
Discovering Human and Machine
Readable Descriptions of Malware Families

Blake Anderson
blaander@cisco.com
Cisco Systems, Inc.

David McGrew
mcgrew@cisco.com
Cisco Systems, Inc.

Subharthi Paul
subharpa@cisco.com
Cisco Systems, Inc.

Abstract

While an immense amount of work has gone into novel clus-
tering algorithms, little work has focused on developing com-
pact, domain-specific explanations for the results of the clus-
tering algorithms. Attaching semantic meaning to a cluster
has numerous benefits, including the ability for such a de-
scription to be both human and machine readable. In this pa-
per, we assume that the clusters are given to us, and find the
minimal set of features that can differentiate one cluster from
the remaining set of samples. We formulate this problem as
an integer linear program. By using samples not belonging
to the cluster in the optimization formulation, the resulting
description will be minimal and contain no false positives.
The efficacy of this method is demonstrated on simulation
data and real-world malware data run in a sandbox that col-
lects behavioral characteristics. In the case of malware, once
it has been clustered, it would have been sent to a reverse
engineer who would have been tasked with creating the ac-
tual meaning of the clustering results and disseminating this
information through signatures or indicators of compromise.
This is a time-consuming process that can take hours to weeks
depending on the complexity of the malware family. The
methods presented in this paper automatically generate opti-
mal signatures, which can then be quickly propagated to help
contain the spread of a malware family.

Introduction
With more domains producing a seemingly unending
amount of data, machine learning techniques to categorize
and make sense of the data is of paramount importance. One
simple machine learning concept, clustering, is heavily used
in domains ranging from biology to cybersecurity (Bayer et
al. 2009; Fielding 2007; Jain, Murty, and Flynn 1999).

The goal of this paper is to give semantic meaning to the
results of a clustering algorithm. We aim to answer the ques-
tion, What minimal set of features can differentiate one clus-
ter from the remaining samples in the dataset? For instance,
we want to be able to say that a cluster is unique because it
contains feature X , contains feature Y , and does not contain
feature Z.

We solve this problem as follows. Assuming binary fea-
tures, the centroid is computed for the cluster that is being

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

analyzed. This is done by simply taking the average over all
feature vectors for the given cluster. After this step, the cen-
troid is thresholded to obtain a binary centroid vector. Then,
an n×m matrix, A, is created where n is the number of sam-
ples not in the cluster and m is the number of features. Each
row of A is computed by taking the absolute value of the
difference between the centroid and a sample not belonging
to the cluster. By using samples not belonging to the clus-
ter in the optimization formulation, the resulting description
will be minimal and contain no false positives.

With A defined, this problem can be cast a standard in-
teger linear program (Schrijver 1998) and solved. The so-
lution will be a vector of 1’s and 0’s describing whether a
specific feature is important to the description of the clus-
ter or not. In this most general form, the features that make
a cluster unique do not necessarily have to be positive fea-
tures for that cluster, but it could be the case that lacking a
feature(s) is what makes the cluster unique.

Although this method can be used for any clustered data,
this paper is grounded by introducing a specific use case:
malware signature generation. A malware signature is a set
of simple rules about observable parameters such as files,
registry entries, and network communication, that is charac-
teristic of a particular malware type. A common theme in
malware incident response is having the ability to quickly
propagate threat intelligence to other sites within an organi-
zation or to sister organizations so that they can prevent or
more quickly recover from an attack. This is typically done
through the use of YARA rules (yar ) or STIX indicators (sti
). These methods give a standard format to report artifacts
of a malware infection such as the strings contained within
a malicious executable or registry modifications made by a
malicious executable. Unfortunately, the generation of these
indicators is a time consuming process and can take days to
find a suitable signature with a low false positive rate that
can properly capture the information of an attack. Further-
more, with the advent of polymorphic malware (Newsome,
Karp, and Song 2005), developing a signature from a single
sample is not a robust solution.

