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Abstract 
Human-machine systems have expanded in terms of their 
sensing, communication, and computational capabilities. 
These capabilities have led to developments of a variety of 
sensor systems, like robotic platforms. There are benefits to 
these new sensor systems, however, these benefits have 
been offset by new difficulties; dynamic data overload, 
keeping pace with changing tempo, and managing data 
flows from multiple sensors feeds. One approach to manage 
data overload from multiple sensor feeds are computational 
models of attention. These models also address an important 
aspect of human-machine symbiosis, the need for machines 
agents to understand attention, manage interaction based on 
the flow of attention, and anticipate the flow of attention in 
the future. Unfortunately, existing computational models of 
attention use assumptions that limit their applicability to 
human-machine systems. The Artificial Attention Architec-
ture is introduced and demonstrates how computational 
models of attention can be extended to handle multi-agent, 
multi-sensor systems. The Artificial Attention Architecture 
addresses important properties of human-machine systems 
like the need to build symbiosis between people searching 
for meaning in extensive data flows and the computational 
algorithms processing complex and dynamic data flows. 

Introduction   
Since the 1930s, human-machine systems have expanded 
to include sensors, computations, and robotic platforms. 
There is a clear benefit to these new sensor systems that 
are expanding human range in several important ways. We 
are able to access previously inaccessible environments, 
take new vantage points, and explore a scene from multiple 
vantage points simultaneously. This new access takes the 
form of image feeds that are captured by local human and 
machine agents – in the scene of interest – and transmitted 
to distant problem holders and machine agents. These 
feeds allow problem holders, assisted by machine agents, 
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to explore distant scenes by navigating over the feeds from 
multiple sensors (Morison, Woods, and Murphy 2015). 
 The benefits of expanding human range through sensors 
have been offset by new difficulties. One is the challenge 
of dynamic data overload (Woods et al. 2002). For sensor 
systems, this challenge has grown as the size and diversity 
of sensor networks has grown. The data overload problem 
is not new however and systems that manage data overload 
exist. Previously, one way to escape from data overload 
has relied on the growth of computational resources and 
sophisticated inference mechanisms to compute a ‘best’ 
answer. An alternative approach to managing data overload 
utilizes properties and functions of human attention, in par-
ticular, builds on advances in computational models of 
human attention (Woods and Sarter 2010). Neurobiology 
tackles dynamic data overload by starting with the tracking 
the flow of events and change, through mechanisms to con-
tinually focus and re-focus the perceptual apparatus (Itti et 
al. 2005, Zachs and Tversky 2001).  
 A second reason for using computational models of at-
tention to manage data flows from multiple sensor feeds is 
the problem of pacing as the tempo of events and activities 
in the world change (Woods and Hollnagel 2006). Compu-
tational approaches to dynamic data overload assume pro-
cessing speed can always outpace the tempo of events. But 
the true challenge is being sensitive to the change in tempo 
of activities and events over time, not simply outpacing 
them. Managing and being sensitive to the varying tempo 
of activities and events is a basic part of the expertise of 
experienced human operators. 
 This means any machine agent that engages in a symbi-
otic relationship with a human agent will have to have an 
understanding of attention, manage interaction based on 
the flow of attention, and anticipate the flow of attention in 
the future.  
 Computational approaches have assumed that human at-
tention is a bug not a feature. However, difficulties in find-
ing what is meaningful from sensor networks and sensors 

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence 
Symbiotic Cognitive Systems: Technical Report WS-16-14

759



on robotic systems highlights the need for some mecha-
nism that performs a similar function to human attention 
(in small part because machines are not exempt from 
bounds on resources). This paper considers how computa-
tional models of attention can be extended to create a new 
form of symbiosis between human and machines to find 
what is meaningful in the data flows from multiple sensors. 

