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Abstract

In intensive care units (ICU), electrocardiogram (ECG) wave-
forms show diverse variations under different patients’ phys-
ical conditions. In general, physicians can diagnose patients
efficiently by detecting any disorder of heart rate or rhythm
and any change in the morphological pattern of ECG data,
which contain underlying semantics. To help physicians bet-
ter analyze ECG data in a fairly short time, it is essential to
develop a novel method for mining semantics from ECG pat-
terns. This paper is the very first time to characterize ECG
patterns by using Prefix Scalable Pattern Tree (PSP-Tree).
Comparing with similar currently existing methods, PSP-
Tree can mine significant semantics, such as scalability, tem-
porality and hierarchy over ECG patterns. We conduct ex-
tensive experiments on real ECG data set which are obtained
from PhysioBank Community and Beijing No.3 People Hos-
pital. The experiment results show that our method performs
more feasibly and effectively than other related work.

Introduction
One of the most active hotspots in biomedical informatics
is emergency medicine. It is critical that patients in inten-
sive care units (ICU) can get timely diagnosis and treatment
according to the massive medical data collected by the ad-
vanced medical technologies. Among all recorded medical
data in ICU, ECG waveform data, which characters the heart
electrical depolarization and repolarization patterns, have at-
tracted a significant amount of attention (Eom, Kim, and
Zhang 2008; Srinivas, Rani, and Govrdhan 2010).

ECG waveforms can be used by physicians to diagnose
the patient intuitively and accurately. As time elapse, ECG
waveforms show significant variations under different pa-
tients’ physical conditions. Different ECG waveform pat-
terns characterized by diverse morphological and tempo-
ral features can be sufficiently complicated. Any change
in ECG waveform may sign underlying pathology (Gold-
berger 2012; Banerjee and Mitra 2014), such as missing or
repeating waveforms may indicate some pathology symp-
toms (Kim et al. 2007; Chinnasami, Rathore, and Duncan
2013). It’s important for physicians detecting the change in
the morphological and temporal pattern. For this, mining
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useful semantics over ECG pattern takes the prominent po-
sition. However, the current high-throughput measurement
systems-produced massive data make it difficult for physi-
cians to parse through the so much information for timely
diagnoses (Belle, Kon, and Najarian 2013). Therefore, data
mining methods play important role for providing computer-
aided solutions for ECG semantics mining for timely diag-
nosis.

Currently, the related studies can be categorized into fre-
quent pattern mining and specific pattern mining.

Firstly, frequent pattern mining methods aim to identify
patterns that frequently occur in the ECG waveforms. (Porta
et al. 2001) define frequent deterministic pattern in short
heart period variability series, then group all possible pat-
terns in four categories characterized by different frequency
contents. Besides, (Noh et al. 2006) propose the CAD-
AC, an associative classifier, to build up a classification
technique by using Frequent Pattern Growth (FP-Growth).
CAD-AC operates on ECG patterns and clinical investiga-
tion of Heart Rate Variability (HRV), can automatically di-
agnose Coronary Artery Disease. However, apart from the
frequent occurred pattern which can be detected by frequent
pattern mining methods, there are some patterns which ap-
pear infrequently may even contain significant semantics in
medical domain, such as ventricular fibrillation, which loses
some waves, can cause sudden death (Othman and Safri
2012). It is essential for researchers to provide new method
for mining the loses in semantics for physicians to discover
the significant infrequent ECG pattern.

Secondly, specific pattern mining methods are usually de-
veloped to extract features of ECG waveform for represent-
ing ECG classification. The most common work is QRS de-
tection, which is necessary to determine the heart rate and
can be used as the reference point for beat alignment (Mi-
tra, Mitra, and Chaudhuri 2009; Chatterjee, Gupta, and Mi-
tra 2011). Besides, (Ghaffari et al. 2010) use two innovative
modified Hilbert transform-based algorithms to extracted
QRS complexes and end-systolic end-diastolic pulses for de-
tecting acute hypotensive episodes and mean arterial pres-
sure dropping regimes. However, specific pattern mining can
only give effective actions for classification. In fact, some
combination of the specific patterns can also express signif-
icant semantics in medicine domain beyond classification.
For example, if QRS complex repeat many times indicates
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ventricular tachycardia (Simson 1981). Therefore, develop-
ing new mining method, which can not only be used for clas-
sification but can also be used for medical diagnose, has be-
come a more and more urgently solved problem.

