
Towards Learning From Stories:
An Approach to Interactive Machine Learning

Brent Harrison and Mark O. Riedl
School of Interactive Computing, Georgia Institute of Technology

Atlanta, Georgia, USA
{brent.harrison, riedl}@cc.gatech.edu

Abstract

In this work, we introduce a technique that uses stories to
train virtual agents to exhibit believable behavior. This tech-
nique uses a compact representation of a story to define the
space of acceptable behaviors and then uses this space to as-
sign rewards to certain world states. We show the effective-
ness of our technique with a case study in a modified grid-
world environment called Pharmacy World. The results show
that a reinforcement learning agent using Q-learning was able
to learn a policy that results in believable behavior.

Introduction
One of the primary drawbacks of most machine learning al-
gorithms is that users require in-depth knowledge about ar-
tificial intelligence and statistics to use them effectively. As
such, one of the most sought after goals in machine learning
is to allow non-experts to interactively train machine learn-
ing algorithms. Interactive machine learning (Chernova and
Thomaz 2014) seeks to enable this by allowing humans to
directly interact with machine learning algorithms by way
of online feedback or demonstrations of behaviors. One is-
sue with these techniques is that they can require humans to
interact with these algorithms in ways that may be unnatu-
ral. A machine learning algorithm may require examples of
failure states in order to execute properly, or a person may be
forced to give feedback in unfamiliar states while training.
By allowing for a more natural means of communication be-
tween humans and algorithms, we would further improve the
ability of non-experts to train machine learning algorithms.

In this work we present the idea of using an unexplored
source human communication to train machine learning al-
gorithms: stories. Specifically, we will discuss how stories
can be used to train agents to exhibit desirable human behav-
ior. Stories have the potential to provide many advantages in
training machine learning algorithms. Stories play a large
role in how we as humans try to make sense of the world
around us. They allow us to comprehend complex situations
as well as explain complex ideas to others (Bruner 1991).
If many of our interactions with other humans are by way
of storytelling, then it would make communication between
humans and machine learning algorithms more natural if the

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

machine learning algorithms could use the stories told simi-
larly to how they use demonstrations.

Our technique, which we call learning from stories (LfS)
uses stories told by humans to help train virtual agents to ex-
hibit specific behaviors. This task is similar to that of learn-
ing from demonstration (LfD) algorithms, except that in-
stead of learning from explicit demonstrations of a task our
technique will learn using stories told about said task. The
primary difference between stories and demonstrations, as
well as the primary difficulty in dealing with stories, is that
stories are more unconstrained than demonstrations. Many
different stories can be told about completing the same task
and all be correct. Also, it is not uncommon for humans
telling stories to skip steps in a story.

Our technique addresses this problem by first converting
a set of exemplar stories to a plot graph, a compact and
canonical representation of a space of stories. From there,
our technique uses this plot graph to define the space of ac-
ceptable behaviors, which are then turned into reward func-
tions that can be used to train reinforcement learning algo-
rithms. This reward function offers guidance as to how the
agent should behave while still allowing the agent to learn
optimal behaviors for its environment. This allows the agent
to deviate from the plot graph in extreme situations. To ex-
plore the effectiveness of our technique, we present a case
study in which we train a reinforcement learning agent to
exhibit believable behavior in Pharmacy World, a modified
grid world in which the agent attempts to acquire drugs from
a pharmacy.

Related Work
The type of interactive machine learning that is most closely
related to our own work is a specific type of learning from
demonstration known as Inverse Reinforcement Learning
(IRL). In typical reinforcement learning, an agent attempts
to compute a policy that describes the best action to take in
any given state. IRL, on the other hand, attempts to learn the
reward function that best describes a corpus of policy ex-
amples (Ng and Russell 2000) or policy trajectories (Abbeel
and Ng 2004). Early work in this area required either com-
plete policy examples or complete trajectories in order to
learn. This requirement was relaxed in through the intro-
duction of techniques such as Bayesian IRL (Ramachan-
dran and Amir 2007) and maximum entropy IRL (Ziebart

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence 
Symbiotic Cognitive Systems: Technical Report WS-16-14

746



et al. 2008). There has also been work on relaxing the as-
sumption that all example policies or trajectories are cor-
rect (Grollman and Billard 2011). There has been an in-
flux in work that seeks to derive reward functions or behav-
iors from natural language commands (Lignos et al. 2015;
MacGlashan et al. 2015).