Expanding Symbiosis 
Since the publication of Licklider’s 1960 paper, research 
on attention has moved from phenomena at an individual 
scale, to phenomena at a micro scale and more recently to 
the underlying neural structures responsible for attentional 
processes. This is important work and many insights from 
this work can be applied to the study of human-robot coor-
dination. However, there is little research studying how 
people and machine agents can coordinate at the new ex-
panded scales that arise from from data flowing from ex-
tensive networks of sensors. The important question for the 
joint system is: how to explore and discover what is mean-
ingful, in pace with a changing world, when the questions 
are ill-defined and expectations, context, and priorities 
change, as more data flows in at rates that hamper availa-
ble computational resources?  
 There are at least two critical gaps in existing approach-
es to address the above question. The first gap is the ability 
of machine agents to focus and shift focus given only a 
partial view of an environment from available sensors. The 
second gap is the ability to notice deviations from typicali-
ty, where typicality is context dependent. Computational 
models of attention provide a starting point but need to be 
extended to meet these challenges. For instance, current 
computational models simulate a saccadic process, but they 
do not explicitly address the concept of focusing and refo-

cusing, or the idea of a partially observable environment. 
The underlying assumptions behind current computational 
models limit their applicability to system that must work at 
larger scales.  

Computational Models of Attention 
The starting point is computational models of the neurobio-
logical mechanisms of attention (Itti and Koch 2001). The-
se computational mechanisms can be used to develop Arti-
ficial Attention systems, rather than serve as models of a 
single human’s attentional capability. As simulations of at-
tention, these models have the potential to embody the ca-
pabilities of human attention, including the ability to func-
tion with uncertainty, to shift expectations and priorities, 
and to focus on what is important now while remaining 
sensitive to what could be important in the future. 
 Current computational models of attention are encoded 
as an algorithm that takes input, which simulates sensory 
data such as light or sound and then focuses and refocuses 
over the input array over time. Several versions have been 
developed including, Koch and Ullman, 1984, which is a 
precursor to the model developed by Itti and colleagues, 
Treisman and Gormican 1988, Tsotsos et al. 1995, Le 
Meur et al. 2006, Frintrop, et al. 2007, and Wickens et al. 

Figure 1. An eye track example. The fixed boundary of the image 
limits applicability of this data to human-robot systems. 

Figure 2. An example of a 3-dimensional virtual environment 
with sensor (above) and the maximum field of view of the sensor 
including forward view directions bottom-left image) and back-
ward view directions (bottom-right image).   
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2003.  Figure 1 shows an example of an image of a scene 
with the simulated eye track from one model superimposed 
(Itti and Baldi 2005). These model outputs are then used to 
explain and assess human attentional performance. 

Extensions for Sensor Networks 
Expanding a computational model of attention to handle 
multi-agent, multi-sensor systems reveals three require-
ments to balance limited resources with a complex and dy-
namic environment. These requirements are fundamental 
constraints on any system of cognitive agents. 
1) Sampling impacts what is and is not sampled: The out-
put of an attentional process is a sequence of samples over 
physical space and time. Importantly, the sample path in 
the future is affected by past samples, the activity in the 
world, and the sensitivity of the attention process to partic-
ular activities. In past models, the simulated attentional 
process is not affected by past samples. 
2) Breaking the fixed frame boundary: Attention is an ac-
tive sampling of an environment that results in a dynamic 
panorama with changing shape and extent. In previous 
computational models the dynamic panorama is narrow 
and static as shown in Figure 1. A narrow and static pano-
rama can never be expanded to function at the scales re-
quired for multi-agent, multi-sensor systems.  
3) Multiple viewpoints: The input to past computational 
models of attention is a flat planar representation of a 3-
dimensional environment. While a flat planar representa-
tion permits a single point-of-observation, the planar 
frame-of-reference is insufficient for coordinating across 
multiple viewpoints. As a result, computational models of 
attention with this simplification cannot function at the 

scales required for multi-agent, multi-sensor systems. 
 These requirements place constraints on how an atten-
tion process can be simulated. A first constraint that fol-
lows from the first two requirements is that the pace of ac-
tivities in the environment must be well-matched to the 
sampling process. The pace of activities cannot be too fast 
or too slow for the sampling process. A second constraint 
is about the field-of-view of the attention process. Given 
the second requirement, the field-of-view must be smaller 
than the maximum field-of-view – a sphere – and must be 
able to move through the environment. The third require-
ment means there must be the ability to instantiate multiple 
sensors simultaneously. These constraints, together, require 
a high degree of control on the environment of the sam-
pling process. One solution is a simulated 3-dimensional 
environment that provides control over the pace of activi-
ties in the environment and the sensor access. An example 
of such and environment is shown in Figure 2.  