In order to make up for the inadequacy of previous mining
method, we systematically analyze the ECG patterns, char-
acterization of ECG pattern by using Prefix Scalable Pat-
tern Tree (PSP-Tree). It is proposed for the first time in the
literature for mining semantics from ECG patterns, which
can find out the majority of patterns and related information
stored in the complex medical ECG waveforms.

Methods
Observation
As shown in Figure 1(a), a single normal cycle of the ECG
represents the successive arterial depolarization and ven-
tricular repolarization, and can be approximately associ-
ated with the peaks and other ECG waveforms, which la-
beled P,Q,R, S, T, U (McSharry et al. 2003). Recently, dif-
ferent characteristic segments, such as PQ,QRS, ST seg-
ments, are also used for diagnostics (Chiang et al. 2014).
Our method begins with a brief observation on ECG pat-
terns to summarize some useful semantics based on patho-
physiological mechanisms.

Scalability: We define the pattern formed by gain and loss
of basis units as scalable pattern. For example, the wave-
forms in Figure 1(b) and Figure 1(c) are so different from the
normal ones. However, they are consist of the waves which
are basically unchanged over the ECG cycles. QRS com-
plex, and T wave are gained in both Figure 1(b) and Figure
1(c) as the same form. But U wave is loss in Figure 1(b) and
P as well as U wave is loss in Figure 1(c). The loss and gain
of the basic units represent scalability of patterns.

Temporality: The scalable ECG pattern follows linear
temporal logic as shown in Figure 1(a). The sequence of ba-
sic waves can indicate the mechanism of heart rate, such as
P wave indicates the start of a new cardiac cycle. Once the
linear temporal logic turns to be inverted, a new cycle begins
(Shibahara 1985).

Hierarchy: Further, some patterns are formed by gain
and loss of scalable pattern as a whole, which represents
hierarchy of scalable patterns. As shown in Figure 1(b),
T wave repeats many times. In the medical domain, this
phenomenon can be considered as myocardial infarction
(Thygesen, Alpert, and White 2007). QRS complex repeat
many times in Figure 1(d), which reflect that patient may
have experienced episodes of sustained ventricular tachy-
cardia (Simson 1981). Therefore, the hierarchy of scalable
patterns has significant semantics in medicine domain.

Overall approach
Our proposed framework for mining semantics over ECG
patterns can be describe as follow, which is illustrated in
Figure2. First, with the help of our previous work (Li et
al. 2010), the base pattern matcher is applied to generate
the pattern stream based on the ECG original data. Then,
we present a data structure called PSP-Tree, which is used
to characterize ECG patterns. After that we illustrate the

method of mining semantics from ECG patterns with PSP-
Tree. Finally, the mining semantics will be returned to the
physicians.

Preliminary Definition
In order to introduce how the scalable pattern is formalized,
we take the pattern in Figure 1(b) for example: T pattern re-
peats, U pattern loses, the scalable pattern can be expressed
as below:

sp1 = P 1
1Q

1
2R

1
3S

1
4T

3
5U

0
6 = P1Q2R3S4T

3
5

where the superscript represents the number of the pattern
appear times, if the pattern appears one time, the superscript
can be omitted, and if the pattern disappears, neither the let-
ter of wave pattern nor the superscript is shown (e.g. U wave
lost and can be leave out). The subscript represents the pat-
tern appear order in the normal ECG temporal logic. If the
whole scalable pattern sp1 repeated 5 times, the more com-
plex phenomenon can be expressed by a higher-hierarchy
scalable pattern which can be expressed as below:

sp2 = (sp1)
5 = (P1Q2R3S4T

4
5 )

5

Prefix Scalable Pattern Tree
In order to express semantics of scalable pattern over ECG
data, we present Prefix Scalable Pattern Tree (PSP-Tree)
which can organize the scalable patterns.

