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Abstract

Most modern network-based intrusion detection systems
(IDSs) passively monitor network traffic to identify possible
attacks through known vectors. Though useful, this approach
has widely known high false positive rates, often causing ad-
ministrators to suffer from a “cry wolf effect,” where they
ignore all warnings because so many have been false. In
this paper, we focus on a method to reduce this effect us-
ing an idea borrowed from computer vision and neuroscience
called active perception. Our approach is informed by theo-
retical ideas from decision theory and recent research results
in neuroscience. The active perception agent allocates com-
putational and sensing resources to (approximately) optimize
its Value of Information. To do this, it draws on models to
direct sensors towards phenomena of greatest interest to in-
form decisions about cyber defense actions. By identifying
critical network assets, the organization’s mission measures
self-interest (and value of information). This model enables
the system to follow leads from inexpensive, inaccurate alerts
with targeted use of expensive, accurate sensors. This allows
the deployment of sensors to build structured interpretations
of situations. From these, an organization can meet mission-
centered decision-making requirements with calibrated re-
sponses proportional to the likelihood of true detection and
degree of threat.

1 Introduction
Present day cyber defense systems rely on fixed sets of sen-
sors, or Intrusion Detection Systems (IDSes), of a limited set
of types, that are active all the time. Often these IDSes em-
ploy inexpensive, broad spectrum detectors, which typically
have extremely high false positive rates. These sensors are
typically either signature-based – in which case they cannot
detect so-called “zero day” attacks, exploits that have never
been seen before – or based on anomaly detection, in which
case entirely normal deviations from a statistical model are
misclassified as attacks. Other detection tools, typically ap-
plied only after an attack, have a low false positive rate, but
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consume so many computational, storage, and attentional re-
sources that they can only be used very sparingly. The IDSes
are also typically “context unaware,” unable to incorporate
information about the network in which they are installed, its
intended purpose, and known threats, except through labor-
intensive and obscure tuning processes. Lack of contextual
information contributes to the false positive problem, as ID-
Ses misinterpret known benign behaviors (e.g., periodic net-
work backup jobs) as malicious attacks (e.g., exfiltration).
Finally, since these systems are not context aware, sens-
ing and information presentation is not directed to provide
the information needed to direct actions. For these reasons,
users often turn off, ignore, or don’t install sensors, so cyber-
attacks go undetected.

This paper describes an approach to cyber defense based
on active perception. As the name suggests, active percep-
tion involves the active control of sensing. Sensors are con-
trolled in order to (approximately) optimize the information
they provide. That optimization is characterized in terms
of expected improvement to cyber defense decision making
which, in turn, is defined in terms of performance of the mis-
sion of the defended network.

Active perception is a model-driven process. Sensor con-
trol must be driven by top-down information, as well as
bottom-up sensor inputs, and that top-down information is
contained in models of sensors, the environment (network,
threats, etc.), and the mission of the defended network. Ac-
tive perception uses models for many purposes:
• to inform context-dependent enabling, disabling, and tun-

ing of sensors,
• to direct sensors towards phenomena of greatest interest,
• to follow up initial alerts from cheap, inaccurate sensors

with targeted use of expensive, accurate sensors,
• and to intelligently combine results from sensors with

context information.
Our ideas about active perception have both theoreti-

cal and empirical background. Our theoretical framework
comes from decision theory, and its notion of the value of
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information. Key ideas about implementation, and prece-
dent for the integration of high-level models with low-level
sensory processing come from recent developments in neu-
roscience.

We have prototyped two elements of our active perception
concepts. The first is a sensor placement component, which
uses information about the defended network, the compu-
tational tasks it is intended to perform, and a threat profile
to locate sensors. The second prototyped element actively
manages sensors in order to resolve uncertain hypotheses.
We demonstrate this component in the context of the STRA-
TUS system for autonomous cyber defense. The STRATUS
system has an IDS fusion subsystem, MIFD, which com-
bines the results of multiple IDS sensors into a set of event
hypotheses, and weighs the evidence for and against these
hypotheses using qualitative probability. We are working to
extend MIFD to seek out new information to resolve uncer-
tainty about key hypotheses, by finding sensors that provide
relevant information, then activating those sensors. We have
developed a Prolog-based proof-of-concept for this new ca-
pability, and will soon be integrating it into our STRATUS
system for autonomous cyber defense.

