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Abstract

Scientific articles are not born equal. Some generate an entire
discipline while others make relatively fewer contributions.
When reviewing scientific literatures, it would be useful to
identify those important articles and understand how they in-
fluence others. In this paper, we introduce J-Index, a quantita-
tive metric modeling topic-level academic influence. J-Index
is calculated based on the novelty of each article as well as its
contributions to the articles where it is cited. We devise a gen-
erative model named Reference Topic Model (RefTM) which
jointly utilizes the textual content and citation information in
scientific literatures. We show how to learn RefTM to dis-
cover both the novelty of each paper and the strength of each
citation. Experiments on a collection of more than 420,000 re-
search papers demonstrate that RefTM outperforms the state-
of-the-art approaches in terms of topic coherence as well as
prediction performance, and validate J-Index’s effectiveness
of capturing topic-level academic influence in scientific liter-
atures.

1 Introduction
Nowadays, there are numerous scientific articles with differ-
ent qualities, which makes it unrealistic for the researcher to
read all of them. Therefore, we need to select the most im-
portant papers when reviewing scientific literatures. Further-
more, understanding the scientific impact of each paper lays
a foundation for intelligent academic search engine, facili-
tating tasks such as paper ranking and citation recommenda-
tion. If the researcher stands on the shoulders of giants, we
want to find those giants (Foulds and Smyth 2013).

Modeling academic influence quantitatively is a challeng-
ing problem. In previous studies, one way of addressing this
problem is using metrics related to citation counts such as
impact factors. However, many citations are referenced out
of “politeness, policy or piety” (Ziman 1968), and thus make
literally little impact. Another attempt to solve this problem
is adopting graph-based approaches. For example, (Radev
et al. 2009) proposed an algorithm of PageRank (Page et al.
1999) to derive the measures of importance from the citation
network. Nevertheless, this method did not utilize the textual
content of articles and all citations were treated equally.
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A variety of methods have been proposed in recent works
for joint analysis of text and citation in scientific litera-
tures, including classifying citations function (Teufel, Sid-
dharthan, and Tidhar 2006), predicting citations topicality
(Nallapati et al. 2008), and modeling document network
(Chang and Blei 2009). However, those methods did not pro-
vide a direct measurement of academic influence of each pa-
per. As a work more relevant to the one we present, (Dietz,
Bickel, and Scheffer 2007) proposed the Citation Influence
Model (CIM) to predict citation influence. CIM assumes that
the citation graph is bipartite, with one set containing the
citing papers while the other one containing the cited pa-
pers. To hold this assumption, CIM duplicates each paper
that cites and is cited by other ones, losing the capacity of
handling more complex citation networks. (Liu et al. 2010)
adapted this model to heterogeneous networks for mining
topical influence, but it still retained the assumption of be-
ing a bipartite graph. (He et al. 2009) relaxed this assumption
by proposing Inheritance Topic Model (ITM). Nevertheless,
the main goal of ITM is to detect topic evolution instead of
measuring academic influence.

In this paper, we introduce J-Index, a quantitative metric
of modeling paper’s academic influence. For each paper, J-
Index considers its citation number, the strength of each ci-
tation and the novelty of all papers where it is cited. J-Index
resonates with the intuition that if one paper is cited by many
innovative papers with high citation strength, this paper is
more likely to be an influential paper itself. J-Index can help
to rank papers, make academic recommendation, and there-
fore enable researchers to evaluate the scientific merit of an
article.

To measure the novelty of each paper as well as the ci-
tation strength among them quantitatively, we devise an un-
supervised generative model named Reference Topic Model
(RefTM). Different from Latent Dirichlet Allocation (Blei,
Ng, and Jordan 2003), RefTM allows each word to be drawn
from either a paper’s own topic or those from its references.
The intuition behind is that a scholar may choose to write
a word based on his/her own innovative ideas, or just “in-
herits” some thoughts from cited papers. RefTM posits that
the paper with high novelty intends to generate a large pro-
portion of words from its own ideas, and the citation with
large strength is more likely to be selected for generating an
inherited topic. We show how RefTM measures the innova-
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Figure 1: Right hand side is an illustrative citation graph in which the thickness of edge represents the citation strength and the
vertex size indicates one paper’s academic influence. Left hand side presents each paper’s J-Index and quantitative measurement
of the citation strength.

tiveness of article as well as the citation strength by jointly
utilizing the textual content and citation network in scientific
literatures.