Definition 1. Let PSP-Tree stands for the prefix scalable
pattern tree, it can be formalized as follow,

PSP − Tree = ((Nroot, Ninner, Nleaf ), E)

where Nroot is the root node, Ninner is the internal node,
Nleaf is a complex leaf node, E stands for the edges that
links the nodes.

The information in Ninner Nleaf supports the semantics
mentioned in the observation section, which is explained in
detail as follow.

(1) Root node: the initial node with no actual information;

(2) Internal node: it represents a base pattern. The appear-
ance or disappearance of base pattern in the inter node
represents the semantics of gain or loss, namely scala-
bility, all the nodes in the paths comply with the tempo-
rality of ECG;

(3) Leaf node: it indicates the ending of a scalable pattern
and store abundant information, which contains Base
Pattern Table (BPT) and Pattern Frequency and Navi-
gation Linked List (PFNLL). The numbers in the BPT
represents the times of scalable patterns, which explain
the semantics of hierarchy.

• Base Pattern Table (BPT): each line is corresponding to
a path from root node to the last internal node, and records
the appearance of each base pattern. Then the path with
the appearance record will form a scalable pattern. That is
to say, the base pattern in the path can form a benchmark
with temporal logic, and the BPT will provide the more
detailed appearance information;

447



(a) Normal ECG waveform (b) Myocardial infarction (c) Premature systole (d) Ventricular tachycardia

Figure 1: Normal ECG pattern and some ECG patterns implying symptoms

Figure 2: Framework for mining semantics over ECG data

Figure 3: The illustration of PSP-Tree data structure

• Pattern Frequency and Navigation Linked List
(PFNLL): each linked list entry represents the continu-
ous appearance times of the scalable pattern with the cor-
responding line. The entry will store the continuous ap-
pearance times, as well as the navigation pointer, which
will records the location or index of the former scalable
pattern.

As shown in Figure 3, one pattern of “P,Q,R, S, T ” ap-
pears in the corresponding internal node. In the BPT, the
former five columns represent the number of the base pat-
tern appears times along with the temporal logic. Each row
stands for a scalable pattern, the first row is sp1, which
can be formalized by P1Q2R3S4T5, the second row stands
for sp2, which is P1Q2R3S4T

4
5 . The last column of BPT

points to PFNLL, which contains the appearance number of
the corresponding scalable pattern and navigation informa-
tion. For example, the linked list in the first row shows that
the scalable pattern sp1 appears for 3 times repeatedly, then
the navigation pointer points to the entry in the second row,
which means the scalable pattern (P1Q2R3S4T5)

3 follows
P1Q2R3S4T

4
5 .

Table 1: A Scene with Base Pattern Stream to Construct
PSP-Tree

Order Scalable Pattern Appearance Times
1 P1Q2R3S4T5U6 1
2 P1Q2R3S4T5 1
3 S4T

2
5 3

4 P1Q2R3S4U
4
6 1

5 P1T5U6 2

Mining Semantics from Patterns with PSP-Tree

In this subsection, we will introduce how to characterize
ECG patterns and mine semantics with PSP-Tree. At the be-
ginning, PSP-Tree is empty. When a pattern stream comes,
Nroot will be created, which just represents the beginning
of the scalable pattern. Then an inner node will be added
into PSP-Tree with value of the corresponding matched ba-
sic pattern . Let pi be the current basic pattern and ni be the
current added node. If the order of the previous basic pat-
tern pi−1 and pi do not meet the temporal logic, ni will be
added as the roots child, if the root does not have a child
with this value of pi. Or else, it will be added as the child
of ni−1. The times of each basic pattern appears from root
to leaf will be added into the BPT. In addition, if the current
scalable pattern is the same as the previous one, the times in
its corresponding PFNLL will increase by 1, or else a new
one will be added to PFNLL by the value of 1.

