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Abstract

A major challenge in cyber-threat analysis is combining in-
formation from different sources to find the person or the
group responsible for the cyber-attack. It is one of the most
important technical and policy challenges in cyber-security.
The lack of ground truth for an individual responsible for an
attack has limited previous studies. In this paper, we over-
come this limitation by building a dataset from the capture-
the-flag event held at DEFCON, and propose an argumen-
tation model based on a formal reasoning framework called
DeLP (Defeasible Logic Programming) designed to aid an
analyst in attributing a cyber-attack to an attacker. We build
argumentation-based models from latent variables computed
from the dataset to reduce the search space of culprits (attack-
ers) that an analyst can use to identify the attacker. We show
that reducing the search space in this manner significantly im-
proves the performance of classification-based approaches to
cyber-attribution.

Introduction
A major challenge in cyber-threat analysis is to find the
person or the group responsible for a cyber-attack. This is
known as cyber-attribution (Shakarian, Shakarian, and Ruef
2013) and it is one of the central technical and policy chal-
lenges in cyber-security. Oftentimes, the evidence collected
from multiple sources provides a contradictory viewpoint.
This gets worse in cases of deception where either an at-
tacker plants false evidence or the evidence points to mul-
tiple actors, leading to uncertainty. In our text on cyber-
warfare (Shakarian, Shakarian, and Ruef 2013) we discuss
the difficulties that an intelligence analyst faces in attribut-
ing an attack to a perpetrator given that deception might have
occurred, and how the analyst needs to explore deception hy-
potheses under the given attack scenario.

However, one of the major drawbacks of the study and
evaluation of cyber-attribution models is the lack of datasets
with the ground truth available regarding the individual party
responsible for the attack—this has limited previous studies.
To overcome this, we built and leveraged a dataset from the
capture-the-flag event held at DEFCON (cf. the dataset sec-
tion for a detailed discussion). In previous work, we used
this dataset to study cyber-attribution, and framed it as a
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multi-label classification problem and applied several ma-
chine learning and pruning techniques; the results of this
work are discussed in (Nunes et al. 2015). Based on our ob-
servations, machine learning approaches fail in situations of
deception, where similar attributes point towards multiple
attackers. Standard machine learning approaches treat this
problem as “labeling noise” leading to a random selection
of attacker. We propose to address this issue using a formal
logical framework. Specific contributions of this paper in-
clude,
• a model for cyber-attribution created in the DeLP argu-

mentation framework;

• experiments demonstrating that using argumentation-
based tools can significantly reduce the number of poten-
tial culprits in a cyber-attack; and

• experiments showing that the reduced set of culprits,
used in conjunction with classification, leads to improved
cyber-attribution decisions.

Related Work
Currently, cyber-attribution is limited to identifying ma-
chines (Boebert 2010) as opposed to the hacker or their af-
filiation to a group or a state organization. An example of
such a technical attribution approach is WOMBAT (Dacier,
Pham, and Thonnard 2009), where a clustering technique
is used to group attacks to common IP sources. A method
that combines information from different sources was pro-
posed in (Walls 2014), where forensic information from di-
verse sources is considered but inconsistency or uncertainty
due to deception is not considered. A less rigorous mathe-
matical model, known as the Q model (Rid and Buchanan
2015), has been proposed recently; there, the model an-
swers queries from an analyst, both technical (tools used)
and non-technical (environment related), and by combining
these query answers the analyst tries to attribute an attack
to a party. Unfortunately, there are no experimental results
evaluating the effectiveness of this model.

Concurrently, we have devised a formal logical frame-
work for reasoning about cyber-attribution (Shakarian et
al. 2015a; 2015b). This reasoning model explores multiple
competing hypotheses based on the evidence for and against
a particular attacker before it attributes the attack to a spe-
cific party. With this approach we get a clear map regarding
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the arguments that led to the decision. This paper is the first
to provide experimental results using a formal logical frame-
work to build a reasoning model.