We conduct extensive experiments on a collection of more
than 420,000 research papers with over two million cita-
tions. Our results show that RefTM can effectively discover
topics of high quality, model paper novelty and predict ci-
tation strength. We also calculate the J-Index of all research
papers and the results validate its effectiveness of capturing
topic-level influence in scientific literatures.

2 Academic Influence Metric
We model a collection of scientific literatures as a directed
graph G = (N,E) in which each node e ∈ N represents an
articles and each edge (u, v) ∈ E indicates a citation from
paper u to paper v. Our goal is to find a metric F (·) such
that F (e) represents the academic influence of paper e. An
illustrative example is shown in Figure 1.

Naturally, we want the metric value correlated with the
ground truth. However, this ground truth is unobservable,
making it not obvious how one may quantify such a notion
of “influence”. Consequently, we need some commonsense
knowledge when designing this influence metric. Here we
have three general assumptions.

Assumption 1. A paper’s academic influence increases as
it gains more citations.

Citation is the most direct indicator of scientific merit, re-
flecting the academic influence of a paper. This assumption
resonates with the intuition that a paper will increase its in-
fluence when there are more papers citing it. Put this math-
ematically, suppose we denote the set of paper m’s citations
as C(m), then F (·) should be a monotonically increasing
function in terms of |C(m)|, the citation number of paper
m. Notice that F (·) is generally not a monotonic function
over the whole corpus. A paper with 800 citations may be

less influential than another paper with 650 citations due to
many other factors like the function of each citation, which
leads to our second assumption.
Assumption 2. A paper with stronger citations intends to
be more influential.

Many citations are referenced out of “politeness, policy
or piety” and have little impact on another work. We need
to consider the strength of each citation when measuring an
article’s academic influence. Therefore, F (·) should include
a component function δ(·), defined on edge set E, to assess
the citation strength. Moveover, F (u) should increase more
if one citation (u, v) has a larger value of δ(u, v). The con-
ception of citation strength enables us to filter those citations
made in passing by adding a relatively small influence score.
Assumption 3. A paper cited by more innovative papers is
more influential.

In many cases, simply relying on the citation strength falls
short of considering the difficulty of obtaining that citation.
An innovative paper intends to generate most words from its
own ideas, leading to small strengths of all citations asso-
ciated with it. For this reason, F (·) should contain another
node-weight function λ(·) to take into account the innova-
tiveness of each paper.

J-Index
Based on three above-mentioned assumptions, we introduce
J-Index, a quantitative metric modeling topic-level academic
influence. J-Index is actually a metric framework, includ-
ing two key components δ(·) and λ(·), obtained from subse-
quent model. We define the J-Index of paper u as follows:

J-Index-Score(u) =
∑

c∈C(u)

λ(c)× δ(c, u) (1)

J-Index is calculated as a sum of all positive numbers, and
thus the J-Index score of one paper will never decrease as
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more citations are added, which enables J-Index to satisfy
the first assumption. Besides, J-Index encodes the strength
of each citation as well as the novelty of each citing pa-
per in δ(c, u) and λ(c). Consequently, a paper’s J-Index will
increase more if one of its citations is more influential, or
one of its citing papers is more innovative. This correlates
with the second and third assumptions. The exact choice of
δ(c, u) and λ(c) will be discussed in following section.

3 Reference Topic Model

We propose the Reference Topic Model (RefTM) to mea-
sure the novelty of each paper as well as the citation strength
among them. Different from basic LDA model, RefTM is
able to utilize both the textual content and citation informa-
tion in scientific literatures.

The intuition of RefTM is that a scholar may choose to
write a word based on his/her own innovative ideas, or just
“inherits” some thoughts from references. In RefTM, each
paper can generate the topic of a word from either its own
topic distribution or from one of its references’ topic mix-
tures. RefTM uses an unfair coin s to model this choice.
We draw s from a Bernoulli distribution with parameter λ.
Each paper d has its own parameter λ, which to some extent
reflects its novelty. For each word in paper d, if its corre-
sponding coin s equals 0, then we draw that word’s topic by
paper d’s own topic mixture, otherwise we first choose one
paper from d’s references and draw the word’s topic from
that reference’s topic mixture. The selection of that referred
paper is modeled by RefTM as a multinomial distribution
with parameter δ, which represents the strength of each ci-
tation. Both δ and λ can be learned by RefTM.

