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Abstract

We present RELOOP, a domain-specific language for
relational optimization embedded in Python. It allows
the user to express relational optimization problems in
a natural syntax that follows logic and linear algebra,
rather than in the restrictive standard form required by
solvers, and can automatically compile the model to a
lower-order but equivalent model. Moreover, RELOOP
makes it easy to combine relational optimization with
high-level features of Python such as loops, parallelism
and interfaces to relational databases. RELOOP is
available at http://www-ai.cs.uni-dortmund.de/weblab/
static/RLP/html/ along with documentation and exam-
ples.

Introduction

“Democratization of data” does not mean dropping a huge
spreadsheet on everyone’s desk and saying “good luck.” It
means making machine learning and AI methods usable
in a way that people can easily instruct machines to have
a “look™ at the data and help them to understand and act
on it. Therefore, it is not surprising that probabilistic log-
ical languages are currently provoking much new Al re-
search with tremendous theoretical and practical implica-
tions, see e.g. (Getoor and Taskar 2007; De Raedt 2008;
De Raedt et al. 2008; De Raedt and Kersting 2010; Rus-
sell 2015) and references therein for overviews. However,
instead of looking at AI through the glasses of probabili-
ties over possible worlds, we may also approach it using
optimization. That is, we have a preference relation, i.e.,
some objective function over possible worlds, and we want
a best possible world according to the preference. Consider
for example a typical data analyst solving a machine learn-
ing problem for a given dataset. She selects a model for the
underlying phenomenon to be learned, formats the raw data
according to the chosen model, tunes the model parameters
by minimizing some objective function induced by the data
and the model assumptions, and may iterate the last step as
part of model selection and validation.

This is an instance of the declarative “Model + Solver”
paradigm that was and is prevalent in Al (Geffner 2014),
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natural language processing (Rush and Collins 2012), ma-
chine learning (Sra, Nowozin, and Wright 2011), and data
mining (Guns, Nijssen, and De Raedt 2011): instead of out-
lining how a solution should be computed, we specify what
the problem is in terms of some high-level modeling lan-
guage and solve it using general solvers.

Arguably, the “Model + Solver” paradigm involves more
than just the specification and optimization of an objective
function subject to constraints. Before optimization can take
place, a large effort is needed to not only formulate the
model but also to put it into the right form. We must of-
ten build models before we know what individuals are in
the domain and, therefore, before we know what variables
and constraints exist. As prominently witnessed by the NLP
community (Riedel and Clarke 2006; Yih and Roth 2007;
Clarke and Lapata 2008; Martins, Smith, and Xing 2009;
Riedel, Smith, and McCallum 2012; Cheng and Roth 2013;
Singh et al. 2015; Kordjamshidi, Roth, and Wu 2015), we
must often solve optimization problems over relational do-
mains where we have to reason about a varying number
of objects and relations among them, without enumerating
them. Hence modeling should facilitate the formulation of
declarative, relational knowledge. Moreover, this not only
concerns the syntactic form of the model but also the solvers;
the efficiency with which the problem can be solved is to a
large extent determined by the way the model is formalized
and compiled for the solver.

An initial step towards such a general relational opti-
mization framework are relational linear programs (Kerst-
ing, Mladenov, and Tokmakov 2015), a simple framework
combining linear and logic programming. They are com-
pact templates defining the linear objective and the lin-
ear constraints through the logical concepts of individu-
als, relations, and quantified variables. This contrasts with
mainstream LP template languages such as AMPL (Fourer,
Gay, and Kernighan 2002), which mix imperative and
linear programming, as well as CVXPY (Diamond and
Boyd 2015), which combines matrix notation and (object-
oriented) Python, and in turn allows a more intuitive repre-
sentation of optimization problems over relational domains.
Since the templates are instantiated multiple times to con-
struct the solver model, the model is likely to exhibit sym-
metries, which can be detected and exploited automatically
to speed up solving.



In this paper, we present RELOOP, a domain-specific lan-
guage for relational optimization embedded in Python based
on (Kersting, Mladenov, and Tokmakov 2015). RELOOP al-
lows users to express relational optimization problems in a
natural syntax that follows logic and linear algebra, rather
than in the restrictive standard form required by solvers,
and can efficiently reduce the model to a lower-order but
equivalent model whenever symmetry is present. Another
important feature of RELOOP is that it makes it easy to
combine relational optimization with high-level features of
Python such as loops, parallelism and interfaces to relational
databases. This allows the user to take shortcuts around
problems which are less elegantly expressed declaratively
in (relational) logic.