The rest of the paper is organized as follows. We present
the argumentative model based on Default Logic Program-
ming (DeLP) (Garcı́a and Simari 2004). This is followed by
a description of our DEFCON capture-the-flag dataset and
an analysis on the use of deception within this data. We then
give a summary of our results from (Nunes et al. 2015) and
discuss how we built our argumentation model for cyber-
attribution with DeLP. Experimental results are discussed in
the subsequent section.

DEFCON CTF Dataset
The DEFCON security conference sponsors and hosts a
capture-the-flag (CTF) competition every year, held on site
with the conference in Las Vegas, Nevada. The CTF com-
petition can be viewed as a microcosm of the global Inter-
net and the careful game of cat and mouse between hacking
groups and security firms. Teams are free to use different
technical means to discover vulnerabilities: they may reverse
engineer programs, monitor the network data sent to their
services, and dynamically study the effects that network data
has on unpatched services. If a team discovers a vulnerabil-
ity and uses it against another team, the first team may dis-
cover that their exploit is re-purposed and used against them
within minutes.

The organizers of DEFCON CTF capture all of the net-
work traffic sent and received by each team, and publish this
traffic at the end of the competition (DEFCON 2013). This
includes IP addresses for source and destination, as well as
the full data sent and received and the time the data was sent
or received. This data is not available to contestants; depend-
ing on the organizers’ choice from year to year, the contes-
tants either have a real time feed but with the IP address
obscured, or a full feed delivered on a time delay ranging
from minutes to hours.

In addition to the traffic captures, copies of the vulnera-
ble services are distributed by the organizers, who usually
do not disclose the vulnerabilities they engineered into each
service; however, competitors frequently disclose this infor-
mation publicly after the game is finished by preparing tech-
nical write-ups.

The full interaction of all teams in the game environment
are captured by this data. We cannot build a total picture of
the game at any point in time, since there is state information
from the servers that is not captured, but any exploit attempt
would have to travel over the network and that would be
observed in the data set.

Analysis
We use the data from the CTF tournament held at DEF-
CON 21 in 2013; the dataset is very large, about 170 GB
in compressed format. We used multiple systems with dis-
tributed and coordinated processing to analyze the entire
corpus—fortunately, analyzing individual streams is easy to
parallelize. To analyze this data, we identified the TCP ports
associated with each vulnerable service. From this informa-

tion, we used the open source tool tcpflow1 to process the
network captures into a set of files, with each file represent-
ing data sent or received on a particular connection.

This produced a corpus of data that could be searched and
processed with standard UNIX tools, like grep. Further anal-
ysis of the game environment provided an indicator of when
a data file contained an exploit. The game stored keys for
services in a standard, hard-coded location on each competi-
tor’s server. By searching for the text of this location in the
data, we identified data files that contained exploits for ser-
vices.

With these data files identified, we analyzed some of them
by hand using the Interactive Disassembler (IDA) to deter-
mine if the data contained shell-code, which in fact was the
case. We used an automated tool to produce a summary of
each data file as a JSON encoded element. Included in this
summary was a hash of the contents of the file and a his-
togram of the processor instructions contained in the file.
These JSON files were the final output of the low level anal-
ysis, transforming hundreds of gigabytes of network traf-
fic into a manageable set of facts about exploit traffic in
the data. Each JSON file is a list of tuples (time-stamp,
hash, byte-histogram, instruction-histogram). The individual
fields of the tuple are listed in Table 1.

Table 1: Fields in an instance of network attack

Field Intuition

byte hist Histogram of byte sequences in the pay-
load

inst hist Histogram of instructions used in the
payload

from team The team where the payload originates
(attacking team)

to team The team being attacked by the exploit

svc The service that the payload is running

payload hash The md5 of the payload used

time Date and time of the attack

Table 2: Example event from the dataset

Field Value

byte hist 0×43:245, 0×69:8, 0×3a:9, 0×5d:1,
.....

inst hist cmp:12, svcmi:2, subs:8, movtmi:60
......

from team Robot Mafia

to team Blue Lotus

svc 02345

payload hash 2cc03b4e0053cde24400bbd80890446c

time 2013-08-03T23:45:17

1https://github.com/simsong/tcpflow
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Figure 1: Number of unique and deceptive attacks directed
towards each team.