We take a ECG waveform example, af-
ter transforming it into a pattern stream (Li et
al. 2010), we get a pattern stream which is
“PQRSTUPQRSTSTTSTTSTTPQRSUUUUPTU
PTU”. Table 1 characterize the scalable patterns of
the ECG waveform example. We can find that the pat-
tern P1Q2R3S4T5U6 appears once firstly, then pattern
P1Q2R3S4T5 arrives. Next, pattern S4T

2
5 appears 3 times

repeatedly, which is followed by the scalable pattern
P1Q2R3S4U

4
6 . The last scalable pattern of this ECG

example slice is P1T5U6 which repeats twice. With the help
of above semantics information, we will get the PSP-Tree
which is shown in Figure 4. Algorithm 1 shows the detailed
process of building PSP-Tree.

Then we introduce how to use the PSP-Tree to mine se-
mantics from ECG patterns. By the more in-depth observing
the PSP-Tree data structure, we can find that the majority
of the semantics information is stored in the complex leaf
nodes. Algorithm 2 shows the detailed process of mining se-
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Algorithm 1 PSP-Tree Builder
1: Input: pattern (P ) ;
2: count temp← 1
3: if root doesn’t exit then
4: create root;
5: end if
6: CurNode← root;
7: for each i ∈ [0, P length− 1] do
8: if i! = P length− 1 and P [i] = P [i+ 1] then
9: count temp++;

10: continue;
11: end if
12: end for
13: AddCounts(count temp);
14: count temp← 1;
15: Children← getAllChildren(CurNode);
16: if !P [i] ∈ Children then
17: temp = CreateNode(P [i]);
18: AddChildren(CurNode, temp);
19: CurNode = temp;
20: else
21: CurNode = Children[j];
22: end if
23: if CurNode has no leaf then
24: CreateLeaf(CurNode);
25: Add P into leaf;
26: else
27: for each k ∈ [0, P length] do
28: if k! = P length then
29: if patterns[k]equalsP then
30: Add show times to patterns[k];
31: end if
32: else
33: Add P into leaf;
34: end if
35: end for
36: end if
37: Output: PSPTree;

mantics with PSP-Tree.

• Scalability Mining: According to the each path from root
node to leaf nodes and the base pattern dictionary, we can
easily find the gain and loss information of a scalable pat-
tern. As shown in Figure 4, the shortest path represent
scalable pattern S4T

2
5 , the corresponding BPT means all

the base patterns in “P,Q,R,U” are lost and pattern T
gains twice.

• Temporality Mining: Each path of the PSP-Tree shows
the appearance order of base pattern, the longest path
in the Figure 4 shows the ECG temporal logic which is
obeyed by the other pathes.

• Hierarchy Mining: According to the definition of scal-
able pattern which is mentioned in the previous prelimi-
nary definition section, the existing scalable patterns can
be regarded as basic units to generate a new scalable
pattern, the related information is recorded in PFNLL.

Figure 4: The PSP-Tree of ECG pattern example

As shown in Figure 4, the corresponding PFNLL shows
pattern S4T

2
5 appears 3 times repeatedly, which can be

means that a whole hierarchical scalable pattern gains
3 times. For the more complex situation, the navigation
pointer of scalable pattern S4T

2
5 points to scalable pat-

tern P1Q2R3S4T
2
5 , we can find that the suffix of the prior

scalable pattern and the prefix of the later one are the
same, the navigation pointer links and combines them to-
gether to form a more complex scalable pattern, here the
scalable pattern S4T

2
5 can be regarded as a basic unit.

The new generated scalable pattern can be expressed as
P1Q2R3(S4T

2
5 )

4.