In this paper, we review our decision-theoretic and neu-
roscience inspiration for active perception, then outline how
our active perception approach works. We then describe an
example scenario, inspired by the Stuxnet attack, and ex-
plain how it would be handled by an active perception sys-
tem. Using the scenario as a running example, we then de-
scribe our two active perception subsystems. Finally, we
conclude with some remarks about future work.

2 Inspiration
Our work on active perception has been inspired by develop-
ments both in decision theory and in neuroscience. Decision
theory provides a normative framework that describes how
sensing resources should be allocated in ways that will opti-
mize the outcome of decisions that need to be made. Sens-
ing resources should be allocated to optimize return in terms
of the expected outcome of decisions influenced by obser-
vations, discounted by the costs of making and processing
those observations. However, decision theory has little to
say about how perceptual problems should be structured and
modeled, and how relevant contextual information should
be brought to bear. For answers about these questions, we
have been guided by neuroscience, and particularly the neu-
roscience of visual perception. Recent findings in visual per-
ception have revealed a pervasive influence of top-down con-
textual information, and a mechanism, “gisting” that sug-
gests how that top-down information can be activated and
brought to bear on sensory interpretation problems.

Decision Theory
The decision-theoretic notion of value of information (VOI)
provides a general theoretical framework for sensor manage-
ment. In theory, one should simply choose the application of
sensors that maximizes the value of information, or, equiva-
lently, act according to the optimal policy for a partially ob-
servable Markov Decision Process. In practice, these mod-
els are difficult to build, and solution algorithms scale poorly

in space and time. While we cannot simply naively apply
decision theoretic solutions to our cyber defense problems,
the decision theoretic framework provides a gold standard
against which our techniques can be compared.

The value of information for a sensor configura-
tion/observation ω, with respect to a decision D measures
the additional expected value for D gained by taking the
observation ω versus not taking it: EU(D|ω) − EU(D)
(Shachter 1986; Pearl 1988, Chapter 6). For example, in
Raiffa’s famous oil wildcatter problem (Raiffa 1968), a
question to be answered is whether it is worth performing
a seismographic test before drilling an exploratory well. For
small, high stakes problems, it can be worthwhile posing and
solving VOI problems. However, as problem size grows,
VOI computations rapidly become infeasible, since they re-
quire computing all outcomes of all combinations of obser-
vations, for each possible state of the world. Often a myopic
approximation is used, and one assesses whether a single
observation provides value, rather than explicitly consider-
ing combinations.

Another challenge for active perception is that work in de-
cision analysis has focused on choosing which tests to run,
rather than on finding the set of relevant tests, an important
aspect of our work. Typically, in decision analysis, the set
of available tests is treated as given, as part of the framing
of the problem. Some decision analysis texts (e.g. (Keeney
1996; Hammond, Keeney, and Raiffa 1998) discuss how to
frame problems, but as a human process, rather than an au-
tomated one.

Ahmad and Yu (2013) propose a POMDP-based approach
to active perception in the context of visual perception, but
their test examples feature very small decision spaces (e.g.,
three-location visual search). Eidenberger, et al. (2009) also
propose a POMDP-based approach to active vision, this time
embedded in a robot, where they tradeoff information gain
against control action costs, but their work aims at continu-
ous action spaces, rather than the discrete decisions we ad-
dress.