LfS is fundamentally different than the problem posed in
IRL. While we are attempting to derive reward functions
based on a corpus of examples, we make different assump-
tions about what these examples represent which leads to a
different understanding of how to approach the problem. In
this work, we assume that our example stories define a space
of believable behaviors. Rather than design a reward func-
tion that can reproduce all of these examples, we are trying
to create a reward function that produces behaviors that fall
within this space.

Preliminaries
In this section, we review two concepts that are critical to
our work: plot graphs and reinforcement learning.

Plot Graphs
In order to create an agent that exhibits believable behavior,
we must first define what that behavior is. In this work, our
goal is to use behaviors encoded in a set of stories to define
the space of acceptable behaviors for our agent to follow.
This presents a problem as it is likely that multiple differ-
ent stories can be told all describing the same scenario. In
addition, the set of stories initially used to define desirable
behavior could be quite noisy (especially if different authors
wrote different stories). Different people may skip events in
the story or use different language to convey the same event.
Some stories may contain errors or events that do not make
sense given the scenario being described. To help mitigate
these problems, we have chosen to first convert the set of
exemplar stories into a plot graph as used in (Li et al. 2013).

In that work, the authors convert a set of crowdsourced
stories about a scenario into a plot graph, which is a tuple
G =< E,P,M > where E is the set of events that occur in
the story, P ⊆ {x → y|x, y ∈ E} is a set precedence rela-
tionships over pairs of events, and M ⊆ {(x, y)|x, y ∈ E}
is a set of mutual exclusion relationships. Also sometimes
included is a set of optional events O ⊆ E.

Precedence relationships between events are a temporal
ordering that defines when certain events are allowed to oc-
cur. Consider the plot graph in Figure 1(a). In this graph, a
precedence relationship exists between event c and event e.
This means that the stories that can be told in the space rep-
resented by this plot graph must have event c occur before
event e. Note that this does not mean c must happen immedi-
ately before e. Mutual exclusion relationships exist between
events that will never co-occur in the same story. Returning
to the example plot graph in Figure 1(a), the mutual exclu-
sion relation ship between event a and event b ensures that
they will never occur in the same story. In the event that two
mutually exclusive events share a precedence relationship,
then only one of the preceding events need to occur in order
for the following event to be executed. Optional events are

Figure 1: An example of how a plot graph (seen in a) pro-
duces a set of stories (seen in (b)) that can be represented by
a trajectory tree (seen in (c)). In (a), ovals represent events,
arrows between events are precedence relations, and dashed
lines between events are mutual exclusion relations.

those that do not need to be executed in order to tell a legal
story. Typically these are learned during construction of the
plot graph.

Construction of the plot graphs involves a pairwise exam-
ination of events to determine if a precedence relationship or
a mutual exclusion relationship needs to be inserted. Place-
ment of either of these relationships is determined by ex-
amining the initial corpus of stories. Thus, this can be used
to effectively filter out stories that contain noise due to an
erroneous ordering of events or through ommitted events.

Reinforcement Learning
The goal of this work is to be able to use stories to de-
fine reward functions that can be used to train reinforce-
ment learning agents. Reinforcement learning (Sutton and
Barto 1998) is a technique that is used to solve a Markov
decision process (MDP). A Markov decision process is a tu-
ple M =< S,A, T,R, γ > where S is the set of possible
world states, A is the set of possible actions, T is a transi-
tion function T : S × A → P (S), R is the reward function
R : S ×A→ R, and γ is a discount factor 0 ≤ γ ≤ 1.

