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Abstract

This paper describes R3 (Reading, Reasoning, and Report-
ing), our system for deep language understanding and model
management for the biomedical domain. Starting from a base
BioPAX model, we learn extensions to it by reading biomed-
ical research articles from PubMed Central. We describe the
particular issues for text understanding in this domain and
how we use pre- and post-analysis reasoning to bridge the
differences in how knowledge is packaged in a text and in a
biomedical database. We close with brief description of our
first year results, where R3 was faster than all other reported
systems, reading 1,000 articles in 15 minutes.

Introduction
Reading does not end with a parse or even with a semantic
interpretation. When we read to inform ourselves, we use
our current model of the world to guide our interpretation of
the text, and then reconcile this interpretation with our orig-
inal model. Our interpretation might corroborate, extend,
or conflict with our world model and can cause us to revise
or extend it. This concept of reading-with-a-model inspires
our ongoing work on Reading, Reasoning, and Reporting
(R3), as part of DARPA’s “Big Mechanism” program (Co-
hen 2015). R3 reads articles in molecular biology to extend
and revise its models of biological mechanisms.

Building a system that can read-with-a-model poses key
research challenges for the general task and the specific do-
main:

• Heterogeneous ontologies in the domain model.
• The model continually changes due to new findings.
• Biology articles frequently discuss the function of events

and entities, yet the most comprehensive biology models
contain only structural data.
• The same word (e.g., “Ras”) can refer to a protein, a gene,

or a larger multi-protein complex, within a single article.
• A common reaction may be part of many other reactions

in a domain model. Extending what we know about it re-
quires us to accurately localize the correct instance within
the model, i.e. to determine which instance of the reaction
is the one referred to in the text.
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To address these challenges, R3 integrates deep semantic
parsing, ontology mapping, and reasoning about structure,
function, and mechanism-level causality. Deep parsing al-
lows R3 to extract precise semantics and determine entity
types from local lexical context. R3’s ontology mapping
allows it to query across heterogeneous ontologies within
single rules to augment and localize the results of its seman-
tic parse. R3’s mechanism-level reasoning allows it to infer
functional properties from structual descriptions and infer
indirect causal relations to ground language to the model.

The R3 project is particularly concerned with inferring
and exploiting the relationship between the text and the do-
main model, which have some practical inter-dependencies:
• The model supports the interpretation. The text rarely

mentions sufficient properties or participants to uniquely
identify an entity or a process; authors rely on the context
and the reader’s mental model of the domain to fill the
gaps. The model provides context and targets for corefer-
ence and frame completion.

• Model localization supports learning-by-reading. The in-
formation in the text can only be used to improve/extend
the model if it is properly localized within the model; oth-
erwise, the model may be revised erroneously.

• Model locales are interdependent. Localizing text within
the model can influence previous or subsequent localiza-
tions, since articles frequently describe sequentially or
causally interdependent entities and events.
We begin by describing the problem of extracting and rec-

ognizing biological events and interactions from text, focus-
ing on challenges for natural language understanding. We
then describe the R3 approach to meeting these challenges
and our empirical results that demonstrate R3’s capabilities.
We close with a discussion of the implications and future
work for R3.

Machine Reading in the Biology Domain
Biomedical research articles are written to be read by other
professional biologists who are presumed to have the req-
uisite technical background. The brief mention of a well-
known mechanism (“Ras proteins”) is sufficient to evoke all
of the details of the mechanism in the mind of the reader.
This lets them effortlessly fill in information gaps that can-
not be supplied by standard discourse techniques (“activated
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upon GTP loading and deactivated upon hydrolysis of GTP
to GDP” — loaded onto or hydrolyzed from what?). We
need to have knowledge sources that let it do this too.

Like other authors, biologists are under pressure to keep
their articles within length limits. This leads to com-
paction techniques such as describing events using nominal-
ized verbs and packing information into them as prenominal
modifiers, e.g. “EGFR and ERBB3 tyrosine phosphoryla-
tion,” “mitogen-induced signal transduction.” This changes
the usual grammatical cues (such as one would use on
newswire text) and requires knowledge-rich analysis tech-
niques if parses are to be accurate.