Given a collection of M scientific articles and K topics
expressed over V unique words, we can extract the citation
network from this collection and thus the number of each pa-
per’s reference Lm is known. The whole generative process
described by RefTM is as follows:
1. For each topic index k ∈ {1, . . . ,K}

(a) Draw a word distribution ϕk ∼ Dir(β)
2. For each document index m ∈ {1, . . . ,M}

(a) Draw a topic distribution θm ∼ Dir(α)
(b) Draw a reference distribution δm ∼ Dir(η|Lm)
(c) Draw an inheritance index λm ∼ Beta(αλn , αλc )
(d) For each word n ∈ {1, . . . , Nm} in document m:

(i) Flip a coin sm,n ∼ Bern(λm)
(ii) if sm,n = 0:

Draw a topic zm,n ∼ Multi(θm)
Draw a word wm,n ∼ Multi(ϕzm,n )

(iii) else (sm,n = 1):
Draw a reference cm,n ∼ Multi(δm)
Draw a topic zm,n ∼ Multi(θcm,n )
Draw a word wm,n ∼ Multi(ϕzm,n )

where θm denotes a K-dimension multinomial distribution
over topics,ϕk defines a V -dimension multinomial distribu-
tion over words, and δm represents a Lm-dimension multi-
nomial distribution over references. The graphical represen-
tation of RefTM is shown in Figure 2.

n 2 {1, . . . , Nm}

m 2 {1, . . . , M}
k 2 {1, . . . , K}

↵

'k�

zm,n

sm,n

⌘�m�m

↵�c↵�n

✓m cm,n

wm,n

Figure 2: Graphical Representation of RefTM

4 Parameter Estimation
In RefTM, we need to estimate the parameter set
{θ,ϕ, δ,λ}. We adopt collapsed Gibbs sampling (Griffiths
and Steyvers 2004) for approximate estimation. Gibbs sam-
pling allows to learn the parameters by alternatively updat-
ing each latent variable conditioned on the current assign-
ments of all remaining variables. In order to derive these
update equations, we first write out the joint distribution of
all variables in generative process:
p(w, z, c, s|α,β,η, αλn , αλc) =∫

p(w|z,φ)p(φ|β)dφ ·
∫
p(z|s, c,θ)p(θ|α)dθ

·
∫
p(s|λ)p(λ|αλn , αλc)dλ ·

∫
p(c|δ,L)p(δ|η,L)dδ

Based on this joint distribution, we can derive the Gibbs
sampling update equations for three different types of latent
variables si, ci and zi associated with each word wi, where
subscript i = (m,n) means it is the n-th word in m-th doc-
ument.

During each iteration, we first sample a new flip coin si
following two equations below:

p(si = 0|s¬i,w, z, ·) ∝
(n
zi(0)
m −1)+nzi(1)m +α

n
(·)(0)
m +n

(·)(1)
m +Kα−1

· N(0)
m −1+αλn

N
(1)
m +(N

(0)
m −1)+αλn+αλc

(2)

p(si = 1|s¬i,w, z, ci, ·) ∝
n
zi(0)
ci

+(n
zi(1)
ci
−1)+α

n
(·)(0)
ci

+n
(·)(1)
ci

+Kα−1
· N(1)

m −1+αλc
(N

(1)
m −1)+N(0)

m +αλn+αλc
(3)

where nzi(0)m is the number of tokens in document m as-
signed to topic zi through topic innovation and n

(·)(0)
m =∑

zi
n
zi(0)
m . Furthermore, RefTM allows a paper to spread

its influence through citations. This influence is partially re-
flected by n

zi(1)
m , the number of topic zi generated in the

whole corpus by document m through topic inheritance and
n
(·)(1)
m =

∑
zi
n
zi(1)
m .