In the malware domain, clustering is a natural approach
because malware instances can be grouped into malware
families (Rieck et al. 2008). A malware family is a group
of malicious programs that all contain some amount of sim-
ilar code and/or functionality. While many authors have in-

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence 
Artificial Intelligence for Cyber Security: Technical Report WS-16-03

150



0 5 10 15 20 25
Comp1

5

0

5

Co
m

p2
Cluster Description

Cluster 1 Cluster Has IP address *.*.*.*
Cluster 2 Cluster Has Registry Access *

Cluster Has Registry Access *
Cluster Does Not Have Registry Access *

Cluster 3 Cluster Has File Access *
Cluster Does Not Have File Access *
Cluster Does Not Have File Access *

Cluster 4 Cluster Does Not Have IP address *.*.*.*
Cluster Does Not Have File Access *
Cluster Does Not Have Registry Access *

Cluster 5 Cluster Has Registry Access *
Cluster Has Registry Access *

Cluster 6 Cluster Has Registry Access *
Cluster 7 Cluster Does Not Have IP address *.*.*.*

Cluster Does Not Have File Access *

Figure 1: This data consists of 3,623 instances of malware with 7,305 features (IP addresses, registry modifications, file system
modifications) and is clustered by k-means with k = 7. On the left, the first two principle components of the clustered data is
shown. On the right, the descriptions computed by the methods of this paper.

vestigated which feature representations and clustering al-
gorithms are optimal for the malware domain (Bayer et al.
2009; Rieck et al. 2008; Anderson, Storlie, and Lane 2012),
few have looked at generating actionable intelligence once
the clusters are known.

The methods presented in this paper will address the prob-
lem of automatically finding the features of a malware infec-
tion that can be used to create high fidelity, low false positive
YARA rules or STIX indicators to aid in propagating threat
intelligence. We will show results using real-world data ob-
tained from a sandbox that collects behavioral characteris-
tics of the malware samples using dynamic analysis. We use
a combination of k-means and anti-virus labels to perform
the clustering. Alternatively, any clustering techniques pre-
viously examined could be substituted. Our methods will
be able to describe malware families in ways that a malware
analyst can actually understand, such as “malware family
A connects to ip range X .X .*.*, modifies registry value Y ,
creates file Z, and does not modify file W ”.

Related Work
In the machine learning literature, explaining clusters has
typically been done by projecting the data instances to a
low dimensional feature space where it can be easily visu-
alized (Kriegel, Kröger, and Zimek 2009), or by measuring
the clusters with validity indices that help to score how well
the clustering algorithm performed (Halkidi, Batistakis, and
Vazirgiannis 2002). While the machine learning methods
to validate the clusters’ integrity, either visually or numer-
ically, would be useful to perform to ensure a reasonable
clustering, they do not provide a human and machine read-
able description of the cluster. For example, in Figure 1,
the graph has visualized high-dimensional data by using the
first two principle components. While this does give useful

information with respect to the separability of the dataset, it
does not give a compact, human readable description of the
clusters. On the other hand, the table in Figure 1 displays
this information clearly.

To our knowledge, no other attempt has been made to ex-
plain clusters using a minimal set of features that a cluster
contains or does not contain. There have been approaches
that are aimed at finding human-readable descriptions for
important data mining problems. For instance, in (Wagstaff
et al. 2013), the authors are solving the class discovery prob-
lem. They build a model with all known classes, and use per-
feature residuals to rank the features that were most impor-
tant in determining whether a data instance is novel relative
to their current model. In (Strumbelj and Kononenko 2010),
the authors construct per-feature explanations for why an in-
stance was classified to a certain class.

There has been a class of methods to create signatures for
families of polymorphic malware and their corresponding
payloads (Newsome, Karp, and Song 2005; Wang, Cretu,
and Stolfo 2006). These methods work by finding simi-
lar features or subsequences in all instances within a clus-
ter. The two drawbacks to the these signature generating
approaches are 1) they do not find the smallest set of fea-
tures that uniquely define a cluster, and 2) they do not use
the non-cluster instances in their signature definition. The
signatures found can often be quite large, thus making it dif-
ficult for a human to reason about why a cluster is unique.
By not comparing against instances belonging to other fam-
ilies, it is difficult to restrict the size of this set to just the
features that are important. In this paper, the minimal set of
features are found that uniquely define a cluster with respect
to every other instance not in that cluster. This makes it both
easier for a human to understand and guarantees that there
will be no false positives among the members of the other

151



clusters. This is accomplished by an integer linear program
using the members of the other clusters as part of its opti-
mization formulation.