A further property of biomedical text is that logically re-
lated information is usually distributed across multiple sen-
tences. The example below is typical. The classification of
the sites are given in the first sentence and their identity in
the second. “We observed two conserved putative MAPK
phosphorylation sites in ASPP1 and ASPP2. The ASPP1
sites are at residues 671 and 746, and the ASPP2 sites are
at residues 698 and 827.” In R3 we have enhanced our dis-
course history to let us combine information from both sen-
tences into a single, logically complete, representation.

Approach
Here we describe R3’s architecture and information flow.
We use Figure 1 to guide our discussion, stepping through
the information flow chronologically. We begin by describ-
ing the setup and operation of the domain model and the se-
mantic parser, and then we discuss the post-parse reasoning
mechanisms and operations on the domain model.

Bootstrapping the Domain Model and the Parser
Before reading articles, R3 initializes its parser with domain
vocabulary and grammar and uses inference rules to opti-
mize and index its domain model. R3 uses the UniProt
knowledge base (UniProt Consortium 2008) as a source
of protein synonyms to enhance protein recognition during
parsing. It maps each protein synonym to a unique identifier
to enable cross-indexing in various biological ontologies.

R3 imports OWL domain models specified in Biological
Pathway Exchange (BioPAX) (Demir et al. 2010). BioPAX
specifies structural information about biochemical reactions
(e.g., bindings, phosphorylations, and other interactions),
complexes, proteins, catalysis, and reaction regulation. R3
uses domain-specific inference rules to extend the BioPAX
domain model with additional structure to explicitly repre-
sent causal relations, amino acids, functional information,
and molecular categories (e.g., homo-dimer, heterodimer).
We refer to these extensions as enhanced BioPAX. Much
of the enhanced content is implicitly described in BioPAX
(e.g., a homodimer is identifiable as a complex with two sto-
ichiometry entities identifying the same protein), but R3 de-
tects and explicitly represents this to facilitate its search and
localization during reading.

Finally, R3 uses a graph grammar to segment and in-
dex the enhanced BioPAX model into different logical con-
texts. It uses the equivalent of regular expressions over its
relational knowledge graph to describe how to traverse the

model and segment it into indexable parts, e.g., by start-
ing with biochemical-reaction entities and travers-
ing via left and right relations to their input and out-
put molecules, respectively, and then descending recursively
through sub-molecular structures via compound relations,
etc.1 This quickly segments and indexes the enhanced
BioPAX model into smaller contexts so that R3 can quickly
search the model to localize the information it reads.

Deep Semantic Parsing
The purpose of language analysis in R3 is to identify and
represent the semantic content of biomedical texts to facili-
tate localization in the domain model and to provide a stan-
dard view of an article’s content for downstream reasoners
(e.g. Danos et al. 2009). This entails normalizing all of the
syntactic and lexical variation in how a relation is expressed
to a single cannonical form. Also, references to entities and
relations must be aligned with articles’ document structure
to facilitate search and context driven inferences.

To do this, R3 uses the SPARSER natural language analy-
sis platform to read the texts. SPARSER is a rule-based, type-
driven semantic parser. Rules succeed only if the types of
the constituents to be composed satisfy the type constraints
(value restrictions) specified by the rule. SPARSER is also
model driven. As described in (McDonald 1996), writing a
semantic grammar for it starts with a semantic model of the
information to be analyzed along with a specification of all
the ways each of the concepts can be realized in the language
of the genre (e.g. biomedical research articles). A compiler
takes the model and creates a semantic grammar from the
realization specifications by drawing on a schematic stan-
dard English syntactic grammar. This ensures that every-
thing SPARSER is able to understand (model) it can parse,
and that every rule in the generated grammar has an inter-
pretation.