We proceed as follows. We start off with an introduc-
tion to RELOOP. To this end, we present three applica-
tions from AI and machine learning, taking a tour of the
RELOOP’s features along the way. Before concluding, we
discuss RELOOP’s general architecture, going into details
for one of its ingredients, namely grounding.

RELOOP: Relational Optimization in Python

We now illustrate RELOOP using three Al applications:
Sudoku, Stackelberg games, and LP-SVMs. For more de-
tails on some of the mathematical underpinnings, we refer
to (Kersting, Mladenov, and Tokmakov 2015).

RELOOP Walkthrough Example: Sudoku

Sudoku presents one with a 9x9 square grid subdivided into
3x3 boxes with 3x3 squares each, cf. Fig. 1la. The grid is
partially populated with clues, and your task is to fill in
the rest of the grid with integers from 1 through 9 so that
each integer appears only once in each row, column, and
major 3-by-3 square. To solve such a puzzle one can em-
ploy an assignment linear program (LP) as shown in Fig. 1b.
This LP has a decision variable £i11(X,Y, N) for every
triple (X,Y,N) € {1,...,9}>. The intent of these vari-
ables, which are bounded between 0 and 1, is to indicate
if the number N is filled in the empty square with coordi-
nates (X,Y). E.g., having £111(9,7,1) = 1 in our solution
represents that the square in the ninth row and seventh col-
umn receives the number 1. The constraints of the Sudoku
problem can naturally be expressed as linear constraints as
shown in the Figure. This LP happens to be totally unimod-
ular, thus solving it via the simplex method always results in
a solution where the variables are either 0 or 1. This allows
us to read off a valid assignment by looking at the variables
which receive a value of 1 in the solution.
First, we import the necessary RELOOP components:

from reloop.languages.rlp import =

from reloop.languages.rlp.grounding.block import
BlockGrounder

from reloop.languages.rlp.logkb import PyDatalogLogKb

from reloop.solvers.lpsolver import CvxoptSolver

Let us shortly explain what these are. In order to create a
relational LP model (RLP), we need three objects—a log-
ical knowledge base, a solver and a grounder. The LogKB

interface provides the RLP with means to query the rela-
tional database/reasoning engine where the data is stored.
Currently, RELOOP supports pyDatalog, PostgreSQL, SWI
Prolog and ProbLog'. Here, we will use pyDatalog. The
solver interface interfaces the RLP to a linear programming
solver such as glpk, CXOPT or Gurobi. Finally, the grounder
is an object that implements a strategy of parsing the RLP
constraints and querying the LogKB in order to convert the
RLP to matrix form, which the solver understands.

We now instantiate the three objects in question:

logkb = PyDatalogLogKb ()
grounder = BlockGrounder (logkb)

solver = CvxoptSolver (solver_solver='glpk’)

The option solver_solver = "glpk’ is a passthrough argument
that tells CVXOPT to use glpk, since we need to solve the
Sudoku LP with a simplex method. With this, we are ready
to instantiate the model:

model = RlpProblem("play sudoku for fun and profit",

LpMaximize, grounder, solver)

The model takes as arguments a grounder (the LogKB is ac-
cessed through the grounder), a solver and a sense of the
objective, either LpMinimize or LpMaximize. For this ex-
ample it does not really matter.

Before we start defining constraints, we declare our pred-
icates, constants, and logical variables. These symbols are
defined with

I, J, X, U, V = sub_symbols('I’, 'J’, 'X’, 'U’, 'V’)

Now we can define the predicates. Reloop has two different
kinds of predicates: numeric predicates (essentially func-
tions) that return a numeric value, e.g. pred('a’,’b’) —
100. In the LogKB, this numerical atom is stored as
pred(’a’,’ b, 100). Boolean predicates that return a boolean
value, e.g., pred('a’,’b’,100) +— True. In our sudoku LP,
we have the following predicates:

num = boolean_predicate ("num", 1)

boxind = boolean_predicate ("boxind", 1)
box = boolean_predicate ("box", 4)

initial = boolean_predicate("initial", 3)
fill = numeric_predicate("fill", 3)

More precisely, predicate declarations in RELOOP take two
arguments—a predicate name and an arity. A predicate can
be a variable predicate, meaning that each of its atoms in the
Herbrand basis are decision variables. If a predicate is not a
variable, it must be interpreted in the knowledge base. The
variable predicate in our running example is £i11:

model.add_reloop_variable (£fill)

The other predicates will be interpreted in the knowledge
base. Since we leave the knowledge base discussion for the
end of this example, let us briefly mention what these predi-
cates are supposed to mean.

