(s) = {(s1, . . . , sk)}. Moreover, inc(s) = ⊂ if q′ < q
or inc(si) = ⊂ for some si, otherwise inc(s) = eq.

For any augmentable computation C, we write aug(C) to
denote the computation isomorphic to C where each table R
in C corresponds to aug(R).

Augmentable tables never have two different rows r, r′
with D(r) = D(r′). Moreover, we defined aug(R) in such
a way that for all r ∈ R there is some q ∈ aug(R) with
r ≈ q. In the compression compr(aug(R)), we only merge
rows and subrows having the same data. So with each row
and subrow in aug(R) or compr(aug(R)) we can associate
a unique originating row in R. In fact, the extensions from

an augmentable table R are in a one-to-one correspondence
to the extensions of rows from aug(R). This is formalized
by the following lemma. A proof of the lemma can be found
in (Bliem et al. 2015a).

Lemma 21. Let R be a table from an augmentable compu-
tation and Q = aug(R). Then for any r ∈ R and Z ∈ E(r)
there are q ∈ Q and X ∈ E(q) such that r ≈ q and Z ≈ X .
Also, for any q ∈ Q and X ∈ E(q) there are r ∈ R and
Z ∈ E(r) such that q ≈ r and X ≈ Z.

The following lemma is central for showing that aug(·)
works as intended. For a full proof, see (Bliem et al. 2015a).

Lemma 22. Let R be a table from an augmentable compu-
tation. Then the table aug(R) is normal.

Proof sketch. Let R be a table in some augmentable com-
putation such that R1, . . . , Rk denote the child tables of R
and let Q = aug(R). We use induction. If Q is a leaf
table, then rows and extensions coincide and the construc-
tion of Q obviously ensures that Q is normal. If Q has
child tables Qi = compr(aug(Ri)) and all aug(Ri) are
normal, all Qi are normal by Lemma 16. Let q ∈ Q,
s ∈ S(q), P(q) = {(q1, . . . , qk)}, P(s) = {(s1, . . . , sk)},
Xi ∈ E(qi), Yi ∈ EXi

(si), X = {q} ∪X1 ∪ · · · ∪Xk and
Y = {s} ∪ Y1 ∪ · · · ∪ Yk. As for normality condition 1, the
construction of Q ensures s ≤ q and normality of Qi ensures
Yi ≤ Xi, so Y ≤ X . To show that inc(s) has the correct
value, first suppose Y < X and inc(s) = eq. The latter
would entail Yi = Xi, so s < q, but then inc(s) = ⊂, which
is a contradiction. So suppose X ≈ Y and inc(s) = ⊂. If
q < s, there would be an illegal removal at the origin of s
in R, contradicting that R is augmentable. So for some j
there is a d ∈ D(Xj) \ D(Yj). Due to X ≈ Y , d ∈ D(s)
or d ∈ D(Yh) for some h 6= j. In the first case, there is
an illegal introduction at the origin of s in R. In the other
case, d ∈ D(Yh) entails d ∈ D(Xh). As row extensions in Q
are in a one-to-one correspondence with those in R, and by
augmentability of R, d ∈ D(Xj) ∩D(Xh) entails d ∈ D(q).
But then d ∈ D(s), which we already led to a contradiction.

For condition 2, letZi ∈ E(si) andZ = {s}∪Z1∪· · ·∪Zk.
As s ∈ S(q), there are p ∈ Q and (p1, . . . , pi) ∈ P(p) with
p ≈ s and pi ≈ si This entails existence of r ∈ R and
(r1, . . . , rk) ∈ E(r) with r ≈ p ≈ s and ri ≈ pi. By
hypothesis, there are q′i ∈ Qi and X ′i ∈ E(q′i) with q′i ≈ si
and X ′i ≈ Zi. Each q′i originates from the unique ri ∈ R
with ri ≈ q′i. So q′i ∈ res(ri) holds and there are q′ ∈ Q and
X ′ ∈ E(q′) with q′ ≈ r ≈ s and X ′ ≈ Z.