R3 semantic interpretations are represented in a typed
lambda calculus (McDonald 2000). The categories (predi-
cates), are taken from an ontology (linguistically annotated
domain model) whose upper structure is based on DOLCE
(Gangemi et al. 2002) and Pustejovsky’s model of events
(Pustejovsky 1991). There is a middle level with ontologi-
cal models for location, time, people, measurement, change
in amount, etc. This core is extended with a ontology of
biomedical phenomena that is deliberately designed to be
close to how these phenomena are described in articles in
order to simplify the parsing process. Generalizations that
are missed by parses that closely track the phrasing of a text
can be compensated for by post-analysis reasoning.

Category instances – individuals – represent the entities,
events, and relationships that are identified when a text is
read. Individuals are unique: The parsing process guar-
antees that every individual with a particular set of values
for its properties is represented by a single object (see Mc-
Donald 2000 and Maida and Shapiro 1982). This guarantee
is managed by a description lattice that tracks the addition
of properties (binding of variables). Every combination of

1This graph grammar approach generalizes existing case-
constructors (e.g., (Mostek, Forbus, and Meverden 2000)).
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Figure 1: The R3 architecture, and the flow of information by which R3 reads articles, updates its mechanism models, and
publishes extracted knowledge for human and machine collaborators.

property value and category instantiated is represented by a
unique individual that is maintained and updated incremen-
tally as a text is read.

Categories act as frames in a conventional knowledge rep-
resentation, with a specialization lattice that permits the in-
heritance of realization options as well as variables (possible
relations) and methods for type-specific reasoning. They are
also where we state facts about normally expected proper-
ties. For example, phosphorylation events entail an active
protein or other agent, the substrate protein that is phospho-
rylated, and the site (residue) where the phosphate is added.
A residue is identified by its amino acid and its location on
a particular protein. If we read about the sites of a phospho-
rylation and the requisite information is not supplied locally
in the text, then we can assume that it is very likely to have
been supplied elsewhere in the article, which motivates a
search to identify it.

Our discourse component resolves pronominal and defi-
nite references using a structured history of entity and event
mentions. This same facility organizes searches to expand
partial descriptions of entities to full ones (frame comple-
tion) and in general to link individuals as they appear in dif-
ferent parts of an article. Consider this text. It compares
what happens when a particular drug is or is not used:

“In untreated cells, EGFR is phosphorylated at T669 by
MEK/ERK, which inhibits activation of EGFR and ERBB3.
In the presence of AZD6244, ERK is inhibited and T669
phosphorylation is blocked, increasing EGFR and ERBB3

tyrosine phosphorylation and up-regulating downstream
signaling.”

There are two mentions of the phosphorylation of residue
T669 in this text, one in each sentence. The mention in the
second sentence (“T669 phosphorylation”) is marked by the
sentence post-processor as being incomplete because it does
not specify the agent or the substrate. This combination of
event-type and site is a unique individual stored in the de-
scription lattice. The discourse history records that this in-
dividual was also mentioned in the first sentence. This is
enough to license R3 to trace up the structure on the first
mention to identify the other properties it has, and to copy
over any non-conflicting properties of the first to the sec-
ond.2

Localizing Against the Model
R3 next localizes the extracted information within its do-
main model. Since the parser does not directly produce
BioPAX, R3 maps the extracted information into the en-
hanced BioPAX ontology to support localization. This in-
volves translating across relational/category vocabularies as
well as generating new symbols to account for changes in
event/entity granularity across ontologies.

After mapping the extracted information into enhanced
BioPAX, R3 uses it as a probe to search the entire do-

2The two eventualities differ in their existential status. The
tense in the first sentence indicates that the phosphorylation occurs.
In the second we are told that it is blocked.
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main model. R3 uses a two-stage similarity-based retrieval
algorithm (Forbus, Gentner, and Law 1995), starting with
a quick feature vector comparison between the probe and
each model context, and culminating with a graph-matching
algorithm, similar to structure-mapping (Friedman 2015;
Falkenhainer, Forbus, and Gentner 1989) but with a strong
preference for literal identicality over just relational similar-
ity.