The goal of reinforcement learning is to find a policy
π : S → A, which defines which actions should be taken
in each state. Ideally, the reinforcement learning agent will
take actions that will maximize its reward as given by the
reward function. In this work, we use Q-learning (Watkins
and Dayan 1992), which uses a Q-value Q(s, a) to estimate
the expected future discounted rewards for taking action a
in state s. There are several reasons that we use reinforce-
ment learning for this task. First, it allows the agent to fill in
any gaps that may exist in the stories that are used to train
it. These gaps exist because the storytellers do not know the
specific details of the environment. Therefore, it is possi-
ble that the agent will need to take several actions, such as
those needed for navigating a virtual world, in between plot
points. Reinforcement learning also allows the agent to de-
viate from the plot graph if doing so will allow it to more

747



efficiently reach a goal state. Reinforcement learning also
allows the agent to learn in stochastic environments, which
they are likely to exist in.

Methodology
Our technique for using stories to derive reward functions
begins with a corpus of stories each describing the same sce-
nario. This corpus, as it is typically crowdsourced, is likely
very noisy and, thus, difficult to learn from. In order to re-
duce the noise in this corpus we convert the set of stories into
a plot graph using the technique outlined in Li et al. (2013).
This plot graph now encodes procedural knowledge about
the desired behavior that our agent should exhibit. One as-
sumption that we make about this plot graph is that each
node in the plot graph refers to a state or action that exists in
the MDP. We believe that this condition can be relaxed, but
we leave that discussion as future work.

Once we have created this plot graph, we can then convert
it into a trajectory tree. A trajectory tree is a tree structure
that encodes every possible story that could be told using the
plot graph. Figure 1(c) shows an example of a trajectory tree.
This figure shows three of the stories that could be produced
by the sample plot graph given in Figure 1(a) and how they
would be represented as a trajectory tree.

We then incorporate this trajectory tree into the environ-
ment state to keep track of what the agent has done and what
it still needs to do. The insight here is that each node in the
trajectory encodes a unique story up until that point. In this
way, we manage to encode action history into an environ-
ment that is still Markovian. This does, however, make the
state space larger, which means it will take longer to train.
This is acceptable as our primary objective is to produce be-
lievable behaviors.

We assign rewards based on what branches the story can
take. Since the agent’s location in the story is encoded as
part of the state, we know how which unique story the agent
is currently following. We also know the different ways that
the story can unfold by examining the tree. Since we also
know that each node in the plot graph (and thus each node
in the trajectory tree) exists inside of the MDP, then we can
assign rewards to states that would continue the story.

What is important to note is that we do not consider every
story produced by the plot graphs to be optimal. Unlike IRL,
we do not expect for our agent to necessarily recreate every
story during normal execution. Instead, these stories define
the space of acceptable behaviors. The agent is then allowed
to reason about them and choose between behaviors based
on the environment that it exists in.

To our knowledge, there is no definitive technique for as-
signing reward values. Agent behavior is highly sensitive to
the environment that the agent exists in, making it difficult
to determine a set of reward function that works for every
environment. We can, however, weight rewards based on
their relative importance compared to other events in the plot
graph. Here, we define an event’s importance as the percent-
age of stories that the event occurs in. The intuition behind
this is that events that are more important to the success to
the outcome of the story will be included more often. There-

fore, the agent author must choose a base reward based on
the current environment.

Case Study: Pharmacy World
To show the effectiveness of our technique, we have cho-
sen to perform a case study in a modified gridworld called
Pharmacy World. We will discuss this domain as well as the
study performed in more detail below.

Pharmacy World Domain
The Pharmacy World domain is a modified gridworld that
is loosely based on the innocuous activity of going to the
pharmacy to purchase drugs.

Pharmacy World contains five different locations each lo-
cated somewhere in the gridworld: a house, a bank, a doc-
tor’s office, a clinic, and a pharmacy. Each of these locations,
except for the house, contains items that can be used to en-
able or disable certain actions. The bank contains money that
can be used to purchase either weak or strong drugs from the
Pharmacy. The doctor’s office and the clinic both contain
prescriptions that can be used in conjunction with money to
purchase strong drugs.