For condition 3, let q′ ∈ Q, P(q′) = {(q′1, . . . , q′k)}, X ′ ∈
E(q′) and X ′i ∈ E(q′i) for all 1 ≤ i ≤ k. Suppose X ′ ≤ X
and, for the sake of contradiction, for some j there is a d ∈
D(X ′j) \ D(Xj). Then d ∈ D(q) or d ∈ D(Xh) for some
h 6= j. In the first case, there is an illegal introduction at
the origin of q in R. In the other case, d ∈ D(Xj) ∩D(Xh)
entails d ∈ D(q), which we already led to a contradiction. So
X ′i ≤ Xi for each i. By hypothesis then there are ti ∈ S(qi)
and Ti ∈ EXi

(ti) with ti ≈ q′i and Ti ≈ X ′i. So there is
a t ∈ S(q) with t ≈ q′ and P(t) = {(t1, . . . , tk)}. Then
T = {t} ∪ Ti ∪ · · · ∪ Tk is in EX(t) and T ≈ X ′.

304

We can now state our main theorem, which says that ex-
actly the subset-minimal solutions of an augmentable com-
putation are solutions of the augmented computation.

Theorem 23. Let C be an augmentable computation. Then
sol(aug(C)) = {S ∈ sol(C) | @S′ ∈ sol(C) : S′ ⊂ S}.

Proof. Let R be the root table of an augmentable compu-
tation C and R′ be the root table of C′ = aug(C). By
Lemma 22, C′ is normal. For the first direction, let S ∈
sol(C′). Then there are r′ ∈ R′ and X ′ ∈ E(r′) such that
D(X ′) = S and for all s′ ∈ S(r′) it holds that inc(s′) = eq.
By Lemma 21, then there are r ∈ R and X ∈ E(r) such that
X ≈ X ′. As R is augmentable, S(r) is empty, so S ∈ sol(C)
by Definition 8. We must now show that there is no solution
in C smaller than S. For the sake of contradiction, suppose
there is some T ∈ sol(C) with T ⊂ S. Then there are q ∈ R
and Z ∈ E(q) such that D(Z) = T , hence Z < X ′. By
Lemma 21, then there are q′ ∈ R′ and Z ′ ∈ E(q′) such
that Z ′ ≈ Z. As R′ is normal, due to Z ′ < X ′, there is
some s′ ∈ S(r′) such that inc(s′) = ⊂. This contradicts
inc(s′) = eq, which we have seen earlier.

For the other direction, let S ∈ sol(C) be such that there
is no S′ ∈ sol(C) with S′ ⊂ S. Then there are r ∈ R and
X ∈ E(r) such that D(X) = S. By Lemma 21, then there
are r′ ∈ R′ and X ′ ∈ E(r′) such that X ′ ≈ X , and there are
no q′ ∈ R′ and Z ′ ∈ E(q′) with Z ′ < X . Hence, as R′ is
normal, there cannot be a s′ ∈ S(r′) with inc(s′) = ⊂. This
proves that S ∈ sol(C′).

Finally, we sketch that aug(·) does not destroy fixed-
parameter tractability.

Theorem 24. Let A be an algorithm that takes as input an
instance of size n and treewidth w along with a TD T of
width w. Suppose A produces an augmentable computation
C isomorphic to T in time f(w) ·nO(1), where f is a function
depending only on w. Then aug(C) can be computed in time
g(w) · nO(1), where g again depends only on w.

Proof sketch. We assume w.l.o.g. that each node in T has at
most 2 children, as any TD can be transformed to this form
in linear time without increasing the width (Kloks 1994). As
A runs in FPT time, i.e., in f(w) · nO(1) for a function f ,
no table in C can be bigger than f(w) · nc for a constant c.
To inductively compute Q = aug(R) for some table R in
C with child tables R1, . . . , Rk (k ≤ 2), suppose we have
already constructed each Qi = aug(Ri) in FPT time. Then
|Qi| = fi(w) · nci for some fi and ci. We can compute
Q′i = compr(Qi) in time polynomial in |Qi|. Then |Q′i| =
f ′i(w) · nc

′
i for some f ′i and c′i. Definition 20 suggests a

straightforward way to compute Q in time polynomial in |R|
and

∑
1≤i≤k|Q′i|. So we can compute Q in FPT time. As T

has size O(n), we can compute aug(C) in FPT time.