Algorithm 2 SemanticsMining
1: Input: PSPTree (T ), PSPTree node (n), Base Pattern

Dictionary (D);
2: if n is a leaf then
3: for each row ∈ [0, BPT.row.size− 1] do
4: for each col ∈ [0, BPT.row[i].length− 1] do
5: while true do
6: j ← 0;
7: if P [col]! = D[i] then
8: pset← (D[j], 0)
9: j ++;

10: else
11: set← (D[j], BPT [row][col]);
12: break;
13: end if
14: end while
15: end for
16: end for
17: end if
18: Output: set of scalable patterns with semantics set;

Experiment

In this section, we present our experiments to evaluate the
flexibility and effectiveness of the proposed method, fol-
lowed by some discussion about semantics results of ex-
tracted ECG patterns in comparison with some existing tech-
niques.
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Data set
We used real datasets instead of simulated data, which are
obtained from PhysioBank Community (Goldberger et al.
2000) and Beijing No.3 People Hospital. The detail infor-
mation of experiment data is listed as follow.

• MIT-BIH normal sinus rhythm database: We mark this
database as mnsrd, which includes 18 long-term ECG
recordings of subjects referred to the Arrhythmia Labo-
ratory at Boston’s Beth Israel Hospital. The 18 long-term
ECG recordings were obtained from 5 men, aged 26 to 45,
and 13 women, aged 20 to 50. No significant arrhythmias
were found in the subjects included in this database.

• Creighton University Ventricular Tachyarrhythmia
Database: We mark this database as cuvtd, which in-
cludes 35 eight-minute ECG recordings of human sub-
jects who experienced episodes of sustained ventricu-
lar tachycardia. The ECG waveform form of ventricular
tachycardia is the repeatability of QRS complex.

• The MIT-BIH Malignant Ventricular Arrhythmia
Database: We mark this database as mvad, which in-
cludes 22 half-hour ECG recordings of subjects who ex-
perienced episodes of sustained ventricular fibrillation.
The ECG waveform of ventricular fibrillation loses P
wave, QRS complex and T wave.

• MIT-BIH Arrhythmia Database Directory: We mark
this database as madd, which is the set of over 4000 long-
term Holter recordings which obtained from inpatients
who have premature beats, their ECG waveform lose P
wave.

• ECG from Beijing No.3 People Hospital: We mark this
database as bj3, which is recorded during a six hour period
simultaneously from a pediatric patient with traumatic
brain injury in ICU. The sample rates of the signals are
from 125 Hz to 500 Hz, varying according to the states of
illness. The whole dataset includes over 25,000,000 data
points.

Among the above data sets, nsrd database is applied to
generate pattern matcher with our previous work (Li et al.
2010), due to that it contains ECG waveform data of nor-
mal human beings. With the help of pattern matcher, we can
transfer the rest of ECG database into pattern stream for pro-
cessing.

Experiment results
This section presents the evaluation results in details. In our
framework, the PSP-Tree is builded to mine the ECG pat-
terns with semantics, which is few focused on by the most
of the methods mentioned in the introduction section. We
will compare our method with the classic FP-Growth (Noh
et al. 2006), the most relevant method for evaluating the min-
ing patterns. In addition, we have some discussion about the
interesting findings of patterns mined by our method. The
PSP-Tree’s ability in supporting the semantics of ECG pat-
terns is also discussed in this part.

By execution of mining methods based on PSP-Tree and
FP-Growth respectively on ECG datasets, we compared

Figure 5: The comparison of mining patterns amount

Figure 6: The comparison of mining patterns categories

them in terms of the category and amount of patterns mined
out. By conducting experiments on different kinds of ECG
data set, we got the results as shown in Figure 5 and Fig-
ure 6. From the results above, the method based on PSP-
Tree can mine out more categories and a larger amount of
patterns from ECG data sets. The main reason is that the
method based on FP-Growth does not support the scalability
semantics of basic patterns, it only mine patterns which ap-
pear frequently, thus it is impossible to mine out the scalable
patterns which has gain and loss of basic patterns. In addi-
tion, PSP-Tree supports mining out scalable patterns which
occur continuously along with the temporal logic of ECG
waveform, while the other one does not have this ability.