"https://dtai.cs.kuleuven.be/problog/
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(a) Sudoku example taken from Wikipedia

minimize 0
£i11€:9X9X9

subject to VX,N € [1,9]: ZNe[l 9] £i11(X,Y,N) =1,

VY, N € [1,9] : ZNE[lyg]fill(X,Y,N):1,
VX,N € [1,9]: ZNE[I,B] £i11(X, Y, N) =1,
VB € Box, N € [1,9] : Z(Xy)EB £fi11(X,Y, N) =1 .
VX,Y,N € [1,9] : 1> fill(X,Y,N) >0,

(b) Assignment Linear Program for solving Sudoku

Figure 1: (a) The objective of Sudoku is to fill a 9-by-9 grid with integers from 1 through 9 so that each integer appears only
once in each row, column, and major 3-by-3 square. The grid is partially populated with clues, and your task is to fill in the rest
of the grid. There are many approaches to solving Sudoku puzzles. The approach in (b) shows an assignment LP doing the job.

The predicate num evaluates to true if the argument is an
integer from 1 to 9. This is used for grid coordinates and
for numbers to fill in the squares. boxind holds the numbers
from 1 to 3. This is used for the coordinates of the boxes.
E.g., boxind(1,1) is the upper-left box in the grid, while
boxind(3, 3) is the lower-right. The predicate box takes 4
arguments—the two coordinates of a square and the two co-
ordinates of a box. Thus, box(x,y,u,v) evaluates to true if
the square at x,y is in the box at u,v. E.g., box(7,8, 3, 3)
is true since at row 7 and column 8 s in the lower-right box.
Finally the predicate initial tells us how squares are filled
in the initial grid state. E.g. initial(1,1,5) is true in the
grid of the Figure.

With this at hand, we can specify the constraints:

# each cell receives exactly one number

model += ForAll([I,J], num(I) & num(J),

RlpSum([X, ], num(X), £fill(I, J, X)) leql| 1)
# each number is encountered exactly once per row
model += ForAll([I,X], num(I) & num(X),

RlpSum([J, 1, num(J), fill(I, J, X)) leql 1)

# each number is encountered exactly once
+= ForAll ([J,X], num(J) & num(X),
RlpSum([I, £il1l (I,

# each number is encountered exactly once

per column
model
1, num(I), J, X))

per box

leql 1)

model += ForAll([X,U,V], num(X) & boxind(U) & boxind(V),
RlpSum([I, J], box(I,J,U,V), £fill(I,J,X)) leql 1)
model += ForAll([I,J,X], num(X) & num(I) & num(J),
£i11(I,J,X) lgel 0) # nonnegativity
model += ForAll([I,J,X], initial(I, J, X),
£fill(I, J, X) l|eql 1) # initial assignment

The default way to add constraints to a model is by the
overloaded addition operator. Constraints can be defined
through the ForAll function, which takes as arguments
a list of query symbols X, a logical query L(X,Y), and a
parametrized arithmetic expression R(X) (for RLPs, an ex-
pression is a linear equality or inequality), where the query
symbols appear as parameters. The semantics of ForAll
are as follows: the answer set of the logical query L(X,Y) is
computed and projected onto X (i.e., we ask the knowledge
base for the tuples of answer(X) :- L(X,Y) with duplicate
elimination). For every tuple t in answer(X), we instantiate a
ground constraint with the arithmetic expression R(t). E.g.,

the constraint ForAll([X],num(X),£i11(1,1,X)|ge|0)
is equivalent to the ground constraints
£i11(1,1,1) >=0,...,£i11(1,1,9) >= 0. Constraints
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can also be added directly by model += R without
ForAll, however, no free variables should occur in R.
E.g. model += fill(1,1,1) |ge| O is acceptable. Fi-
nally, parametrized arithmetic expressions are of the form
A rel B, where A and B are arithmetic terms and rel is one
of |eq|, |ge| resp. >=, and |1e| resp. <=. A linear (in terms
of the RLP decision variables) expression may contain ad-
dition of linear terms, multiplication of linear terms with a
non-variable numberic predicate, or an R1pSum. An R1pSum
is a first-order expression that generates a sum based on
the result of a query. The syntax is similar to ForAll.
E.g. RlpSum([X],num(X),fill(1,1,X)) is equivalent to
£i11(1,1,1) + ...+ £i11(1,1,9).