Practical Implementation Issues
Our definition of aug(·) can be implemented to obtain a
problem-independent framework whose input is (1) an algo-
rithm A for solving a problem without subset minimization,
(2) an instance of this problem and (3) a tree decomposition.

By running A and transforming the resulting computation C
into aug(C), we can be sure by Theorem 23 that the solutions
are exactly the subset-minimal ones of C.

Several optimizations are possible: For one, a counterex-
ample candidate may turn out not to correspond to a solution
candidate after all. A lot of resources could be saved by
not storing such counterexample candidates in the first place.
Our approach can be implemented in an optimized way by
proceeding in stages: First we compute all rows without their
subtables, then we delete rows that do not lead to solutions
and finally we apply aug(·) to the resulting tables. This way,
we avoid storing counterexample candidates that appear in
no extension at the root table.

Furthermore, our approach can easily be generalized for
computing solutions where only a certain part of the data
(instead of all data) is minimal among all candidates. We
provided definitions and proofs only for the special case, as
the generalization leads to more cumbersome notation and
does not change the nature of the approach. Using this gener-
alization, we are able to obtain DP algorithms for further AI
problems like circumscription (McCarthy 1980).

We have implemented our approach using the mentioned
optimizations. In (Bliem et al. 2015b) we have informally
introduced the resulting system and illustrated how it allows
us to specify DP algorithms for several AI problems like
ASP, circumscription or abstract argumentation. The pre-
liminary experiments reported there show that our approach
indeed has significant advantages in terms of running time
and especially memory compared to existing solutions for
solving subset minimization problems on TDs. The current
work complements that paper from a theoretical side: Here
we have shown under which circumstances our approach is
applicable, and we have proven its correctness.

Conclusion
To put FPT results for bounded treewidth to use in the AI do-
main, often DP algorithms for problems involving tasks like
subset minimization have to be designed. These algorithms
exhibit common properties that are tedious to specify but can
be automatically taken care of, as we have shown in this pa-
per. In fact, we have provided a translation that turns a given
DP algorithm for computing a set S of solution candidates
(say, models of a formula) into a DP algorithm that computes
only the subset-minimal elements of S (e.g., minimal mod-
els). We have shown the translation to be sound and to remain
FPT whenever the original DP is. This is indeed superior
to a naive way that computes all elements from S first and
then filters out minimal ones in a post-processing step, which
would not yield an FPT algorithm in general. In a related
paper, we have presented a system realizing this idea with
further generalizations (e.g., performing minimization only
on a given set of atoms). For future work, we would like to
investigate the potential of other built-ins for DP algorithms;
for instance, checks for connectedness could be treated in
a similar way. In the long run, we anticipate a system that
facilitates implementing DP algorithms but (in contrast to
related systems such as Sequoia) keeps the overall design of
the concrete DP algorithm in the user’s hands.