Neuroscience
Neuroscientific inspiration for our active perception ap-
proach comes from recent research results that show that
top-down (contextual) information flow plays a critical
role in the operation of the visual object-recognition sys-
tem. Early anatomical and functional models of the ob-
ject recognition pathway in vision (starting with Hubel and
Wiesel (1962)) were essentially hierarchical. Many purely
bottom up models for visual processing (Serre, Oliva, and
Poggio 2007) were developed based on this hierarchical
structure. These models attempted to explain the ability of
the human visual system to rapidly (within 100 ms) iden-
tify objects and categorize complete scenes. However, re-
cent detailed anatomical and physiological evidence paints
a much more complex picture: the object recognition sys-
tem is now (Kravitz et al. 2013) known to be organized as a
series of a) overlapping b) bidirectionally coupled recurrent
networks with c) long range interconnections that skip over
intermediate levels. This anatomical structure provides the
basis for bottom up hierarchical processing to be modulated
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and controlled by top-down sources of information.
Lee and Mumford (2003) have shown that the local feed-

back in the anatomy is just what is needed to implement a
hierarchical Bayesian inference mechanism. In this scheme,
top-down estimates of the likelihood of various object fea-
tures bias the interpretation of sensory data in a recursive,
hierarchical fashion.

This contextual Bayesian inference is characterized by
Ganis and Kosslyn (2007) as a primary example of one of
two major modes of top down influence on perception sup-
ported by both neural and psychological data. This is “re-
flexive top down processing,” a process which modulates
the interpretation of bottom up data, by changing both 1)
the sensitivity of individual sensors and 2) the amount of
sensor data needed to support various detection decisions.
The modulation is based on top-down, contextual estimates
of the likelihood of various causes of sensor data. These
processes are not consciously accessible, and they operate
through the bidirectionally coupled recurrent networks char-
acterized by Kravitz in the “ventral visual stream.”

Ganis and Kosslyn also describe, and provide experimen-
tal evidence for, an often conscious second class of top-down
process: “strategic top-down processing.”

Strategic top-down processing relies on “executive con-
trol mechanisms” (which provide input ... to direct a se-
quence of operations in other brain regions, such as is
used to engage voluntary attention or to retrieve stored
information voluntarily).

It can involve “covert attention,” a mechanism involving al-
location of perceptual resources to part of the visual field
outside the fovea (“looking out of the corner of one’s eye”).
This “strategic” process, as described by Kosslyn, identi-
fies partially obscured objects, and handles degraded sen-
sory data. In this case, initial sensor data, plus top-down
biases from the “reflexive” system is used to surface one or
more plausible objects or events in long-term memory to be
treated as a “hypothesis.” These hypotheses are then used
by the executive system to control a set of specific neural
and muscular components which Ganis and Kosslyn call the
“information shunting subsystem,” This subsystem actively
and sequentially directs attention to sensory data that would
discriminate between the alternative hypotheses.

For many years it was a mystery how the right expec-
tations could be activated at the right time. Over the
past decade neuroscientific and computational modeling ev-
idence research addressed this gap with evidence of a “gist-
ing” process. Experimental work supported this evidence,
revealing that people can identify the category of a scene
presented for as little as 100 ms. The gisting process is sup-
ported anatomically and physiologically by the previously
cited existence of neural connections that jump multiple lev-
els, and which lead directly to associative memory elements
such as the para-hippocampal cortex and the retro-splenial
cortex. Some of these links are particularly high-speed pro-
jections. Experimental evidence shows that such projec-
tions can form the basis for the initial scene level gist in
the brain (Kveraga, Boshyan, and Bar 2007), allowing the
context of an image to help identify its content.

3 Example Scenario
To showcase the application of active perception to cyber de-
fense, we produced a demonstration of an example scenario,
loosely based on Stuxnet. The demonstration illustrates how
active perception can augment an intrusion detection system
and subvert a complex attack on a network. To this end, our
web-based demonstration steps through an attack scenario,
sensor placement, and the steps performed by active percep-
tion techniques to help detect and counter the threat.

Attack plan The layout for the scenario is in Figure 1. In
the scenario, an attacker uses a well-designed, careful attack
on a base’s command-and-control server, running on server
S4. The attack relies on a combination of user-fallibility and
a series of exploits. The attacker uses a phishing email to
trick the user into clicking on a link to a website. The web-
site causes a “drive-by download” of malware. The malware
then uses a privilege-escalation exploit to gain administra-
tive privilege on the user’s workstation, W8.