After this pre-processing of the network data packets, we
obtained around 10 million network attacks. There are 20
teams in the CTF competition; in order to attribute an at-
tack to a particular team, apart from analyzing the payloads
used by the team, we also need to analyze the behavior of
the attacking team towards their adversary. For this purpose,
we separate the network attacks according to the team being
targeted. Thus, we have 20 such subsets, which we represent
as T-i, where i ∈ {1, 2, 3, ..., 20}. An example of an event in
the dataset is shown in Table 2.

We now discuss two important observations from the
dataset, which make the task of attributing an observed net-
work attack to a team difficult.
Deception: In the context of this paper we define an attack
to be deceptive when multiple adversaries get mapped to a
single attack pattern. In the current setting we define decep-
tion as the scenario in which the same exploit is used by
multiple teams to target the same team. Figure 1 shows the
distribution of unique deception attacks with respect to the
total unique attacks in the dataset based on the target team.
These unique deceptive attacks amount to just under 35% of
the total unique attacks.

Duplicate attacks: A duplicate attack occurs when the same
team uses the same payload to attack a team at different
points in time. Duplicate attacks can be attributed to two rea-
sons. First, when a team is trying to compromise another’s
system, it does not just launch a single attack but a wave
of attacks with very little time difference between consec-
utive attacks. Second, once a successful payload is created
that can penetrate the defense of other systems, it is used
more by the original attacker as well as the deceptive one as
compared to other payloads. We group duplicates as either
being non-deceptive or deceptive. Non-deceptive duplicates
are the copies of the attacks launched by the team that first
initiated the use of a particular payload; on the other hand,
deceptive duplicates are all the attacks from the teams that
did not initiate the use.

Argumentation Model
Our approach relies on a model of the world where we
can analyze competing hypotheses in a cyber-operation sce-
nario. Such a model must allow for contradictory informa-

tion, as it must have the capability to reason about inconsis-
tency in cases of deception.

Before describing the argumentation model in detail, we
introduce some necessary notation. Variables and constant
symbols represent items such as the exploits/payloads used
for the attack, and the actors conducting the cyber-attack (in
this case, the teams in the CTF competition). We denote the
set of all variable symbols with V and the set of all constants
with C. For our model we require two subsets of C: Cact , de-
noting the actors capable of conducting the cyber-operation,
and Cexp , denoting the set of unique exploits used. We use
symbols in all capital letters to denote variables. The running
example is based on a subset of our DEFCON CTF dataset:
Example 1. Consider the following actors and cyber-
operations from the CTF data:

Cact = {bluelotus, robotmafia, apt8}
Cexp = {exploit1, exploit2, ..., exploitn}

�

The language also contains a set of predicate symbols that
have constants or variables as arguments, and denote events
that can be either true or false. We denote the set of predi-
cates with P; examples of predicates are shown in Table 3.
For instance, culprit(exploit1, bluelotus) will either be true
or false, and denotes the event where bluelotus used exploit1
to conduct a cyber-operation.

A ground atom is composed by a predicate symbol and a
tuple of constants, one for each of the predicate’s arguments.
The set of all ground atoms is denoted as G. A literal L
is a ground atom or a negated ground atom; hence, literals
have no variables. Examples of ground atoms formed using
predicates in Table 3 are shown in the following example.
We denote a subset of G with G′.

Example 2. The following are examples of ground atoms
over the predicates given in Table 3.