Methods
In this section, a novel method is proposed to find the min-
imal set of features that gives the semantic description for a
given cluster. The data representation for a given cluster is
illustrated. Then, the problem is posed as an integer linear
program which can be solved using existing software. Fi-
nally, some practical details of the techniques and software
used are considered.

Data Description
To begin, the centroid is computed for the cluster that is be-
ing analyzed. This is done by simply taking the average over
all feature vectors for the given cluster. For instance, assume
there are three samples in a cluster with the following feature
vectors: [

[0, 0, 1, 0]
[1, 0, 1, 1]
[1, 0, 1, 0]

]
Then the centroid for the cluster would be [.66, 0.0, 1.0, .33].
After this step, the centroid is thresholded to obtain a vector
of just 1’s and 0’s. The threshold value helps to eliminate
features that do not contain enough support within a cluster
to be used. For a threshold value of t, any feature in the
centroid, fi, that is greater than t will be set to one, any
feature less than (1.0 − t) will be set to 0, and all other
features in the centroid will be discarded:

fi =

{
1 if fi ≥ t
0 if fi ≤ 1.0− t
discard otherwise

(1)

For example, with a threshold value of 0.9,
[.66, 0.0, 1.0, .33] would be converted to [−, 0, 1,−]
and only the second and third features would not be
discarded.

ILP Formulation
The problem of finding the minimal set of distinguishing
features can be cast as a standard integer linear program:

min cTx (2)
s.t. Ax ≥ b

x ≥ 0

and x ∈ {0, 1}
In this formulation, b is a length n vector of 1’s where n is
the number of samples not in the current cluster. A is an
n×m matrix where m is the number of features in the cen-
troid of the current cluster. Each row of A is computed by
taking the absolute value of the difference between the cen-
troid and a sample not belonging to the cluster. For example,
assuming the previous centroid, [−, 0, 1,−], and samples:

[1, 1, 1, 1]
[0, 0, 0, 1]
[0, 1, 1, 0]
[1, 1, 1, 0]
[0, 0, 0, 1]



The following A matrix would be produced:
1 0
0 1
1 0
1 0
0 1


Finally, x is the vector representing the different features

in the centroid. If xi = 1, this would be interpreted as the
i’th feature having discriminatory power with respect to the
current cluster. S, where ∀i ∈ S, xi = 1, is the minimal
set of features that uniquely defines the cluster. In this most
general form, the features that make a cluster unique do not
necessarily have to be positive features for that cluster, but
it could be the case that lacking a feature(s) is what makes
the cluster unique. In the previous example, the Ax ≥ b
constraint is equivalent to the following system of equations:

1.0 · x1 + 0.0 · x2 ≥ 1.0
0.0 · x1 + 1.0 · x2 ≥ 1.0
1.0 · x1 + 0.0 · x2 ≥ 1.0
1.0 · x1 + 0.0 · x2 ≥ 1.0
0.0 · x1 + 1.0 · x2 ≥ 1.0

(3)

which is solved when both x1 and x2 are set to 1. While this
is a trivial example, it does demonstrate the basic reasoning
for making use of an integer linear program.

Practical Details
While using a linear program instead of an integer linear pro-
gram would seem advantageous because solving an integer
linear program is NP-complete, the solution to the linear pro-
gram doesn’t make sense in the context of deriving simple,
human readable descriptions of the data. The meaning of a
cluster having feature, xi, is much more interpretable than a
cluster having 2/3 of feature xi. Solving a linear program
and thresholding the results was attempted, but led to poor
results and was discarded.

There are many excellent optimization libraries to choose
from, but for this work we used python and the CVXOPT
optimization library (Andersen, Dahl, and Vandenberghe )
with the GLPK (glp ) bindings. GLPK uses a branch-and-cut
algorithm (Padberg and Rinaldi 1991) for its integer linear
programming optimization. These libraries proved to be fast
and reliable.