With administrative abilities, the malware can begin its
attack on the command-and-control server. It begins recon-
naissance to find a particular SOAP service that marks the
command-and-control server. To do this, it probes all servers
with SOAP services and finds the server. Though the probe,
the malware learns that W8 lacks permission to interact with
the command-and-control server. This forces the malware to
find workstations that have access to the server. It scans the
plan cell of workstations near the server, and transmits its
payload through a PowerPoint document delivered to those
workstations. As the final step, the malware generates PDF
documents crafted to exploit a flaw in the command-and-
control server PDF processing. It then submits those docu-
ments, which establishes a backdoor that allows the attacker
to read confidential information.

Initial Sensor Placement In the scenario, each network
node sensor may be enabled or disabled. We seek to opti-
mize coverage of our sensors when 100% coverage is im-
possible due to resource limitations. We use a mixed integer
program (MIP), discussed in Section 4, that we configured
based on resource availability, the types of threats to con-
sider, and the expected level of internal and external threats.
The initial sensor placement, shown in Figure 1, dictates that
sensors be enabled in a perimeter around the most critical re-
sources.

Active Perception We discuss how the attack plan may be
successfully detected with active perception and the sensor
placement methods we discussed. Recall that the scenario
starts by the attacker gaining control of a user’s worksta-
tion. Our sensor placement techniques did not enable sen-
sors there, so that step cannot be detected. During the re-
connaissance step of the attack, the malware installed on the
user’s workstation looks for SOAP services. Defense acti-
vates with the reconnaissance traffic coming from the work-
station. It considers the possibility that there is a local at-
tacker conducting recon. However, the sensor reports might
instead be evidence of a misconfigured SOAP client, look-
ing for its server. shown in Figure 2. There is not enough
evidence to tell the two hypotheses apart, so defense must
perform an active investigation.

The influence diagram in Figure 3 illustrates the decision
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Figure 1: Initial sensor placement.

Figure 2: Hypotheses prior to investigation.

making performed. In this situation, there are two possible
sensing actions. First, defense could examine past alerts for
other evidence of a local attacker, or we could conduct a
forensic probe of the workstation. It is possible to do both
actions. The question at hand is whether to quarantine the
user’s workstation. If defense does quarantine it, and there’s
a local attacker, it will limit mission disruption. However, if
defense quarantines the workstation and there is no attacker,
its no longer possible to use the workstation for the mission,
which will negatively impact performance. Defense exam-
ines past alerts in attempt to dismiss the possibility of an at-
tack. If its unable to do so, a more expensive probe is carried
out.

The probe focuses attention on evidence on the user’s
workstation. It discovers sensor reports relative to the phish-
ing attack, and updates its beliefs. An attack cannot be
ruled out, and defense conducts an active probe of the user
workstation, finding an unauthorized root-privileged pro-
cess, which is a component of the malware. The system
now believes there exists a local attack, and conducts further
defensive measures. It looks at the reconnaissance targets
chosen by the malware, and hypothesizes two gists about
the attack’s intent. The attacker may be aiming at either the
web server, on S1, or the command-and-control server. Note
that, in the event of an attack on the command-and-control
server, defense can expect island-hopping to occur, where
the attacker tries to infiltrate a client that has access to the

Figure 3: The shaded area of the influence diagram shows
the initial conditions and the two competing hypotheses.

command-and-control server. Defense may now choose to
isolate the workstation from the network, in attempt to halt
the spread of the attack, or it could redirect it to a honeynet
to gain more information.

The malware attempts to break into workstations. These
operations link with the hypothesis that the attacker plans to
break into the command-and-control server, confirming one
of the two gists. At this point, defense should quarantine the
user workstation, and carefully monitor workstations in the
plan cell. Using available methods for hardening, such as
binary diversity, would also be a reasonable precaution.

4 Sensor Placement
The sensor placement system attempts to find a sensor po-
sitioning that will optimize situation awareness about the
most likely and most important attacks, for a fixed budget
of sensing resources. The sensor placement system draws
on a model of the importance of defended resources to the
mission of the organization, which can change depending on
the situation. It has a sensor cost model that is based on es-
timates of how many sensor reports a given sensor is likely
to emit, since these sensor reports consume the attention of
scarce administrative and security personnel. Finally, the
system can draw upon threat information to focus on targets
that are likely to be attacked.