Artificial Attention Architecture 
The Artificial Attention Architecture is shown in Figure 3 
and combines three components in a unique way to simu-
late the capability of human attention in a way that can 
function in a multi-agent, multi-sensor system (Woods and 
Morison 2014). The first component, bottom-up saliency, 
is ubiquitous across computational models of attention and 
is an active productive area of research (Baldi and Itti 
2012). The second component is mechanisms for focusing 
and for reorienting and how they interact. Initial develop-
ment and results have demonstrated the importance of how 
these two processes of focus and reorienting balance. The 
third component is a computational system to integrate top-

Figure 3. A diagram of the Artificial Attention Architecture with Scenario generation engine. 
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down expectation in the architecture. Together, these com-
putational sub-processes form an architecture that can con-
tinuously output what is most significant as activities, 
events, objects-of-interest, expectations and priorities 
change over time.  
An example of the output created by the Artificial Atten-
tion Algorithm is shown in Figure 4. These snapshots illus-
trate the three requirements for extending computational 
models of attention to new scales. First, the sensors sam-
pling the environment do not have complete access to the 
environment at every instant. Instead, samples are built up 
over time to provide a view that is partial and incomplete. 
There are obvious gaps in the visual field. Second, there is 
no smooth fixed boundary to the attention “panorama”, as 
is the case for other computational models of attention. In 
fact, the panorama is a complex shape that exists over 
space and time. The challenge of multiple viewpoints also 
has been demonstrated with the architecture (but is not il-
lustrated in Figure 4). 
 This approach for developing the Artificial Attention 
Architecture for multi-agent, multi-sensor scales uses the 
functional engineering approach previously advocated by 
Newell for AI as an experimental science (Newell and Si-
mon 1961). The functional engineering approach stresses 
the simulation of system function and then using the be-
havior of the simulated system acting within a representa-
tive environment as feedback (e.g., Roberts and Morison 
2014). An analysis of the difference between simulated be-
havior and real system behavior identifies gaps in function 
and inspires modifications of structural mechanisms to 
achieve those functions. 

Summary 
 The Artificial Attention Architecture demonstrates how 
computational models of attention can be extended to func-
tion at multi-agent, multi-sensor scales. This architecture 
extends current computational models of attention by elim-
inating several hidden assumptions that block their ability 
to function at scale. These hidden assumptions were identi-
fied by contrasting functions from the neurobiology of at-
tention key for explaining attention at the scale of a single 
individual with constraints that had to be met for any atten-
tional system to function at the larger multi-agent, multi-
sensor scale relevant to many systems today. Artificial at-
tention at scale captures Licklider on human-machine 
symbiosis in several ways.  
 First, the human-machine joint cognitive system is re-
framed in terms of the problem of finding what is meaning-
ful in extensive data flows from multiple heterogeneous 
sensors. Handling this scale of data requires extensive ma-
chine processing. It also requires overcoming problems of 
data overload, which can be accomplished by developing 

Figure 4. A sequence of snapshots from the output of the Artifi-
cial Attention Architecture using the 3-dimensional virtual envi-
ronment shown in Figure 2(left to right, top to bottom). 
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attentional capabilities modeled on the latest information 
about human attention. While inspired by the latest find-
ings and models of attention at an individual level, to get 
artificial attention mechanisms to work at the new scales 
required innovations that go beyond explaining the mecha-
nisms behind human attention.  
 Second, Artificial Attention forms a new approach to 
build symbiosis between people searching for meaning in 
extensive data flows and the computational functions pro-
cessing the data flowing from the network of multiple het-
erogeneous sensors. 
 Third, Artificial Attention highlights a performance test 
for joint human-machine sensor systems: what is the ability 
of the joint system to re-focus on what might be interesting 
while keeping pace with the changing events and activities 
in the scenes of interest made accessible through the net-
work of multiple heterogeneous sensors. 
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