To encode the LogKB we are using pyDatalog in this ex-
ample. Using loops in Python it is easy to assert the facts:

for u in range(l, 10):

for u in range(1l, 4):

pyDatalog.assert_fact (' num’, u)
pyDatalog.assert_fact (’boxind’, u)
nitial’, 1, 1, 5)
pyDatalog.assert_fact (initial’, 2, 1, 6)

pyDatalog.assert_fact (/

Second, we add the intensional Datalog rules:

pyDatalog.load (""" box(I, J, U, V)
(V) num(J) & (I >
(J > (V-1)x3) & (J <= Vx3)

<= boxind (U)
(U-1)%3) & (I

oy

& boxind

& num(I) & <= U*x3) &

This rule defines the box predicate, which tells us if a square
belongs to a box by checking if its coordinates belong to the
range of the box.

Having created a logKB, we are ready to solve the rela-
tional LP and to print the solution:

model.solve ()

sol = model.get_solution()

print "The solutions for the fill "

variables are:\n
for key, value in sol.iteritems():

if round(value,2)>=0.99: print key,"=",round(value,2)

This produces the following output:

GLPK Simplex Optimizer, v4.45

1082 rows, 729 columns, 3674 non-zeros
0: obj = 0.000000000e+00 infeas = 3.530e+02 (353)
x446: obj = -1.000000000e+00 infeas = 0.000e+00 (108)

OPTIMAL SOLUTION FOUND
The solutions for the fill variables are:
£il1(1,4,6) = 1.0 £i11(7,1,9) = 1.0




(a) Highway ring around Cologne
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(b) Mixed integer quadratic program for Stackelberg games

Figure 2: There has been significant recent research interest in game-theoretic approaches to security at airports, ports, trans-
portation, shipping and other infrastructure. Much of the of the recent research focused on utilizing the leader-follower Stack-
elberg game model. In (a) the ring highway network around the German city of Cologne is shown. There are many approaches
to solving Stackelberg games. The approach in (b) shows a formulation as a mixed integer quadratic program.

We now turn to compressed optimization using a novel
application of relational optimization: security games.

Lifted Optimization: Can you trick the police?

As can be seen from the Sudoku example, relational LPs
share many common features with probabilistic relational
models. It is thus natural to expect that some techniques
developed for inference in probabilistic relational models
could also apply to solving relational LPs. One such tech-
nique is lifted inference using color-passing. In Markov
Random Fields, color-passing can be used as a prepro-
cessing step to Belief Propagation, where it detects nodes
that would send and receive identical messages (Kersting,
Ahmadi, and Natarajan 2009; Ahmadi et al. 2013). These
nodes are then grouped so that redundant computations are
avoided. In linear programs, color-passing can reduce the
size of the LP regardless of the solver being used (Mladenov,
Ahmadi, and Kersting 2012; Noessner, Niepert, and Stuck-
enschmidt 2013; Grohe et al. 2014; Kersting, Mladenov, and
Tokmakov 2015).

In RELOOQOP, color-passing is implemented by means of
wrapping the highly efficient graph automorphism package
Saucy (implemented in C), which uses color-passing as a
heuristic for orbit computation. The interface to Saucy of-
fers both options: either terminate Saucy after color-passing,
outputting the coarsest equitable partition of the LP, or run
the orbit solver fully and output the orbits under the auto-
morphism group of the LP.

RELOOFP offers two ways to access Saucy. The first is a
direct wrapper that allows the user to compute coarsest eq-
uitable and orbit partitions of arbitrary colored graphs (ma-
trices). The second, which we will discuss here, is integrated
in the solver interface. Calling

model.solve(lifted = True)

will trigger RELOOP to automatically generate the neces-
sary representation to lift the LP, pass it to Saucy, and apply
the result to generate a smaller but equivalent LP. Addition-
ally, one may supply the option “lifted_orbits = True” to lift
according to the orbit partition.