The threshold in Equation 1 helps the integer linear pro-
gram avoid infeasible solutions by relaxing the definition for
what it means for a feature to be important to a cluster. All
of the experiments in this paper used t = 0.9. This value
could be automatically tuned with the presence of a holdout
set to check for false positives and by checking for infeasible
solutions.

As an aside, although this method was designed to work
on clustered data, if the cluster centroid is replaced by a sin-
gle instance, the algorithm would perform the same and the
output would be a human and machine readable description
of what makes a specific instance unique. In other words, it
could be used to generate a signature for a specific sample.

152



Registry access: shellnoroam\muicache
Registry access: explorer\shell folders
Registry access: internet settings\zonemap
No file access: win.ini

(a) ILP

Registry access: explorer\user shell folders
Registry access: shellnoroam\muicache
Registry access: cryptography\rng
Registry access: explorer\mountpoints2
Registry access: explorer\shell folders
Registry access: internet settings\zonemap
File access: wkssvc
File access: lsarpc
File access: r00000000000b.clb
File access: desktop.ini

(b) Token

Figure 2: Two descriptions of Cluster 14 in the Zeus dataset. (a) is the description that resulted from the integer linear program,
and (b) is the description from the token method with a threshold.

Malware Family Number of Instances

Zeus 3620
Cybergate 3430
Shylock 433
Rovnix 1182

Table 1: The number of instances of each malicious family.

Results
In this section, the results of our method are demonstrated on
two large malware datasets. Timing results for our method
are demonstrated on a synthetic dataset. All results were
obtained within a VM running Ubuntu 14.04 on top of a
laptop with a Core i5-4300U CPU @ 1.9 GHz and 8 GB of
memory.

The purpose of this work is not strictly to generate signa-
tures, but rather to compactly describe clusters to an analyst.
But, for the sake of completeness, the token enumeration
method of (Newsome, Karp, and Song 2005) is compared
against. This method is straightforward, and looks for com-
mon features among all instances within a cluster. To be fair,
two versions of this method are used: one with the threshold
set to 1.0 (all instances must have the feature) and 0.9.

Data
Table 1 lists the families used and the number of instances
belonging to each family. The first set of experiments clus-
ters the data within Zeus and generates human readable de-
scriptions of the clusters. In the second set of experiments,
all four families are used.

Zeus is a toolkit that is intended to facilitate botnets, and
its primary purpose is to exfiltrate data. Cybergate is a ma-
licious program that allows a threat actor to have remote ac-
cess privileges. Shylock is a program whose primary pur-
pose is to steal banking information. Finally, Rovnix is a
program that hides information in the volume boot record
with the intent to maintain persistence and exfiltrate data.

All of the malware samples were run in a virtual machine,
which collected many behavioral characteristics of the sam-
ple. The sandbox runs only lasted 5 minutes, so that the
observed behavior corresponds to the initial infection. Of
the features collected, the registry modifications, file sys-
tem modifications, and the IP addresses communicated with
are used as input into the clustering algorithm and the meth-
ods presented in this paper. For just Zeus, there are 7,305
features. When all four families are considered, there are
17,683 features. It is important to note that these methods
can easily be adapted to any features that the analyst deems
interesting.

Describing Zeus Subfamilies
To begin, the 3,620 instances of Zeus are clustered using a
standard k-means algorithm with k = 15. Figure 2 displays
the resulting descriptions for the integer linear program and
the token method with a threshold. The ILP method gener-
ates a more compact description than the token method. This
is due to the ILP method being able to use negative relation-
ships such as not having the file access win.ini. In this in-
stance, the ILP was also able to find a higher fidelity descrip-
tion. The ILP description hit 91.94% of the instances within
that cluster and had 0 false positives. The token method’s
description hit 77.01% of the instances within the cluster,
but also hit 3.38% of the instances not in the cluster.

Table 2 lists the results for all 15 clusters. True positives is
the percentage of files within the cluster that the rule hit, and
false positives is the percentage of files in other clusters that
the rule hit. The ILP method compares favorably in most
clusters. The ILP method does fail to find descriptions in
four cases because there are no feasible solutions. When a
method fails to find a rule, a null rule is generated that will
naturally have 100% false positives and negatives.