The optimal way to solve the sensor placement problem
would be to optimize the value of information (see Section
2). Unfortunately, value of information computations are
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badly intractable, since they require enumerating possible
situations and then evaluating an exponential number of sen-
sor placements against them. We have adopted a mathemati-
cal programming approximation that optimizes weighted at-
tack coverage, subject to resource constraints. Here we de-
scribe the model, and analyze its behavior.

Problem Formulation Our general problem formulation
is summarized as follows. Given a set of nodes on a network,
including workstations, servers and routers, we may activate
one or more sensors at each node to inspect network traffic.
While activating a sensor provides value in the sense that it
increases coverage, it also incurs some cost related to the in-
spection of sensor reports, and it consumes finite resources
such as network bandwidth and processor usage. The opti-
mization problem we pose is to maximize a weighted metric
of sensor coverage over the network against hypothetical at-
tacks. This maximization is subject to to individual resource
constraints at each node as well as constraints on shared re-
sources for the entire network.

Considering one sensor and two resources at each node,
plus two shared resources for the network, the problem is
formulated as the following mixed integer program (MIP):

max
xk∈{0,1}

∑
k∈S

[∑
h∈H

W (h)E(k, h)− C(k)

]
xk (1)

R1(k)xk ≤ R̄1 ∀k ∈ S (2)
R2(k)xk ≤ R̄2 ∀k ∈ S (3)∑
k∈S

R1(k)xk ≤ SR1 (4)∑
k∈S

R2(k)xk ≤ SR2 (5)

In the objective function (1), the binary variable xk repre-
sents the decision to activate sensor k, set S = [1, . . . , NS ]
represents the set of sensors (one at each node), and H =
[1, . . . , NH ] is our candidate set of hypotheses. E(k, h) ≥ 0
gives the expected value of using sensor k to investigate hy-
pothesis h, and W (h) > 0 represents the importance of hy-
pothesis h relative to others. The product of W (h)E(k, h)
therefore provides a weighted value of using sensor k to in-
vestigate hypothesis h. Our coefficient on xk is the weighed
net value of the sensor, which is reduced from the weighted
value by subtracting the cost of using the sensor, C(k).

Equations (2) and (3) are the constraints applied at each
node for two separate resources, while equations (4) and (5)
are the constraints on the two resources shared by the entire
network.

The formulation described above includes NS variables
and 2NS + 2 constraints. It can be used to find a sensor
laydown that maximizes the total value of information, as-
suming that the expected value data, E(k, h) is available and
accurate. If simple coverage is the priority, then an alternate
formulation may be developed by adding hypothesis cover-
age constraints with slack variables, and incorporating satis-
faction of those constraints into the objective function. The

alternate problem formulation is:

max
xk,xh∈{0,1}

∑
k∈S

[∑
h∈H

W (h)E(k, h)− C(k)

]
xk

+
∑
h∈H

WC(h)xh (6)

... Constraints (2) through (5)∑
k∈S

CH(h, k)xk ≥ xh,∀h ∈ H (7)

Here we introduce NH binary variables xh and NH con-
straints, where each constraints allows xh = 1 only if that
hypothesis is covered by the sensor activation in xk. We
make use of the hypothesis coverage matrix CH , which has
CH(h, k) = 1 iff sensor k provides evidence for hypothesis
h. The added term in the objective function effectively pro-
vides a reward proportional to WC(h) for activating sensors
that provide coverage of hypothesis h. This formulation in-
cludes both value of information and hypothesis coverage,
and we can prioritize one over the other in our definition
of the weights. For example, by setting WC = 100W , we
first prioritize coverage and then prefer solutions that would
improve value of information for the same coverage.