Suppose the new coin si is equal to 1, we should next
sample a new reference ci. This update equation is shown
below:

p(ci|c¬i,w, z, si = 1, ·) ∝
n
zi(0)
ci

+(n
zi(1)
ci
−1)+α

n
(·)(0)
ci

+n
(·)(1)
ci

+Kα−1
· R

ci
m−1+η

R
(·)
m +Lmη−1

(4)
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Table 1: Notations

Variable Meaning

M number of documents
K number of topics
V vocabulary size
Nm number of words in document m
Lm number of references in document m
α hyper-parameter of topic distribution
β hyper-parameter of word distribution
η hyper-parameter of reference distribution
αλn , αλc hyper-parameters of inheritance index
θm topic distribution of document m
ϕk word distribution of topic k
δm reference distribution of document m
λm inheritance index of document m

where Rcim represents the number of reference ci selected by
document m and R(·)

m is the summation over all references.
Finally, we draw the latent topic zi for each wordwi based

on following two equations:
p(zi|z¬i,w, si = 0, ·) ∝

n
wi
zi

+β−1
n
(·)
zi

+V β−1
· (n

zi(0)
m −1)+nzi(1)m +α

n
(·)(0)
m +n

(·)(1)
m +Kα−1

(5)

p(zi|z¬i,w, si = 1, ci, ·) ∝
n
wi
zi

+β−1
n
(·)
zi

+V β−1
· n

zi(0)
ci

+(n
zi(1)
ci
−1)+α

n
(·)(0)
ci

+n
(·)(1)
ci

+Kα−1
(6)

where nwizi is the number of tokens of word wi assigned to
topic zi, and the same as n(·)zi above represents the summa-
tion of nwizi over all topics.

The Gibbs sampling for RefTM is outlined in Algorithm 1
with notations defined in Table 1. After the sampling process
converges (i.e., after a sufficient number of iterations), we
can obtain the multinomial parameter sets corresponding to
the state of Markov chain, using following equations:

θm,k =
n(k)
m +α

n
(·)(0)
m +n

(·)(1)
m +Kα

(7)

ϕk,t =
n
(t)
k +β

n
(·)
k +V β

(8)

λm =
N(1)
m +αλc

N
(0)
m +αλn+N

(1)
m +αλc

(9)

δm,c =
R(c)
m +η

R
(·)
m +Lmη

(10)

The equations resonate with our intuition statistically. Take
λm for instance, if more words are generated from paperm’s
references instead of its own idea (i.e., N (1)

m � N
(0)
m ), then

we may conclude that this paper is less innovative, reflected
by a large inheritance index. Notice that following equation
(7), the update of one term in paper m will have influence
on all papers where it is cited. Therefore, RefTM is able to
directly model influence propagation in the citation network.

Complexity Analysis
The algorithm above needs to sample three latent variables
associated with each word. Each sampling operation re-

Algorithm 1 Gibbs Sampling Algorithm for RefTM
Input: K,w, α, β, η, λc, λn
Output: Parameter sets {θ,ϕ, δ,λ}
Read in data and zero out all count caches
Randomly initialize zi, ci, si
for iter = 1 to Niter do

for all documents m ∈ [1,M ] do
for all words n ∈ [1, Nm] in document m do

if sm,n = 0 then
Update the counts n(k)(0)m , n

(0)
m

else
Update the counts n(k)(1)c , n

(1)
c , Rcm, Rm

Draw a new s̃ from Eqs.(2-3)
if s̃ = 0 then

Update the counts nwm,nk , nk
Draw a new topic k̃ from Eq.(5)
Update the counts n(k̃)(0)m , n

(0)
m , n

wm,n

k̃
, nk̃

else
Draw a new reference c̃ from Eq.(4)
Update the counts Rc̃m, Rm, n

wm,n
k , nk

Draw a new topic k̃ from Eq.(6)
Update the counts n(k̃)(1)c̃ , nc̃, n

wm,n

k̃
, nk̃

Read out parameters set θ,ϕ,λ, δ by Eqs.(7-10)

quires a time of O(K), where K is the number of topics
given as the input of algorithm. Suppose there are W words
in the corpus, and Gibbs sampling runs Niter iterations,
then the time complexity of RefTM equals O(NiterWK).
With extra latent variables sampled, the time complexity of
RefTM remains the same as that of LDA’s.