There are cases, e.g. cluster 6, cluster 13, and cluster 15,
when the ILP method cannot find a feasible solution, but the
token methods can find a rule. In all of these cases, the token
methods will have false positives. In our experiments, when
the ILP method does not find a solution, the false positive
percentages of the token methods can be as high as 15-17%.

153



Token Token (threshold) ILP
Cluster True Positives False Positives True Positives False Positives True Positives False Positives

C1 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
C2 100.00% 84.60% 87.85% 26.32% 80.55% 0.00%
C3 100.00% 75.04% 100.00% 75.04% 95.40% 0.00%
C4 100.00% 0.42% 74.51% 0.08% 88.24% 0.00%
C5 100.00% 0.43% 82.52% 0.00% 93.71% 0.00%
C6 100.00% 1.20% 65.22% 0.06% 100.00% 100.00%
C7 100.00% 19.90% 93.81% 17.97% 87.63% 0.00%
C8 100.00% 85.59% 71.67% 0.53% 88.33% 0.00%
C9 100.00% 1.70% 95.70% 1.62% 94.62% 0.00%
C10 100.00% 100.00% 92.00% 0.00% 96.00% 0.00%
C11 100.00% 85.29% 91.67% 0.00% 91.67% 0.00%
C12 100.00% 100.00% 100.00% 100.00% 98.39% 0.00%
C13 100.00% 17.04% 84.00% 15.07% 100.00% 100.00%
C14 100.00% 25.67% 77.01% 3.38% 91.94% 0.00%
C15 100.00% 2.28% 93.65% 2.02% 100.00% 100.00%

Table 2: Results for the clusters of Zeus subfamilies. True positives is the percentage of instances within the cluster that the
generated rule hit. False positives is the percentage of instances not belonging to the cluster that the generated rule hit.

Number of features
100 500 1000 5000 10000

N
um

be
ro

f

sa
m

pl
es

100 0.01 0.10 0.10 1.33 6.16
500 0.02 0.15 0.44 6.81 20.87
1000 0.04 0.42 0.91 9.20 42.02
5000 0.28 4.28 6.43 38.80 272.02

10000 0.59 8.89 15.71 102.03 489.16

Table 3: Timing results for various combinations of different feature vectors sizes and number of instances on randomly
generated binary data. All times reported are in seconds.

On the other hand, the ILP method can find solutions
when the token method cannot. For instance, the ILP
method finds a description for cluster 12 that hits on 98.39%
of the files within the cluster and has no false positives. The
flexibility of the optimization problem and encoding of the
data allows for negative relationships, and makes the ILP
method more robust to situations where the cluster does
not have many common features. For cluster 12, the lack
of three IP addresses, a cryptography registry key, and the
winlogon registry key is what makes it unique.

Four Family Descriptions
Using all four families from Table 1, there are 8,665 in-
stances and 17,683 features. Each of the four families were
first clustered with k-means with k = 10 for a total of 40
clusters. When the families were not first clustered into sub-
families, the ILP and token methods returned null rules. This
could be a side effect of noisy labels and/or a feature space
that is not expressive enough.

The results for all 40 clusters are shown in Table 4. Many
of the same patterns emerged that were found in the Zeus

subfamilies. For instance, cluster 5 is an example of the
ILP method failing to find a proper description, but the to-
ken methods do find rules with high false positives. Cluster
3 is interesting because all the methods found the same de-
scription, which had 100% true positive rate and 0% false
positive rate.

Timing Analysis
As mentioned in Section , even though integer linear pro-
gramming is NP-complete, there are many good libraries
that can efficiently approximate the solution. Again, for
this work, python was used with the CVXOPT optimiza-
tion library (Andersen, Dahl, and Vandenberghe ) and the
GLPK (glp ) bindings. GLPK uses a branch-and-cut algo-
rithm (Padberg and Rinaldi 1991) for its integer linear pro-
gramming optimization.