The actions that the agent can take in Pharmacy World
include simple movement actions, such as moving Left or
Right, actions for entering/leaving a building, and actions
that are used to retrieve objects. In order to receive a pre-
scription, for example, the agent must first be examined by a
doctor at either the Doctor’s Office or the Clinic. There is a
small amount of stochasticity in this environment in that this
action is allowed to fail with a probability of 0.25. The re-
maining items can either be stolen directly from their respec-
tive locations or acquired through interacting with either the
Bank Teller at the Bank or the Pharmacist at the Pharmacy.

The goal in Pharmacy World is to return to the house with
either the strong or the weak drugs, with the strong drugs be-
ing preferred. The reason that the weak drugs is included is
because it is possible to fail to acquire a prescription, which
would make it impossible to reach a terminal state with-
out stealing. The agent is always able to purchase the weak
drugs in order to reach a terminal state.

The reason that we used this environment is because it
is a relatively simple environment that highlights the differ-
ences between what a human would do and what a typical
agent would do. One would expect a human to get a prescrip-
tion, withdraw money from the bank, and then purchase the
strong drugs; however, an agent that is only rewarded for re-
trieving the strong drugs would be inclined to steal since that
takes the fewest number of actions.

Determining Rewards
In order to assign rewards in Pharmacy World, we first must
have a plot graph defining acceptable behaviors. For this
case study we chose to manually construct a plot graph and
use that to create the acceptable stories. Our synthetic plot
graph, seen in Figure 2, generates 213 stories, which can
be used to generate a trajectory tree containing 827 nodes.
As you can see, this plot graph manages to encapsulate the
events that you would expect to see in Pharmacy World.

748



Leave House

Go to bank Go to hospital Go to doctor

Don't get prescription hospital Don't get prescription doctor

Get prescription hospital Get prescription doctorWithdraw money

Go to pharmacy

Buy strong drugs Buy weak drugs

Go home

Figure 2: Plot graph for obtaining drugs. Ovals are events.
Rectangles are optional events. Precedence relationships are
represented by arrows between events. Mutual exclusions
are represented by a dashed line between events.

Once the trajectory tree has been created, we manually
convert the nodes in the tree into states that existed in-
side Pharmacy World. For the most part, nodes in the plot
graph/trajectory tree directly correspond to actions available
in Pharmacy World. The main exception is that Get Pre-
scription and Do Not Get Prescription plot graph nodes do
not correspond to any action in Pharmacy World. This node
actually represents whether the Get Examined action fails or
succeeds, so that is where rewards are assigned.

Since there is no definitive way to determine what the base
reward value for this environment should be, we used the
value 10 (which was then weighted by event importance)
every time the agent moved to a new event in the trajec-
tory tree. This, in practice, produced acceptable policies for
Pharmacy World, but is likely domain specific. We leave the
problem of automatically determining this value to future
work. This base reward value was then further weighted by
event importance to arrive at final reward values for each
node in the plot graph. For each other possible state, we as-
signed a reward value of −1.0.

Training
We used Q-learning in conjunction with ε-greedy explo-
ration for training. For this study we define ε to be 0.8 and
then slowly decay it over 200, 000 learning episodes. This
way the agent will prefer to randomly explore the environ-
ment early, but as training continues it will converge to tak-
ing the action it perceives as optimal more often than not. In
addition, we use parameters γ = 1.0 and α = 0.5. In order
to evaluate the behavior that the agent learned, we examined
the policy that the agent learned in order to verify that it ex-
isted within the space of accepted stories defined by the plot
graph used to create the reward function.

Results
After training for 200, 000 episodes, we examined the policy
that the agent learned. Since there is a source of stochasticity
in Pharmacy World, there are 3 possible trajectories through

the environment depending on the outcome of the Get Ex-
amined action.

The first case that the agent could encounter is the one
in which the Get Examined action succeeds on the first at-
tempt. In this case, the agent first navigates to the clinic and
gets examined in order to recieve the prescription. Then, the
agent navigates to the bank and requests and withdraws the
money. Having obtained the money and the prescription, the
agent then moves to the pharmacy and requests and pur-
chases the strong drugs. The agent then finishes by returning
to the house with the drugs.