As for the space complexity, the procedure itself uses
four large data structures, the count caches n(k)(0)m , n

(k)(1)
m

of dimension M × K, nwk of dimension K × V , and Rcm
of dimension E, where E denotes the number of cita-
tions. In addition, the row sums of these four data struc-
tures, namely n

(0)
m , n

(1)
m , nk, Rm, take space of dimension

3M + K. In summary, the space complexity of RefTM is
O(MK + KV + E + W ). Compared with the space com-
plexity of LDA, RefTM requires another O(E) space, in or-
der to measure the influence of citation network.

5 Experiments
In this section, we analyze the performance of RefTM and
validate the effectiveness of J-Index of modeling academic
influence in scientific literatures both quantitatively and
qualitatively.

Datasets
We consider two scientific corpora in the experiment part,
i.e., a large unsupervised collection of 426728 articles with
over 209 million citations gathered from the Internet and
another small supervised collection of 799 papers obtained
from (Liu et al. 2010). Papers in the first dataset are related
to the “network” field, while those in the second corpus are
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of more specific topics like “sentiment analysis” and “pri-
vacy security”. We extract the title and abstract of each each
paper as its textual contexts. After stop words removal, the
average paper length of two corpora are 83 and 98 words,
respectively. The distribution of paper’s citation number is
shown in Figure 3.

Evaluation Aspects
We conduct the experiments to analyze the performance of
RefTM and effectiveness of J-Index from three aspects.

First, we evaluate the coherence of topics learned from
RefTM since good topic cluster performance is the foun-
dation of a good understanding of topic-level academic in-
fluence. Two metrics are used to assess the topic qual-
ity, including PMI-Score (Newman et al. 2010) and topic
coherence-Score (Mimno et al. 2011).

Second, we adopt a prediction task to explore whether
RefTM can effectively learn the citation strength, which
is another key component of J-Index. We conduct experi-
ments on the relatively small dataset in which the strength
of each citation is manually labelled. We compare the re-
sults of RefTM with previous approaches and prove that our
model has better performance concerning the prediction of
citation strength.

Finally, we validate the effectiveness of J-Index in terms
of capturing topic-level academic influence through one case
study. We rank all 426728 papers in the first large dataset
based on their J-Index scores and compare the results with
each paper’s corresponding assessment of research scien-
tists.

The specific settings of hyper-parameters in RefTM and
comparative methods are discussed in following subsec-
tions.

In all our experiments, we set α = 50/K, β = 0.01,
following the convention of (Griffiths and Steyvers 2004).
As for three newly-added hyper-parameters in RefTM, we
give the recommending values as η = L̄, αλn = 0.01 · N̄ ,
andαλc = 0.04·N̄ , where L̄ is the average reference number
of each paper, and N̄ represents the average length of papers.

Topic Coherence Analysis
We evaluate the coherence of each learned topic based on
two metrics. The first one is PMI-Score, which represents
the average Pointwise Mutual Information between the most
probable words in each topic. A larger PMI-Score indicates
that the topic is more coherent. The calculation of PMI-
Score requires external dataset such as Wikipedia Data. We
construct our own reference collection based on 3.34 million
scientific articles with 395.3 million word tokens to better
reflect the language usage in academic domain.

We compare the PMI-Score of topics generated by LDA
and RefTM at the left hand side of Figure 4. As we can see,
the PMI-Score increases as the number of topics ranges from
10 to 50. Besides, we can discover that RefTM outperforms
the LDA by 12% when topic numberK equals 50, while the
performance of these two models is fairly close with a small
number of topics.

Topic Coherence-Score is another metric to assess the
topic quality. Topic Coherence-Score depends only on inter-

nal training data, specifically the word co-occurrence statis-
tics gathered from the corpus being modeled, and thus it
does not rely on the external reference corpus like PMI-
Score does. The comparative results of LDA and RefTM are
shown at the right hand side of Figure 4, with number of
topic K fixed as 30. We can see RefTM outperforms LDA
in terms of median, lower quartile and upper quartile.

Citation Strength Prediction
We conduct this experiment using the small supervised
datasets in which the strength of each citation is manually
classified into three levels, i.e., strong, middle and weak, la-
beled as 1, 2 and 3, respectively. Similar to (Liu et al. 2010),
we use the averaged AUC value for decision boundaries “1
vs. 2, 3” and “1, 2 vs. 3” as the quality measure for prediction
performance. A larger AUC value indicates the prediction
is more accurate. We compare the result with another two
baseline methods – LDA-JS and LDA-post in (Dietz, Bickel,
and Scheffer 2007). We set the hyper-parameters β = 0.01,
α = 50/K where the number of topics K ranges from 10
to 50 in all three methods. After reducing the normalization
constraint of RefTM in equation (9), we train each model 20
times and present the result in Figure 5. Clearly, we can see
RefTM outperforms another two methods in all five scenar-
ios.