G′ : attack(exploit1, bluelotus),
deception(exploit1, apt8),

culprit(exploit1, apt8)

Table 3: Example Predicates and explanation

Predicate Explanation

attack(exploit1, bluelotus) exploit1 was targeted towards
the team Blue Lotus.

replay attack(E , Y) Exploit E was replayed by
team Y.

deception(exploit1, apt8) Team apt8 used exploit1 for de-
ception.

time diff(I, Y) Team Y was deceptive within
the given time interval I .

culprit(exploit1, apt8) Team apt8 is the likely culprit
for the attack (using exploit1 on
the target team).
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We choose a structured argumentation framework (Rah-
wan, Simari, and van Benthem 2009) to build our argu-
mentation model, which allows for competing ideas to deal
with contradictory information. Due to such characteristics,
argumentation-based models are favorable for cyber-attack
scenarios. Our approach works by creating arguments (in the
form of a set of rules and facts) that compete with each other
to attribute an attack to a given perpetrator. In this case, ar-
guments are defeated based on contradicting information in
other arguments. This procedure is known as a dialectical
process, where the arguments that are undefeated prevail.
An important result is the set of all the arguments that are
warranted (not defeated) by any other argument, which give
a clear map of not only the set of attackers responsible for
the cyber-operation but also the arguments supporting the
conclusion.

The transparency of the model lets a security analyst not
only add new arguments based on new evidence discovered
in the system, but also get rid of incorrect information and
fine-tune the model for better performance. Since the argu-
mentation model can deal with inconsistent information, it
draws a natural analogy to the way humans settle disputes
when there is contradictory information available (Garcı́a
and Simari 2004). The model provides a clear explanation as
to why one argument is chosen over others, which is a desir-
able characteristic for both the analyst and for organizations
to make decisions and policy changes. We now discuss some
preliminaries for the argumentation model.

Defeasible Logic Programming
DeLP is a formalism that combines logic programming
with defeasible argumentation; full details are discussed
in (Garcı́a and Simari 2004). The formalism is made up of
several constructs, namely facts, strict rules, and defeasible
rules. Facts represent statements obtained from evidence,
and are always true; similarly, strict rules are logical com-
binations of facts that always hold. On the contrary, defeasi-
ble rules can be thought of as strict rules that may be true in
some situations, but could be false if contradictory evidence
is present. These three constructs are used to build argu-
ments. DeLP programs are sets of facts, strict rules and de-
feasible rules. We use the usual notation to denote DeLP pro-
grams: denoting the knowledge base with Π = (Θ,Ω,∆),
where Θ is the set of facts, Ω is the set of strict rules, and
∆ is the set of defeasible rules. Examples of the three con-
structs are provided with respect to the dataset in Figure 2
and in the Latent variables section. We now describe the
constructs in detail.
Facts (Θ) are ground literals that represent atomic informa-
tion or its negation (¬). The facts are always true and cannot
be contradicted.
Strict Rules (Ω) represent cause and effect information that
is always true. They are built from using a combination of
ground literals and are of the form L0 ← L1, ...Ln, where
L0 is a ground literal and {Li}i>0 is a set of ground literals.
Defeasible Rules (∆) comprise knowledge that can be true
if no contradictory information is provided. These rules are

Θ : θ1 = attack(exploit1, bluelotus)
θ2 = first attack(exploit1, robotmafia)
θ3 = last attack(exploit1, apt8))
θ4 = time diff(interval, robotmafia)
θ5 = most frequent(exploit1, pwnies)

Ω : ω1 = culprit(exploit1, pwnies)←
most frequent(exploit1, pwnies),
replay attack(exploit1)

ω2 = ¬ culprit(exploit1, robotMafia)←
last attack(exploit1, apt8),
replay attack(exploit1)

∆ : δ1 = replay attack(exploit1) -≺
attack(exploit1, bluelotus),
last attack(exploit1, apt8)

δ2 = deception(exploit1, apt8) -≺
replay attack(exploit1),
first attack(exploit1, robotmafia)

δ3 = culprit(exploit1, apt8) -≺
deception(exploit1, apt8),
replay attack(exploit1)

δ4 = ¬culprit(exploit1, apt8) -≺
time diff(interval, robotmafia)

Figure 2: A ground argumentation framework.

the defeasible counterparts of strict rules; they are of the
form L0 -≺ L1, ...., Ln, where L0, is the ground literal and
{Li}i>0 is a set of ground literals. Strong negation is al-
lowed for both strict and defeasible rules to represent con-
tradictory information.