The second case involves the first Get Examined ac-
tion failing while the second one succeeds. In this case the
agent’s policy is the same as its policy in the first case ex-
cept that instead of going to the pharmacy after retrieving
the money, the agent goes to the doctor’s office in order to
get examined. This action ultimately succeeds, and then the
agent navigates to the pharmacy to purchase the strong drugs
and then returns home.

The final case is the one in which the agent is unable to
obtain a prescription at all due to both Get Examined actions
failing. In this case, the agent’s policy the same as the pol-
icy in the second case, except that the agent then chooses to
purchase the weak drugs and then return home.

Each of these policies fall within the realm of acceptable
behavior as defined by the plot graph we used to generate the
reward function. This means that the reward function gener-
ated using the plot graphs was successful in generating ac-
ceptable behavior in Pharmacy World. Thus, by introducing
this reward function we were able to prevent the agent from
exhibiting psychotic behaviors that may result from simpler
reward functions (such as stealing the drugs rather than pur-
chasing it).

Conclusions
In this work we introduce a technique for learning from sto-
ries. By using a plot graph to define a behavior space we
can create reward functions that encourages reinforcement
learning agents to exhibit behaviors that exist in that space.
In doing so, we allow humans to interact with reinforcement
learning algorithms using storytelling, which we posit is a
more natural means of communication than demonstrations
of tasks or giving positive or negative feedback. While we
place many constraints on this technique in this paper, we
believe that many of these can be relaxed and plan to ex-
plore this topic in more detail in future work. In addition to
better enabling non-experts to interact with machine learn-
ing algorithms, it could also allow humans to convey more
complex ideas to machines. It could allow humans to pro-
vide natural feedback and guidance during training. It could
also possibly be used to enable machines to learn complex
sociocultural values embedded in stories.

Acknowledegments
This material is based upon work supported by the U.S. De-
fense Advanced Research Projects Agency (DARPA) un-
der Grant #D11AP00270 and the Office of Naval Research
(ONR) under Grant #N00014-14-1-0003.

749



References
Abbeel, P., and Ng, A. Y. 2004. Apprenticeship learning
via inverse reinforcement learning. In Proceedings of the
twenty-first international conference on Machine learning,
1. ACM.
Bruner, J. 1991. The narrative construction of reality. Criti-
cal inquiry 1–21.
Chernova, S., and Thomaz, A. L. 2014. Robot learning from
human teachers. Synthesis Lectures on Artificial Intelligence
and Machine Learning 8(3):1–121.
Grollman, D. H., and Billard, A. 2011. Donut as i do:
Learning from failed demonstrations. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on,
3804–3809. IEEE.
Li, B.; Lee-Urban, S.; Johnston, G.; and Riedl, M. 2013.
Story generation with crowdsourced plot graphs. In AAAI.
Lignos, C.; Raman, V.; Finucane, C.; Marcus, M.; and
Kress-Gazit, H. 2015. Provably correct reactive control from
natural language. Autonomous Robots 38(1):89–105.
MacGlashan, J.; Babes-Vroman, M.; desJardins, M.;
Littman, M.; Muresan, S.; Squire, S.; Tellex, S.; Arumugam,
D.; and Yang, L. 2015. Grounding english commands to re-
ward functions. In Proceedings of Robotics: Science and
Systems.
Ng, A. Y., and Russell, S. 2000. Algorithms for inverse
reinforcement learning. In in Proc. 17th International Conf.
on Machine Learning.
Ramachandran, D., and Amir, E. 2007. Bayesian inverse
reinforcement learning. In Proceedings of the 20th interna-
tional joint conference on Artifical intelligence, 2586–2591.
Morgan Kaufmann Publishers Inc.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 1. MIT press Cambridge.
Watkins, C. J., and Dayan, P. 1992. Q-learning. Machine
learning 8(3-4):279–292.
Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning.
In Proceedings of the 23rd national conference on Artificial
intelligence-Volume 3, 1433–1438. AAAI Press.

750