Network Model In the examples presented here, we fo-
cus on detecting attacks by monitoring network traffic on
our notional network of 4 servers, 14 workstations, and 7
routers (see Figure 1). We assume that there exists one at-
tack hypothesis for each peer-to-peer connection between
network nodes (servers and workstations only), plus one for
each connection to the internet. Let NP be the number of
peers to consider, where NP = 4 + 14 + 1 = 19 includ-
ing the servers, workstations, and internet. The number of
hypotheses is therefore NH = NP (NP − 1)/2 = 171.

We define the sensor cost, resource usage, and hypoth-
esis values to be consistent with an actual network struc-
ture. Starting with a 26x26 node connectivity matrix for
our notional network, we use the Floyd-Warshall algorithm
to compute shortest paths between each network node. We
then assign an integer traffic level to each node equal to the
number of paths that include it. Cost and resource usage
values for each sensor are set equal to some base value plus
a value that is proportional to the traffic level at that node.
The coverage matrix is defined by setting CH(k, h) = 1 if
sensor k is included in the connection path for hypothesis h.
Assuming that all sensors provide equal value, the expected
value matrix is equivalent to the coverage, EV = CH . Fi-
nally, we define each hypothesis weight W (h) as the prod-
uct of the severity and likelihood of an attack at the two end
nodes of the hypothesis. This approach allows us to define
hypothesis weights indirectly by instead prescribing severity
and likelihood numbers for a suspected attack scenario.

Sample Results We present four different examples for
the sake of illustration and comparison. The results are sum-
marized in Table 1. In Case 1, we attempt to maximize cov-
erage with the fewest sensors. We achieve this by forcing
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Table 1: Summary of sensor placement results for four ex-
ample cases. Case 3 is used for the demonstration.

Case 1 Case 2 Case 3 Case 4

Cost ∝ Sensors Traffic Traffic Traffic
Max Coverage? Yes Yes Yes Yes

Max VOI? No Yes Yes Yes
Avail. Resources High High Med. Low

# Sensors 6 14 13 11
# Hypoth. 171 171 170 159

% Coverage 100 100 99.4 93.0
Total VOI 1192 1680 1657 1263

EV (k, h) = 0, C(k) = 1 and WC(h) = 1 for all k, h,
and by keeping the resource limits sufficiently high. The
solution is intuitive, activating sensors only at the routers,
which see the most traffic. In Case 2, we again seek to max-
imize coverage, but we also try to maximize the VOI as a
secondary objective. Resources are abundant in each of the
first two cases, but are progressively reduced in Cases 3 and
4, leading to solutions with fewer sensors and less than full
coverage. The solution for Case 3 is used in the demon-
stration. Even with limited resources, we still find a sensor
placement solution that achieves 99% coverage and attains
nearly the same VOI as in Case 2, where resources were
abundant.

5 Active Perception via Sensor Goals
Sensor Fusion Our experiments on active perception have
been done in the context of the STRATUS system, a multi-
agent cognitive architecture for cyber defense (Thayer et al.
2013). A key component of STRATUS is Model-based In-
trusion Fusion and Detection (MIFD), the place where sen-
sor information enters STRATUS and is fused together. The
MIFD system builds on a qualitative probabilistic approach
developed for a predecessor system, Scyllarus (Goldman
and Harp 2009).

MIFD, like its predecessor Scyllarus, views sensor fusion
as an abductive, or diagnostic process that reasons to the
best explanation. MIFD fuses reports from Intrusion Detec-
tion Systems (IDSes). When it receives sensor reports (IDS
reports), MIFD forms event hypotheses to explain those sen-
sor reports. MIFD fuses multiple sensors, so multiple sen-
sor reports can provide support for a single event hypothe-
sis. Ambiguous sensors may have multiple alternative event
hypotheses that would explain a single sensor report. Fi-
nally, events may be components of complex event hypothe-
ses. For example, a single denial of service attack hypothe-
sis might explain multiple flooding attacks on a set of web
servers. Note that the set of event hypotheses need not be
exhaustive: some sensor reports are simple false positives.