When a cyber-attack occurs, the model derives arguments
as to who could have conducted the attack. Derivation fol-
lows the same mechanism as logic programming (Lloyd
2012). DeLP incorporates defeasible argumentation, which
decides which arguments are warranted and it blocks argu-
ments that are in conflict.

Figure 2 shows a ground argumentation framework
demonstrating constructs derived from the CTF data. For
instance, θ1 indicates the fact that exploit1 was used to target
the team Blue Lotus, and θ5 indicates that team pwnies is the
most frequent user of exploit1. For the strict rules, ω1 says
that for a given exploit1 the attacker is pwnies if it was the
most frequent attacker and the attack exploit1 was replayed.
Defeasible rules can be read similarly; δ2 indicates that
exploit1 was used in a deceptive attack by APT8 if it was
replayed and the first attacker was not APT8. By replacing
the constants with variables in the predicates we can derive
a non-ground argumentation framework.

Definition 1. (Argument) An argument for a literal L is a
pair 〈A, L〉, where A ⊆ Π provides a minimal proof for L
meeting the requirements: (1) L is defeasibly derived from
A, (2) Θ∪Ω∪∆ is not contradictory, and (3)A is a minimal
subset of ∆ satisfying 1 and 2, denoted 〈A, L〉.
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〈
A1, replay attack(exploit1)

〉
A1 = {δ1, θ1, θ3}〈

A2, deception(exploit1, apt8)
〉
A2 = {δ1, δ2, θ2}〈

A3, culprit(exploit1, apt8)
〉

A3 = {δ1, δ2, δ3}〈
A4, ¬culprit(exploit1, apt8)

〉
A4 = {δ1, δ4, θ3}

Figure 3: Example ground arguments from Figure 2.

Literal L is called the conclusion supported by the argu-
ment, and A is the support. An argument 〈B, L〉 is a subar-
gument of 〈A, L′〉 iff B ⊆ A.

The following shows arguments for our running example
scenario.

Example 3. Figure 3 shows example arguments based on
the knowledge base from Figure 2. Note that the following
relationship exists:〈
A1, replay attack(exploit1)

〉
is a subargument of〈

A2, deception(exploit1, apt8)
〉

and〈
A3, culprit(exploit1, apt8)

〉
.

�

For a given argument there may be counter-arguments that
contradict it. For instance, referring to Figure 3, we can see
thatA4 attacksA3. A proper defeater of an argument 〈A,L〉
is a counter-argument that—by some criterion—is consid-
ered to be better than 〈A, L〉; if the two are incomparable
according to this criterion, the counterargument is said to be
a blocking defeater. The default criterion used in DeLP for
argument comparison is generalized specificity (Stolzenburg
et al. 2003).

A sequence of arguments is referred to as an argumen-
tation line. There can be more than one defeater argument,
which leads to a tree structure that is built from the set of
all argumentation lines rooted in the initial argument. In a
dialectical tree, every child can defeat its parent (except for
the root), and the leaves represent the undefeated arguments.
The tree thus creates a map of all possible argumentation
lines that decide if an argument is defeated or not.

Given a literal L and an argument
〈
A, L

〉
, in order to de-

cide whether or not a literal L is warranted, every node in the
dialectical tree T (〈A, L〉) is recursively marked as “D” (de-
feated) or “U” (undefeated), obtaining a marked dialectical
tree T ∗(〈A, L〉) where:

• All leaves in T ∗(〈A, L〉) are marked as “U”s, and

• Let 〈B, q〉 be an inner node of T ∗(〈A, L〉). Then, 〈B, q〉
will be marked as “U” iff every child of 〈B, q〉 is marked
as “D”. Node 〈B, q〉 will be marked as “D” iff it has at
least a child marked as “U”.