Table 3 contains the timing results for a variety of differ-
ent feature sizes and sample sizes. In these experiments,
random binary vectors are generated with the probability
of a 1 being set to .2 for each feature. It is important to
note that ILP solvers typically run much more efficiently on

154



Token Token (threshold) ILP
Cluster True Positives False Positives True Positives False Positives True Positives False Positives

C1 100.0% 41.21% 76.58% 1.37% 73.87% 0.00%
C2 100.0% 88.05% 99.59% 87.71% 97.94% 0.00%
C3 100.0% 0.00% 100.00% 0.00% 100.00% 0.00%
C4 100.0% 7.72% 92.51% 7.25% 84.15% 0.00%
C5 100.0% 32.64% 90.63% 22.02% 100.00% 100.00%
C6 100.0% 18.40% 76.02% 0.00% 87.80% 0.00%
C7 100.0% 2.60% 76.57% 0.01% 77.14% 0.00%
C8 100.0% 100.00% 82.22% 17.31% 100.00% 100.00%
C9 100.0% 0.36% 37.50% 0.01% 68.75% 0.00%
C10 100.0% 2.37% 97.18% 1.99% 85.92% 0.00%
C11 100.0% 9.96% 75.78% 2.62% 100.00% 100.00%
C12 100.0% 10.83% 81.15% 0.52% 89.62% 0.00%
C13 100.0% 0.28% 67.39% 0.23% 95.65% 0.00%
C14 100.0% 0.06% 35.71% 0.02% 75.57% 0.00%
C15 100.0% 90.94% 84.00% 0.55% 85.00% 0.00%
C16 100.0% 0.00% 33.33% 0.00% 95.83% 0.00%
C17 100.0% 10.02% 92.42% 3.89% 100.00% 100.00%
C18 100.0% 13.04% 86.79% 2.24% 100.00% 100.00%
C19 100.0% 0.86% 77.27% 0.00% 84.09% 0.00%
C20 100.0% 100.00% 92.37% 51.29% 73.73% 0.00%
C21 100.0% 11.86% 87.67% 3.17% 100.00% 100.00%
C22 100.0% 90.95% 79.55% 12.42% 100.00% 100.00%
C23 100.0% 44.74% 76.75% 6.65% 76.20% 0.00%
C24 100.0% 91.03% 91.64% 25.46% 79.39% 0.00%
C25 100.0% 3.30% 80.65% 0.96% 100.00% 100.00%
C26 100.0% 12.77% 84.78% 2.94% 100.00% 100.00%
C27 100.0% 3.24% 52.38% 0.14% 100.00% 100.00%
C28 100.0% 0.00% 100.00% 0.00% 100.00% 0.00%
C29 100.0% 100.00% 99.33% 99.58% 97.48% 0.00%
C30 100.0% 91.36% 83.33% 3.79% 85.71% 0.00%
C31 100.0% 0.06% 74.14% 0.05% 94.83% 0.00%
C32 100.0% 0.00% 100.00% 0.00% 100.00% 0.00%
C33 100.0% 0.24% 55.55% 0.00% 94.44% 0.00%
C34 100.0% 52.30% 69.23% 0.00% 78.97% 0.00%
C35 100.0% 0.01% 95.83% 0.00% 95.83% 0.00%
C36 100.0% 0.00% 63.64% 0.00% 100.00% 0.00%
C37 100.0% 45.75% 93.09% 44.92% 100.00% 100.00%
C38 100.0% 0.73% 97.06% 0.50% 100.00% 100.00%
C39 100.0% 99.55% 96.52% 2.58% 100.00% 100.00%
C40 100.0% 13.03% 90.35% 0.00% 100.00% 100.00%

Table 4: Results for the clusters of the four families. True positives is the percentage of instances within the cluster that the
generated rule hit. False positives is the percentage of instances not belonging to the cluster that the generated rule hit.

sparser data. The malware data presented in this paper had
roughly 15-20% of their features being non-zero. As Table 3
demonstrates, the ILP solver scales favorably with the num-
ber of samples. But, the ILP method does perform worse
when the number of features increases. In a real-world ap-
plication of these techniques, it would be important to spend
time considering what features are absolutely necessary to
the problem, either manually or through dimensionality re-

duction methods.