In the context of RELOOP, our vision is that lifting could
serve as a form of “compiler optimization” for mathemati-
cal programming. We envision situations where a user could
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write a simple mathematical program, which due to its sim-
plicity contains a lot of redundancy. Removing this redun-
dancy could require significant user effort, such as extra
code to avoid computing the same patterns more than once.
Instead, the lifting algorithm could do that automatically, re-
lieving the user from that responsibility.

To illustrate this, consider to compute the optimal place-
ment of traffic checkpoints over a road network as to max-
imize their coverage. Consider the network shown in Fig-
ure 2a, inspired by the ring network around the German
city of Cologne. Suppose that in this network, nodes T' =
{1,2,3,4} act as sources and sinks of traffic. Le., a driver
might start in any one of them and her objective is to reach
one of the remaining nodes of this set. On the other hand, the
traffic police has a small number £ of patrols, which it can
position on any of the edges of the graph. The objective is to
minimize the number of drivers that can avoid the control.

We model this situation as a Stackelberg game, see
e.g. (Conitzer and Sandholm 2006). A Stackelberg game is
typically played between a leader and a follower. The game
proceeds as follows: the leading player must act first and
pick an action out of a finite set A7, and commit to it. In our
case, the leading player is the traffic police, and their actions
are to pick a subset of k edges of the graph to position patrol
on. The follower (the driver in our case) may then observe
the leader’s action (say, via a social traffic app like Waze)
and use that knowledge for picking her own action from a
set Ap. In this case, Ap is the set of all simple paths be-
tween nodes of V. Finally, the game rewards both players
according their utility functions up,upr : Ap X Ap — R.
For the purposes of this example, the follower has negative
utility if she chooses a road with a checkpoint, while the po-
lice’s utility is positive. Due to space constraints, we omit
the details on how to construct the utility functions.

Our goal is now to compute the optimal mixed strategy for
the traffic police. This problem can be cast as the Mixed Inte-
ger Quadratic Program (MIQP) shown on Figure 2b. While
we will not go into the details of how this program is con-
structed (we refer the reader to (Pita et al. 2008) instead),
we note that this program has 3 sets of variables. First, we
have the leader mixed strategy, o, which is constrained to be
a probability distribution over the leader’s actions. We have
also binary indicator variable ¢ € {0,1}/#!| ranging over



the follower’s actions. Note that the constraint that the com-
ponents of ¢ sum to 1 implies that in any feasible solution
exactly one component is 1 and all others are 0. Observe
that if ¢ is fixed, the problem is an LP. Finally, we have the
variable v, which is a slack variable.

This mathematical program can be solved via MIQP
methods or linearized to an MILP. Here we will stick to the
conceptually simpler approach of (Conitzer and Sandholm
2006): generate all | Ar| many feasible ¢’s and create an LP
for each of them. In doing so, we end up with a large num-
ber of LPs (relative to the size of the input graph)—recall
that Ap is the set of all paths from source to sink nodes.
However, as we will see, these problems end up being sym-
metric. To compression the LPs, we combine the disjoint
subproblems in one mega-LP and run color-passing on it.
Note that this mega-LP now contains |Ar| many copies of
the decision variable vector o, one for each sub-problem.

We now briefly illustrate how to encode this in RELOOP;
details are omitted due to space constraints. To generate the
entire mega-LP in one piece, we use the following code:

model += RlpSum([I,J], leader_act(I) & foll_act(S),
lead_util(I,S) = lead_strat(S,I))
model += ForAll([S,], foll_act(S),
RlpSum([I,], lead_act(I), lead_strat(S,I))leqll)

model += ForAll([S, I], foll_act(S) & lead_act(I),
lead_strat(S,I) |gel| 0)
model += ForAll([S,], foll_act(S) & foll_act (J),

RlpSum([I,], lead_act(I), foll_util(I,J)
* lead_strat(S,I)) |le| bound(S))
model += ForAll([S,J], foll_act(S)&foll_act (J)&Eqg(S, J),
bound (S) - RlpSum([I,], lead_act(I), foll util(I,J)
*x lead_strat(S,I)) |le| M)

Here, the logical variable S essentially index the subprob-
lems. To elaborate further, one can see that the decision
predicate leader_strategy has arity 2 (whereas o is |Ap |-
dimensional as it ranges over leader actions). This hap-
pens as we want to express all |[Ap| copies of o across
all subproblems in one problem. Thus, the first variable of
leader_strategy ranges over the follower actions (since
we have essentially one LP per follower action) and gives us
the copy of o relevant to the subproblem.