R3 thereby identifies and ranks portions of the domain
model according to their similarity to the extracted knowl-
edge. This graph-matching approach has the following ben-
efits:

• Multiple matches: if the article omits something from the
model, which is almost always the case, R3 will retrieve
multiple relevant candidates for additional consideration.

• Partial matches: if the article mentions something not in
the model (e.g., a novel regulatory process) the descrip-
tion of the surrounding context (e.g., molecules and bio-
chemical reactions) will still be present in the probe to
help R3 retrieve relevant portions of the model to extend.

• Inference: R3’s graph-matching process computes can-
didate inferences for transferring unmatched entities and
relations from the article into the domain model, whether
the new knowledge conflicts with the model or extends it.
In previous work, we have shown that these inferences can
be practically used to revise beliefs and models (Burstein
1988; Friedman, Barbella, and Forbus 2012).

Semantic similarity is not sufficient to uniquely identify
referents from the text. Consider the sentence “SOS and
Grb2 promote the formation of GTP-bound p21 Ras.” With-
out more information, this will perfectly match at least 13
distinct biochemical reaction entries in R3’s BioPAX model.

Distinguishing which of these perfect matches the article
refers to— and it could be more than one— R3 must use the
context of the surrounding article text. We are implementing
a measure of causal relevance, so R3 can use previous, high-
confidence localization operations to rank these candidates
based on their proximity in the causal model. This assumes
that biology articles describe causally-related events and en-
tities rather than unrelated events and entities, which holds
true in our experience.

At present, R3 updates the model by extending the en-
hanced BioPAX model with new information (dotted arrow,
Figure 1). Important near-term future work on R3 will en-
able it to automatically identify possible conflicts, pose res-
olutions to these conflicts, and retain provenance in order to
allow intervention by human experts.

Evaluation
We evaluated R3’s semantic parser and its ability to ex-
tract information, filter irrelevant information (i.e., entities
or events not in the domain model) and merge duplicate in-
formation against 1,000 biology articles from PubMed Cen-
tral provided by the Big Mechanism Program.

We configured R3 to extract information about phos-
phorylation reactions, ubiquitination reactions, positive and
negative regulation of processes, and increases or decreases

in molecule concentrations. Other information — includ-
ing binding events, indirect causal relations, translocation
events, transcription events, and more — were parsed but
not analyzed with respect to the domain model. Addition-
ally, R3 used epistemic filtering to ignore historical, hypo-
thetial, or negated statements, in order to focus on positive
information.

R3 read all 1,000 articles in 15 minutes. In total, it ex-
tracted 15,876 semantic descriptions of the targeted data,
across all sections of all papers. This includes entities and
events that were unrelated to the model, as well as duplicate
data, since multiple sentences often refer to the same event.

R3 discarded 619 data that were only mentioned in the
introduction or methods sections, since it is designed to fo-
cus on the contributions of articles, and not the exposition
or methodology. It then analyzed each extracted datum for
model relevance, e.g., whether the proteins of a reaction are
described in the domain model. R3 filtered out 8,864 irrel-
evant data, leaving 6,384. Finally, R3 merged these entities
and events — and the parsed text that served as evidence —
into 2,351 data pertaining to the domain model.

Conclusion & Future Work
This paper outlined how R3 reads scientific articles to im-
prove its scientific models. Our development and evalua-
tion of R3 to date has focused mostly on the semantic pars-
ing and model localization work. R3 can presently read
articles, extract knowledge, localize extracted knowledge
within the model, and determine which extracted data sup-
port the model and which extend the model, but R3 does not
yet revise the model based on these extensions.

Going forward, we will increase R3’s competence in read-
ing and model manipulation across the board. In particular
we aim to construct a set of ‘mini’ mechanism models to
provide the machine equivalent of the knowledge that au-
thors take for granted. To get this knowledge we are start-
ing to machine-read the comments that curators make about
database reactions. We also expect to enlist biologists to
write simple mechanism descriptions for R3 to read. This
sort of knowledge-bootstrapping is challenging, but we feel
it is the only way we will be able to handle the breadth
of new research in molecular biology and contribute to ad-
vances in biomedicine.
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