Given argument 〈A, L〉 over Π, if the root of T ∗(〈A, L〉) is
marked “U”, then T ∗(〈A, h〉) warrants L and that L is war-
ranted from Π. (Warranted arguments correspond to those
in the grounded extension of a Dung argumentation system
(Dung 1995).)

In practice, an implementation of DeLP accepts as in-
put sets of facts, strict rules, and defeasible rules. Note that

Θ : θ1 = attack (E ,X)
θ2 = first attack (E ,Y)
θ3 = last attack (E ,Y)

Figure 4: Facts defined for each test sample.

while the set of facts and strict rules is consistent (non-
contradictory), the set of defeasible rules can be inconsis-
tent. We engineer our cyber-attribution framework as a se-
ries of defeasible and strict rules whose structure we have
created, but are dependent on values learned from a histor-
ical corpus. Then, for a given incident, we instantiate a set
of facts for that situation. This information is then provided
as input into a DeLP implementation that uses heuristics to
generate all arguments for and against every possible culprit
for the cyber attack. Then, the DeLP implementation cre-
ates dialectical trees based on these arguments and decides
which culprits are warranted. This results in a reduced set of
potential culprits, which we then use as input into a classifier
to obtain an attribution decision.

Latent Variables
In (Nunes et al. 2015) we leveraged machine learning tech-
niques on the CTF data to identify the attacker. We will now
provide a summary of the results obtained.

The experiment was performed as follows. We divide the
dataset according to the target team, building 20 subsets, and
all the attacks are then sorted according to time. We reserve
the first 90% of the attacks for training and the remaining
10% for testing. The byte and instruction histograms are
used as features to train and test the model. Models con-
structed using a random forest classifier performed the best,
with an average accuracy of 0.37. Most of the misclassified
samples tend to be deceptive attacks and their duplicates.
When using machine learning approaches it is difficult to
map the reasons why a particular attacker was predicted, es-
pecially in cases of deception where multiple attackers were
associated with the same attack. Knowing the arguments that
supported a particular decision would greatly aid the ana-
lyst in making better decisions dealing with uncertainty. To
address this issue we now describe how we can form argu-
ments/rules based on the latent variables computed from the
training data, given an attack for attribution.

We use the following notation: let E be the test attack un-
der consideration aimed at target team X, Y represent all the
possible attacking teams, and D be the set of all deceptive
teams (those using the same payload to target the same team)
if the given attack is deceptive in the training set. For non-
deceptive attacks, D will be empty. We note that facts can-
not have variables, only constants (however, to compress the
program for presentation purposes, we use meta-variables
in facts). To begin, we define the facts described in Figure 4;
fact θ1 states that attack E was used to target team X, θ2
states that team Y was the first team to use the attack E in the
training data, and similarly θ3 states that team Y was the last
team to use the attack E in the training data. The first and
last attacking team may or may not be the same. We study
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Ω : ω1 = culprit(E ,Y)← last attack(E ,Y),
replay attack(E).

∆ : δ1 = replay attack(E) -≺ attack(E ,X),
last attack(E ,Y).

Figure 5: Defeasible and strict rule for non-deceptive attack.

Θ : θ1 = deception (E ,X)
θ2 = frequent (E ,Df )

Ω : ω1 = culprit(E ,Df )← frequent(E ,Df ),
deception (E ,Di)

ω2 = ¬culprit(E ,Y)← first attack(E ,Y),
deception(E ,X)

∆ : δ1 = replay attack(E) -≺ attack(E ,X),
last attack(E ,Y)

δ2 = deception(E ,Di) -≺ replay attack(E),
first attack(E ,Y)

δ3 = culprit(E ,Di) -≺ deception(E ,Di),
first attack(E ,Y)

Figure 6: Facts and rules for deceptive attacks.

the following three cases:

Case 1: Non-deceptive attacks. In non-deceptive attacks,
only one team uses the payload to target other teams in the
training data. It is easy to predict the attacker for these cases,
since the search space only has one team. To model this sit-
uation, we define the set of defeasible and strict rules shown
in Figure 5. Defeasible rule δ1 checks whether the attack was
replayed in the training data—since it is a non-deceptive at-
tack, it can only be replayed by the same team. Strict rule ω1

then puts forth an argument for the attacker (culprit) if the
defeasible rule holds and there is no contradiction for it.