305

References
Abseher, M.; Bliem, B.; Charwat, G.; Dusberger, F.; Hecher,
M.; and Woltran, S. 2014. The D-FLAT system for dy-
namic programming on tree decompositions. In Proc. JELIA,
volume 8761 of LNCS, 558–572.
Arnborg, S.; Corneil, D. G.; and Proskurowski, A. 1987.
Complexity of finding embeddings in a k-tree. SIAM J. Alge-
braic Discrete Methods 8(2):277–284.
Bliem, B.; Charwat, G.; Hecher, M.; and Woltran, S. 2015a.
D-FLATˆ2: Subset minimization in dynamic programming
on tree decompositions made easy. Technical Report DBAI-
TR-2015-93, DBAI, TU Wien.
Bliem, B.; Charwat, G.; Hecher, M.; and Woltran, S. 2015b.
D-FLATˆ2: Subset minimization in dynamic programming
on tree decompositions made easy. In Proc. ASPOCP’15.
Bodlaender, H. L., and Koster, A. M. C. A. 2010. Treewidth
computations I. Upper bounds. Inf. Comput. 208(3):259–275.
Bodlaender, H. L. 1996. A linear-time algorithm for finding
tree-decompositions of small treewidth. SIAM J. Comput.
25(6):1305–1317.
Brewka, G.; Delgrande, J. P.; Romero, J.; and Schaub, T.
2015. asprin: Customizing answer set preferences without
a headache. In Bonet, B., and Koenig, S., eds., Proceedings
of the 29th AAAI Conference on Artificial Intelligence, AAAI
2015, 1467–1474. AAAI Press.
Brewka, G.; Eiter, T.; and Truszczyński, M. 2011. Answer
set programming at a glance. Commun. ACM 54(12):92–103.
Courcelle, B., and Durand, I. 2013. Computations by
fly-automata beyond monadic second-order logic. CoRR
abs/1305.7120.
Courcelle, B. 1990. The monadic second-order logic of
graphs. I. Recognizable sets of finite graphs. Inf. Comput.
85(1):12–75.
Dechter, R. 2003. Constraint Processing. Morgan Kaufmann.
Dermaku, A.; Ganzow, T.; Gottlob, G.; McMahan, B. J.;
Musliu, N.; and Samer, M. 2008. Heuristic methods for
hypertree decomposition. In Proc. MICAI, volume 5317 of
LNCS, 1–11. Springer.
Downey, R. G., and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Dvořák, W.; Pichler, R.; and Woltran, S. 2012. Towards fixed-
parameter tractable algorithms for abstract argumentation.
Artif. Intell. 186:1–37.
Eiter, T., and Polleres, A. 2006. Towards automated integra-
tion of guess and check programs in answer set programming:
a meta-interpreter and applications. TPLP 6(1-2):23–60.
Gebser, M.; Kaminski, R.; and Schaub, T. 2011. Complex
optimization in answer set programming. TPLP 11(4-5):821–
839.
Gottlob, G.; Pichler, R.; and Wei, F. 2010. Tractable database
design and datalog abduction through bounded treewidth. Inf.
Syst. 35(3):278–298.
Jakl, M.; Pichler, R.; Rümmele, S.; and Woltran, S. 2008.
Fast counting with bounded treewidth. In Proc. LPAR, vol-
ume 5330 of LNCS, 436–450. Springer.

Jakl, M.; Pichler, R.; and Woltran, S. 2009. Answer-set
programming with bounded treewidth. In Proc. IJCAI, 816–
822.
Kloks, T. 1994. Treewidth: Computations and Approxima-
tions, volume 842 of LNCS. Springer.
Kneis, J.; Langer, A.; and Rossmanith, P. 2011. Courcelle’s
theorem – a game-theoretic approach. Discrete Optimization
8(4):568–594.
Leone, N.; Pfeifer, G.; Faber, W.; Eiter, T.; Gottlob, G.; Perri,
S.; and Scarcello, F. 2006. The DLV system for knowledge
representation and reasoning. ACM Trans. Comput. Log.
7(3):499–562.
McCarthy, J. 1980. Circumscription – a form of non-
monotonic reasoning. Artif. Intell. 13(12):27–39.
Niedermeier, R. 2006. Invitation to Fixed-Parameter Al-
gorithms. Oxford Lecture Series in Mathematics and its
Applications. OUP.
Robertson, N., and Seymour, P. D. 1984. Graph minors. III.
Planar tree-width. J. Comb. Theory, Ser. B 36(1):49–64.
Samer, M., and Szeider, S. 2010. Algorithms for proposi-
tional model counting. J. Discrete Algorithms 8(1):50–64.

306