Conclusion
This paper has demonstrated a simple and intuitive method
for constructing compact, domain-specific explanations for
clusters. While there have been many attempts to assess the
validity of a set of clusters through different indices and vi-
sualizations, there has been little work in creating actual hu-

155



man readable descriptions. The strength of the integer linear
programming formulation is that it uses the non-cluster in-
stances. This allows for a minimal set of features and guar-
antees that the generated description does not hold for sam-
ples belonging to other clusters.

We demonstrated the results of our method on real-world
malware data. The four malicious families that we collected
were run in a sandbox where behavioral characteristics, such
as connections to IP addresses and registry modifications,
were collected. We showed that the integer linear program
could find compact descriptions of the clusters behavior.
This can potentially save reverse engineers weeks worth of
effort. While the generated descriptions can be used for hu-
man consumption, they may also be converted into indica-
tors of compromise using formats such as STIX (sti ).

References
Andersen, M. S.; Dahl, J.; and Vandenberghe, L. CVXOPT:
A Python Package for Convex Optimization, Version 1.1.6.
[Online; accessed 12-May-2015].
Anderson, B.; Storlie, C.; and Lane, T. 2012. Multiple Ker-
nel Learning Clustering with an Application to Malware. In
Proceedings of the International Conference on Data Min-
ing, ICDM, 804–809. IEEE.
Bayer, U.; Comparetti, P. M.; Hlauschek, C.; Kruegel, C.;
and Kirda, E. 2009. Scalable, Behavior-Based Malware
Clustering. In Network and Distributed System Security
(NDSS), volume 9, 8–11. Citeseer.
Fielding, A. 2007. Cluster and Classification Techniques for
the Biosciences. Cambridge University Press Cambridge.
GNU Linear Programming Kit, Version 4.55. http://www.
gnu.org/software/glpk/glpk.html. [Online; accessed 12-
May-2015].
Halkidi, M.; Batistakis, Y.; and Vazirgiannis, M. 2002. Clus-
tering Validity Checking Methods: Part II. ACM Sigmod
Record 31(3):19–27.
Jain, A. K.; Murty, M. N.; and Flynn, P. J. 1999. Data
Clustering: A Review. ACM Computing Surveys (CSUR)
31(3):264–323.
Kriegel, H.-P.; Kröger, P.; and Zimek, A. 2009. Clustering
High-Dimensional Data: A Survey on Subspace Clustering,
Pattern-Based Clustering, and Correlation Clustering. ACM
Transactions on Knowledge Discovery from Data (TKDD)
3(1):1.
Newsome, J.; Karp, B.; and Song, D. 2005. Polygraph: Au-
tomatically Generating Signatures for Polymorphic Worms.
In Symposium on Security and Privacy (S&P), 226–241.
IEEE.
Padberg, M., and Rinaldi, G. 1991. A Branch-and-Cut Al-
gorithm for the Resolution of Large-Scale Symmetric Trav-
eling Salesman Problems. SIAM review 33(1):60–100.
Rieck, K.; Holz, T.; Willems, C.; Düssel, P.; and Laskov,
P. 2008. Learning and classification of malware behavior.
In Detection of Intrusions and Malware, and Vulnerability
Assessment (DIMVA), 108–125. Springer.

Schrijver, A. 1998. Theory of Linear and Integer Program-
ming. John Wiley & Sons.
STIX. https://stix.mitre.org/. [Online; accessed 12-May-
2015].
Strumbelj, E., and Kononenko, I. 2010. An Efficient Ex-
planation of Individual Classifications using Game Theory.
The Journal of Machine Learning Research 11:1–18.
Wagstaff, K. L.; Lanza, N. L.; Thompson, D. R.; and Diet-
terich, T. G. 2013. Guiding Scientific Discovery with Expla-
nations using DEMUD. In Proceedings of the Association
for the Advancement of Artificial Intelligence, AAAI.
Wang, K.; Cretu, G.; and Stolfo, S. J. 2006. Anomalous
Payload-Based Worm Detection and Signature Generation.
In Recent Advances in Intrusion Detection (RAID), 227–
246. Springer.
YARA. http://plusvic.github.io/yara/. [Online; accessed 12-
May-2015].

156