The sensor reports and the event hypotheses that could
explain them constitute a Bayes network. We refer to the
process of constructing this Bayes network as clustering.
For example, Figure 2 shows the Bayes net constructed in

response to three “Targeted scan” IDS reports. One hypoth-
esis (H101) is that these reports are the result of a SOAP
client misconfiguration, and another (H100) is that there is a
database scan going on. In turn, that database scan might be
evidence of a local attacker (H102).

After clustering, a separate assessment process occurs,
where MIFD uses the evidence in the Bayes networks to
assign a qualitative likelihood ranking to each of the event
hypotheses. The thermometer icons in Figure 2 show the re-
sults of assessment: initially MIFD cannot determine which
of the two hypotheses is most likely, and they are both as-
sessed as “plausible.” We will not discuss assessment further
in this paper; for more details see (Goldman and Harp 2009).

As described above, the two key data items in the cluster
preprocessor are sensor reports and event hypotheses. Vari-
ous sensor programs may issue sensor reports. Each report
contains a report type, which specifies the condition the sen-
sor claims to have detected. IDSes must generally infer the
existence of a security-related event from data (e.g., packet
headers) that provides only very indirect and noisy indica-
tions. Such sensors often have a high false positive rate, and
detect conditions that their designers had not anticipated.
Sensor reports also contain information about the location
of the detection.

The clustering process generates event hypotheses to ex-
plain or interpret the sensor reports. The event hypotheses
similarly have event types. These event types disambiguate
the sensor reports. For instance, when generating a “gist”
in our example scenario, the malware’s probe for a SOAP
client generated two alternative event hypotheses: (1) That a
misconfigured SOAP client exists on the network, or (2) we
have a local attacker.

Background information mediates the process of form-
ing event hypotheses, populating them, and linking them
to sensor reports and to each other in hypothesis matchers.
An individual hypothesis matcher, M pairs a phenomenon,
P (M), a sensor report type or an event type, with an ex-
planation, E(M) event type. Hypothesis matchers perform
a rule-like function. To a first approximation, a hypothe-
sis matcher records the following inference pattern (Char-
niak and Goldman 1988): ∀x : P (M)(x) → E(M)(x).
For example, one hypothesis matcher we use represents
the following inference: “If there is a sensor report of
type unexpected component restart, hypothesize
an event of type compromised component.”

Hypothesis matchers can fuse information from multi-
ple sensors by linking a phenomenon to an explanation
event hypothesis: it can either cause a new event to be
hypothesized, or it can match an existing event hypoth-
esis, and cause the new phenomenon to be linked in as
additional evidential support. To control information fu-
sion, hypothesis matchers contain data checks. For ex-
ample, in order for an additional sensor report to support
(be explained by) the compromised component hy-
pothesis in our previous example, the data check would re-
quire the destination component of that sensor re-
port to be the same as the target component of the
compromised component hypothesis.
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Sensing Goals As our work on STRATUS progressed, we
became convinced that dynamic, autonomous cyber defense
critically requires context-sensitive sensor control. MIFD’s
fusion of multiple heterogeneous IDSes mitigates their high
false positive rate. Even so, we still require follow-up
“forensic” investigation. The required, in-depth investiga-
tion performed by a security analyst precludes us from de-
ploying “always on” sensing actions that a security analyst
does for this in-depth event investigation. As in our sce-
nario, a potential attack may prompt one to check all past
reports and alerts. Sensing action cost may also outweigh
the benefits of routine sensing, or might produce too much
information for constant processing. We might reserve these
sensors for only the most high value targets. In conventional
network defense, one would identify such targets a priori
and statically. STRATUS uses mission models to identify
high value assets dynamically, in order to support defense of
cloud style networks in which computational resources are
fungible, and computational tasks can be moved around the
network more or less at will.

For these reasons, we determined that STRATUS should
be able to dynamically control its sensing. To do so, it issues
sensor requests. It will be the job of the Mission-Oriented
Threat Hypothesis Evaluation and Response (MOTHER)
component to evaluate the importance of these requests, and
determine whether to act upon them.

STRATUS will form two kinds of sensing goals: foren-
sic sensing goals, which attempt to find more evidence to
reason about existing event hypotheses, and proactive sens-
ing goals, that seek to place sensors to monitor expected
threats. We describe the reasoning processes and the sup-
porting knowledge representation.