Academic Influence Exploration
J-Index is a metric modeling one paper’s influence rather its
quality. These two notions differ in that a paper’s influence
may change over time while its quality is fixed. To reduce
the bias from different publication dates, we select a sub-
set of 224 papers published on INFOCOM in the same year
2003, and further adopt J-Index to measure a paper’s own
quality. We set the number of topic in RefTM to be 20, and
rank each paper by its J-Index as well as citation numbers.
Notice that here “citation number” actually means the num-
ber of citation within the corpora, which is only a fraction of
a paper’s overall citations. Due to space limitations, we only
show the Top-5 papers in terms of two different metrics in
Table 2.

Although the citation number and J-Index have positive
correlation in general, they tend to rank some specific papers
differently. For example, the most cited paper, “Performance
anomaly of 802.11b”, by Heusse, M. et al., is ranked sec-
ond place according to J-Index. Another example is “Packet
leashes: a defense against wormhole attacks in wireless net-
works”, in which a novel mechanism is presented for de-
fending against a severe attack in ad hoc networks called
wormhole attack. J-Index ranks this paper at 3rd place, up
from 11th place by citation count. Suppose we consider the
citation number on Google Scholar, which is based on enor-
mous data volume, as a partial ground truth, we find “Packet
leashes” is actually ranked 2nd place among all papers in
INFOCOM 2003 with over 1840 citations. After detailed
observation, we discover that “Packet leashes” possesses a
dominant position in the references of those papers where
it is cited. This explains the behavior of J-Index and further
validates its effectiveness in capturing paper’s novelty.
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Table 2: Top 5 Articles in INFOCOM 2003 randked by J-Index & citaions
Title J-Index citation counts
Top 5 Articles in INFOCOM 2003 ranked by J-Index
Ad hoc positioning system (APS) using AOA 6.75 115
Performance anomaly of 802.11b 5.17 127
Packet leashes: a defense against wormhole attacks in wireless networks 4.13 74
Unreliable sensor grids: coverage, connectivity and diameter 4.00 82
Sensor deployment and target localization based on virtual forces 3.61 60
Top 5 Articles in INFOCOM 2003 ranked by citation number
Performance anomaly of 802.11b 5.17 127
Ad hoc positioning system (APS) using AOA 6.75 115
Optimal routing, link scheduling and power control in multihop wireless networks 2.26 109
Sprite: a simple, cheat-proof, credit-based system for mobile ad-hoc networks 2.43 88
Unreliable sensor grids: coverage, connectivity and diameter 4.00 82
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Figure 5: Citation Strength Prediction by AUC

6 Conclusions & Future Work
This paper introduces J-Index, a quantitative metric mod-
eling topic-level academic influence. J-Index encodes each
paper’s novelty and its contribution to the articles where it
is cited. A generative model named Reference Topic Model
(RefTM) is further proposed to recover the innovativeness of
each paper and the strength of each citation. RefTM is able
to jointly utilize the textual content and citation relationship
in scientific literatures during its training process, and thus

plays a key role in the calculation of J-Index. Experiments on
two real-world datasets demonstrate RefTM’s ability to dis-
cover high-quality topics, predict citation strength and val-
idate the effectiveness of J-Index for modeling topic-level
academic influence.

There are several interesting future directions. For exam-
ple, RefTM can be extended to model more inherent rela-
tionship in scientific literatures such as co-authorship, co-
reference and co-citation, enabling J-Index to cover more
information beyond word level. Another possible direction
is to model the dynamics of citation network as well as J-
Index. Currently, J-Index is only applicable to a static net-
work and it has to be recalculated when new papers are
added or time passes by. Therefore, an online version of
RefTM as well as an explicit time component in J-Index
is able to capture influence changes in scientific literatures.
Finally, we intend to develop a system such as CiteSeer in
which J-Index can facilitate a large pool of applications like
paper ranking and academic recommendation.
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