For further performance evaluation, we use the following
important measurements.

• Sensitivity (True Positive Rate): The probability that the
algorithm can find meaningful patterns over ECG wave-
form;

• Selectivity (True Negative Rate): The probability that
the algorithm does not find false patterns.

The two measurements are conflict in a sense that increasing
sensitivity to find more meaningful patterns will inevitably
finding more false patterns. In an ICU environment, sensi-
tivity is much more important than selectivity as missing a
meaningful pattern may cost the patient’s life. There are al-
ready tags in cwdt, mvad, madd data set, which can represent
the meaningful patterns. Besides, we ask three professional
doctors to tag out meaningful patterns for bj3 data set. The
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Figure 7: The sensitivity comparison of mining patterns

Figure 8: The selectivity comparison of mining patterns

sensitivity is defined as follows:

Sensitivity =
#pmp

#ptp
(1)

Selectivity =
#pmp

#pp
(2)

where pmp denotes the patterns mined by methods which are
also in the set of tagged meaningful patterns, ptp denotes the
set of tagged meaningful patterns, pp denotes the patterns
mined by methods.

Figure 7 and Figure 8 shows the performances of the
two algorithms on finding meaningful patterns, along with
the numbers of the false patterns. The result indicates that
PSP-Tree has the better performance on sensitivity than FP-
Growth, the former discovers more meaningful patterns and
misses more false patterns. This behavior is caused by the
limitation of the FP-Growth method’s characteristic. Just as
mentioned above, FP-Growth can only mines patterns which
appears frequently, however, PSP-Tree can mine more pat-
terns which is formed by the gain and loss of basis patterns.

Further more, we have some interesting findings about the
meaningful patterns. We conduct an experiment on bj3 data
set in consideration of its continuity. As the volume of data
increases, the changing trends of sensitivity mined by PSP-
Tree and FP-Growth can be shown in Figure 9. We can find
that sensitivity of FP-Growth decreases when more ECG
data comes, which can be also explained by the character-
istic of the FP-Growth method. Because it only mines fre-
quent patterns, which leads few in number of patterns cate-

Figure 9: The comparison of meaningful patterns of bj3 data
set

gory. With the increase of the meaningful patterns, sensitiv-
ity of FP-Growth decreases. Due to the scalability of mined
patterns, sensitivity of PSP-Tree performs steady.

As shown in the description of data set, the ECG wave-
forms of patient who has ventricular tachycardia show the
repeatability of QRS complex. In the results of experiment
conducted on the cuvdt data set, we find a lot of QRS com-
plexes, when the QRS complexes appear repeatability, the
corresponding tags in the dataset actually show that the pa-
tients are in the risk of ventricular tachycardia. We totally
find 134 QRS complex, among them there are 41 QRS rep-
etitions which cover the whole 34 tagged ventricular tachy-
cardia. Therefore, the interesting experiment results show
that our method can provide effective help for physicians.

Conclusion
In this paper, we analyze the requirements and challenges
of pattern mining over ECG waveform. By in-depth obser-
vation, we summarize significant semantics over of ECG
waveform. In order to mining semantics, we proposed a new
data structure called PSP-Tree for characterizing ECG pat-
terns. With PSP-Tree, we can mine out scalability, temporal-
ity and hierarchy from ECG patterns. With extensive exper-
iments on real ECG data sets, compared to the state-of-the-
art methods, the experimental results show that our method
is more feasible and effective.

In the near future, we plan to develop friendly man-
machine interface based on our method for physicians in
ICU, so that they can analyze the ECG waveform of patients
in real time and provide accurate treatment timely. Besides,
we also plan to extend our method on other bioinformatics
scenarios, such as mining microsatellite DNA, because DNA
sequence is a complex structure composed by basic units, A,
T, G, C base. Similarly, microsatellite DNA sequence con-
tains significant semantics which have great value, such as
in population genetic study, cancer carcinogenesis analysis
and Hemophilia A diagnosis.
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