The formation of forensic knowledge goals may be trig-
gered when MIFD finds an event hypothesis whose uncer-
tainty it cannot resolve: it neither thinks it likely nor un-
likely. In this circumstance, MIFD will examine the model
of the event hypothesis to determine how critical the event is:
i.e., how bad it would be if the hypothesis was true. STRA-
TUS event type models contain impact specifications which
indicate what security goals would be compromised when
the event occurs. In the event of a high-criticality unresolved
event hypothesis, MIFD will move to form sensor goals.

MIFD will invoke the sensor selection module (described
in the following section) to identify sensors that could pro-
vide additional information to resolve the uncertainty about
the event in question. If it finds such sensors, MIFD will
publish a sensor goal, requesting this additional sensing.
The STRATUS MOTHER module, responsible for resource
management, will receive the sensor request, assess the crit-
icality to the mission of the resource(s) to be examined,
and consider the available sensing and sensor processing re-
sources. Based on this information, MOTHER will decide
whether or not to grant the sensing request. If MOTHER
grants the sensing request, it adds additional information
needed to realize the goal and publish it to CSE. The CSE
infrastructure will carry out the necessary actions to imple-
ment the requested sensing.

Forming proactive sensing goals is a more open-ended
process, open to arbitrary STRATUS subsystems. Proactive

sensing will begin when a STRATUS subsystem, S identi-
fies an event (an attack on a particular component or from a
particular component) that it deems likely. After S identi-
fies events and locations that it considers of interest, it will
build representations for that information.This information
will be used to query the sensor selection module, and find
appropriate sensors and placements. From here the process-
ing proceeds as per forensic sensing requests.

KR to Support Sensing Goal Formation We have de-
veloped a knowledge representation (KR) scheme to support
formulating sensor requests assuming that STRATUS com-
ponents will know what they want to see, and where they are
interested in looking for it.

The KR facilitates requests for identifying candidate sen-
sor prototypes. Each request contains an event report, which
includes the event type and the components involved in the
event. In order to test our ideas, we have developed a proof-
of-concept implementation of sensor identification. In this
Prolog-based system, we provide a set of rules that asso-
ciates report data with particular hypotheses and informa-
tion gathering sensors. This allows us to quickly identify
the sensors that an various types of events should trigger. In
the demo scenario, a search for a SOAP service, detected by
network-accessible machines surrounding router R7, trig-
gers a sensing event report through this mechanism. The hy-
pothesis structure itself, encoding in our Prolog system, di-
rects the sensing goals, automatically indicating how we can
provide more evidence for a hypothesis we wish to prove (or
disprove). In other words, the report begins the process of
starting a forensic probe, with the report information being
used as parameters a process that identifies sensing goals.

The forensic process can continue in a chain. In our sce-
nario, for example, the examination of past alerts discovers
a phishing attack. The sensor that gives the “phishing at-
tack” alert triggers the generation of a sensor report. In turn,
the new sensor report triggers the generation of a new sens-
ing goal to search for active processes. This then uncovers
an unauthorized process with root privileges, until finally we
have enough evidence to definitively say that an attack is un-
derway. This active perception process allows for dynamic
evidence gathering, positioning STRATUS to re-focus sen-
sors appropriately.

6 Conclusions
In this paper, we have described how to use active percep-
tion to actively manage sensing for cyber defense, enabling
directed, automated investigation into threats. By using in-
expensive, inaccurate sensors already used by IDSes in an
initial phase, then following up with more expensive inves-
tigation, it provides a methodology for active threat identifi-
cation and response.

We have developed a partial, preliminary implementation
our approach, which includes evaluation of sensor place-
ment, hypothesis generation, and sensor identification. Our
experiments on abstract models of active perception show
its value in situations with the observation characteristics of
cyber defense. We will be incorporating the active percep-
tion techniques we have developed in our STRATUS system
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for autonomous cyber defense. We also plan to further in-
vestigate active perception, and potentially apply it to other
domains.
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