Case 2: Deceptive attacks. These attacks form the major-
ity of the misclassified samples in (Nunes et al. 2015). The
set D is not empty for this case; let Di denote the deceptive
teams in D. We also compute the most frequent deceptive
attacker from D. Let the most frequent attacker be denoted
as Df . Figure 6 shows some of the DeLP components that
model this case. Fact θ1 indicates if the attack E was decep-
tive towards the team X and θ2 indicates the most frequent
attacker team Df from the deceptive team set D. The strict
rules ω1 states that the attacker should be Df if the attack is
deceptive and ω2 indicates that in case of deception the first
attack team Y is not the attacker. For the defeasible rules, δ1
deals with the case in which the attack E was replayed, δ2
deals with the case of deceptive teams from the set D and
δ3 indicates that all the deceptive teams are likely to be the
attackers in the absence of any contradictory information.

Case 3: Unseen Attacks. The most difficult attacks to at-
tribute in the dataset are the unseen ones, i.e., attacks en-
countered in the test set that did not occur in the training set.
To build constructs for this kind of attack we first compute
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Figure 8: Average time for deceptive attacks for each team.

the K nearest neighbors from the training set according to
a simple Euclidean distance between the byte and instruc-
tion histograms of the two attacks. In this case we choose
K = 3. For each of the matching attack from the training
data we check if the attack is deceptive or non-deceptive. If
non-deceptive, we follow the procedure for Case 1, other-
wise we follow the procedure for Case 2. Since we replace
one unseen attack with three seen attacks, the search space
for the attacker increases for unseen attacks.

Attacker Time Analysis
The CTF data provides us with time stamps for the attacks
in the competition. We can use this information to come up
with rules for/against an argument for a team being the at-
tacker. We compute the average time for a team to replay its
own attack given that it was the first one to initiate the at-
tack (see Figure 7). It can be observed that teams like more
smoked leet chicken (T-13) and Wowhacker-bios (T-8) are
very quick to replay their own attacks as compared to other
teams.

Figure 8 on the other hand shows the average time for a
team to replay an attack initiated by some other team. This
refers to the time the team takes to commit a deceptive at-
tack. Teams like The European (T-7) and Blue lotus (T-10)
are quick to commit deception, while others take more time.

We use this time information to narrow down our search
space for possible attackers. In particular, for a deceptive
test sample, we compute the time difference between the test
sample and the training sample that last used the same pay-
load. We denote this time difference as 4t, and include it
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as a fact θ1. We then divide the deceptive times from Fig-
ure 8 into appropriate intervals; each team is assigned to one
of those time intervals. We then check which time interval
4t belongs to and define a defeasible rule δ1 that makes a
case for all teams not belonging to the interval to not be the
culprits, as shown in Figure 9.

Θ : θ1 = timedifference (E , X)

For Y /∈ interval:
∆ : δ1 = ¬culprit(E , Y) -≺ timedifference (E , X).

Figure 9: Time facts and rules. Interval indicates a small por-
tion of the entire deceptive time (for instance < 2000 sec.,
> 8000 sec., and so on).

Experiments
We use the same experimental setup as in (Nunes et al.
2015). We sort the dataset by time for each target team and
then use the first 90% of the data for training and the rest
10% for testing. We compute the constructs for all test sam-
ples based on the cases discussed in the previous section, and
then input these arguments to the DeLP implementation. For
each test sample we query the DeLP system to find all pos-
sible attackers (culprits) based on the arguments provided. If
there is no way to decide between contradicting arguments,
these are blocked and thus return no answers. Initially, the
search space for each test sample is 19 teams.