We also give an excerpt of the LogKB that defines the
follower and leader strategies (the rules have been simplified
for clarity, e.g., we omit rules that prevent cycles in paths):

#follower actions

path(X,Y,P) <= node(X) & node (Y)
Z) & path(z,Y,P2)

stPath(X,Y,P) <= stPair(X,Y)

foll_act (P) <= stPath(X,Y,P)

#leader actions

edgeSet (K,E) <= findall ("innerEdge (X,Y)",X) &
combinations (K, X,E)

lead_act (E)

& node(Z) & adjacent (X,

& path(X,Y,P)

<= resources (R) & edgeSet (R,E)

Now, we can solve the resulting relational model for, say,
k = 3 checkpoints with symmetry compression enabled.
We get 102 subproblems, each with 287 decision variables
and 491 constraints. The mega-LP has thus 29.274 decision
variables and 50.082 constraints. Its constraint matrix has
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6.069.816 nonzero elements. Color-passing reduces the size
of the LP to 5.763 variables, 11.016 constraints. The lifted
constraint matrix has 643.651 nonzero elements, a 9 time
reduction, even though the input graph is asymmetric. This
renders the problem well within the scope of modern off-
the-shelf commercial solvers.

Classification: Linear Program SVM

We conclude this section with a more practical example
from machine learning to illustrate the runtime performance
of grounding LPs. We would like to classify documents from
the CORA data set using an l[.,-SVM. This problem has
an LP formulation, see (Kersting, Mladenov, and Tokmakov
2015) for details about the method and the data.

# objective

model += -r() + ¢ x RlpSum({I}, b_label (I, Q), slack(I)
# constraints
model += ForAll({I,Z}, b_paper(I, Z),
label (I) » (RlpSum({X,J}, b_paper (X, J),
weight (X) * label (X) * kernel(Z, J)
) + b()) + slack(I) >= r()
model += ForAll ({X}, b_paper (X, I), weight(X) <= 1)
model += ForAll ({X}, b_paper (X, I), -weight(X) <= 1)
model += r() >= 0
model += ForAll ({I}, b_label (I, Z), slack(I) >= 0)

Our training examples consist of bag-of-words representa-
tions of the abstracts of papers. We compute an RBF kernel
with Numpy for every pair and insert the resulting list of
(paper, paper, kernel value) tuples into the PostgreSQL ta-
ble “kernel”. We grounded the model for 170, 258, 428, 840
and 1.699 papers in a virtual machine on a 3,4GHz i7 desk-
top with 8GB RAM. This yielded problems with 29.921,
681.13, 184.033, 710.641, and 2.896.796 non-zero entries
in the constraint matrix. The running times were (rounded)
7s, 16s, 36s, 105s, and 460s with more than 90% of spent in
PostgreSQL (10% for the RELOOP overhead). While this
may not be the most efficient way to approach this problem,
it shows that our grounder (described in the next section)
adds little overhead over what is necessary to retrieve the
data. It also motivates further research into a more direct in-
tegration of Numpy into the RELOOP system.

RELOOP Architecture and Algorithms

After the walkthrough of the major RELOOP features, let
us now illustrate the architecture and algorithms underlying
RELOOP.

The core architecture of RELOOP is sketched in Fig. 3. It
consists of three major components—a LogKB, a grounder
and a solver. There is no RELOOP specific language com-
ponent. Instead we employ the open source symbolic alge-
bra system Sympy>. From a Sympy point of view, RELOOP
atoms, R1pSums and ForAll expressions are essentially un-
interpreted symbolic terms. This allows us to use Sympy’s
expression manipulation procedures to simplifty RELOOP
expressions and to expand brackets, among other opera-
tions. Once solve() is called, the Sympy expression trees

*http://www.sympy.org/
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Figure 3: The RELOOP architecture.

for the model constraints and objective are passed to the
grounder, where they are interpreted. The grounder takes a
set of relational constraints and an objective and outputs a
normal form that a solver can understand, e.g., the matri-
ces and vectors (A, b, G, h, ¢) that define the linear program:
minimize, ¢’z s.t. Az = b, Gz > h. This is where most
of the work in RELOOP happens. Currently, RELOOP sup-
ports two grounding approaches: recursive and block.

Recursive grounding: This grounds every constraint in
turn as follows: it first executes the query in the ForAll
term, creating a new constraint for each answer; then, it
grounds composite terms recursively in the same way. Con-
sider e.g. the following RELOOP model, which could be a
part of an LP computing what ingredients must be purchased
as to maximize the amount of milkshake made for $5.

model += ForAll([X,], drink(X), RlpSum([Y,],
cost (Y) xbuy (Y))) I|lel| 5)
[

t

ForAll ([X, Y], drink(X) & has (X,
(
(

has (X, Y),
model += Y),
buy (Y) l|gel| has(X,Y) *make (X))

model += ForAll ([X], drink (X), make(X) |ge| 0)

With the LogKB (for the sake of simplicity, we assume that
banana milkshake consists of only milk and bananas)

drink ("milkshake"). has("milkshake", "bananas", 0.3).
has ("milkshake", "milk", 0.7).
cost ("bananas", 3). cost("milk", 1).

this model (after switching the first inequality) grounds to:

-3 -1 0
) 5
0 0.3 buy(bananas) "
buy (milk) >
1 —-0.7 X - 0
make (milkshake)
0 0

When the recursive approach grounds the first constraint, it
first materializes the query drink(X). This returns the an-
swer set {X = milkshake}. For each answer, it creates a
new (partially grounded) constraint in which X is substi-
tuted with the answer. In our case, we get:

RlpSum([Y,], has(milkshake, Y), cost(Y)sbuy(Y) ) |le| 5

It will now recursively ground the summands. 5 is already
ground, thus it grounds the R1pSum. To do so, it queries
has(milkshake, Y). This returns the answer set {Y =
milk, Y = bananas} and generates the term

cost (milkshake,
+ cost (milkshake,

milk) * buy (milk)

bananas) = buy (bananas)
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The instances of the cost predicate can now be queried in
the LogKB to get the actual coefficients. While the recursive
grounder may not run fast in practice, it assumes very little
from the LogKB—only that it can answer logical queries.
Block grounding: This is a more efficient alternative to
recursive grounder motivated by approaches “feeding” a lin-
ear program directly from relational database systems (Mitra
et al. 1995; Atamtiirk et al. 2000; Farrell and Maness 2005).
It grounds the constraint matrix block by block, where a
block is the sub-matrix in which the rows correspond to in-
stances of one relational constraint while the columns cor-
respond to instances of one variable predicate. For example,
consider the sub-matrix consisting of the second and third
row and the third column. This is the block of the second
relational constraint and the predicate make. One can see
that the sub-matrix rows correspond to values of Y and the
columns correspond to values of X. The actual entries of
this sub-matrix are the values of —Z in has(X,Y, Z). Trig-
gered by this, the block grounder puts together the query
from ForAll, R1pSum, and the one from the expression in-
side, generating the matrix in-database. E.g. the block of the
first constraint and buy is generated by the logical query
q(X,Y,—Z) + drink(X) A has(X,Y,Z). Then, a matrix
is generated by mapping the answers for X to columns, Y
to rows, and —Z to values. Once all blocks are grounded,
they are stacked together as Scipy sparse matrices. Note that
to separate the blocks, we first flatten all levels of nested
R1pSum statements. In practice, this grounding strategy per-
forms many orders of magnitude faster than the recursive
grounder, however, it also assumes that the LogKB is able
to process algebraic expressions such as q(X,Y, — 7).
LogKB and solver interfaces: They are intended to be
templates for writing interfaces to various LogKBs and
solvers. Currently, RELOOP features PostgreSQL, pyDat-
alog, SWI Prolog, and Problog as LogKBs as well as CVX-
OPT and Gurobi (and others through PICOS) as solvers.

Conclusion

We have presented RELOOP, a domain-specific language
for relational optimization embedded in Python. It allows
the user to describe relational optimization data, variables,
objectives, and constraints in a natural syntax that follows
loops, logic and linear algebra as well as can automati-
cally reduce the dimensionality of the underlying ground
model. This should help building (relational) optimization
approaches and applications quickly and reliably as well as
bridging the gap between statistical relational Al, probabilis-
tic programming and numerical optimization in order to fa-
cilitate an easy transfer of results between the communities.
We strongly encourage others to write their own RELOOP
applications and to contribute wrappers to whatever LogKB
and solver backends that fit their applications the best.
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