Figure 10 shows the average search space after running
the queries to return set of possible culprits. There is a sig-
nificant reduction in search space across all target teams. The
average search space is reduced from 19 teams to 5.8 teams
(standard deviation of 1.92). To evaluate how much the re-
duced search space can aid an analyst in predicting the ac-
tual culprit, we compute one more metric—we check if the
reduced search space has the ground truth (actual culprit)
present in it. Figure 11 shows the fraction of test samples
with ground truth present in it. For the majority of the target
teams, we have ground truth present in more than 70% of
the samples with reduced search space. For some teams like
more smoked leet chicken (T-13) and raon ASRT (whois) (T-
17) the average reduced search space is as low as 1.82 and
2.9 teams, with high ground truth fraction of 0.69 and 0.63
respectively. The reason why there is a large search space
for some teams is the presence of a larger number of unseen
attacks. As discussed earlier, each unseen attack is replaced
by the three most similar attacks from the training set, and
hence the search space becomes larger.

We next perform predictive analysis on the reduced search
space. The experimental setup is similar to the one described
earlier; the only difference is that now instead of having a
19-team search space as in the previous case, the machine
learning approach is allowed to make a prediction from the
reduced search space only. We use random forest as the ma-
chine learning approach, which has shown to have the best
performance for CTF data (Nunes et al. 2015). Table 4 gives
a summary of the results.
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Figure 10: Average Search space after running the query to
compute warranted arguments.
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Figure 11: Fraction of test samples with the ground truth in
the reduced search space.

We report three accuracies for the 20 teams. “Prev. Acc.”
represents the accuracies achieved after running Random
forest without applying the argumentation based techniques,
as reported in (Nunes et al. 2015). “Acc. (ground truth)” con-
siders only the test samples where ground truth is present
in the reduced search space. With this setting we are able
to correctly predict on average more than 70% of the test
samples, with T-4, T-13 and T-14 having accuracies over
80%. On the other hand, “Acc. (all)” also takes into account
test samples where ground truth was not present in the re-
duced search space. It is clear that all those test samples will
be misclassified since the ground truth is not present in the
search space at all. Even accounting for those samples, the
average accuracy is 0.5, which is significantly better than the
average accuracy of 0.37 in (Nunes et al. 2015). The results
are statistically significant (t(20) = 6.83, p < 0.01).

Conclusion
In this paper we showed how an argumentation-based frame-
work (DeLP) can be leveraged to improve cyber-attribution
decisions. We demonstrated this concept using the DeLP
framework applied to CTF data, which reduced the set of
potential culprits allowing for greater accuracy when using
a classifier for cyber-attribution.

We are currently looking at implementing our probabilis-
tic variant of DeLP (Shakarian et al. 2015b), which assigns
probabilities to the arguments, helping in this way to decide
which arguments prevail when contradictory information is
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Table 4: Summary of Results

Team Acc. (ground
truth)

Acc. (all) Prev.
Acc.

T-1 0.69 0.51 0.45

T-2 0.72 0.45 0.22

T-3 0.55 0.40 0.30

T-4 0.81 0.44 0.26

T-5 0.68 0.45 0.26

T-6 0.62 0.49 0.5

T-7 0.70 0.53 0.45

T-8 0.75 0.61 0.42

T-9 0.68 0.50 0.41

T-10 0.77 0.42 0.30

T-11 0.62 0.44 0.37

T-12 0.76 0.43 0.24

T-13 0.85 0.63 0.35

T-14 0.71 0.52 0.42

T-15 0.57 0.38 0.30

T-16 0.68 0.48 0.43

T-17 0.80 0.58 0.42

T-18 0.68 0.50 0.48

T-19 0.70 0.51 0.41

T-20 0.74 0.51 0.48

present. We are also designing our own CTF event in order
to obtain more realistic data.
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