
Knowledge Compilation and Weighted Model
Counting for Inference in Probabilistic Logic Programs

Jonas Vlasselaer, Angelika Kimmig,
Anton Dries, Wannes Meert, Luc De Raedt

Department of Computer Science, KU Leuven, Belgium
{firstname.lastname}@cs.kuleuven.be

Abstract

Over the last decade, building on advances in the areas
of knowledge compilation and weighted model count-
ing has drastically increased the scalability of inference
in probabilistic logic programs. In this paper, we pro-
vide an overview of how this has been possible and
point out some open challenges.

1 Introduction
Many real world reasoning tasks, such as gene interac-
tion networks, social networks and web-page classifica-
tion, involve both relational structure and uncertainty. This
caused a significant interest in statistical relational learn-
ing (Getoor and Taskar 2007; De Raedt et al. 2008), prob-
abilistic programming (Pfeffer 2014; De Raedt and Kim-
mig 2015; Goodman and Stuhlmüller 2014) and probabilis-
tic databases (Suciu et al. 2011), which all address this
combination. Probabilistic logic programming (PLP) lan-
guages such as PRISM (Sato and Kameya 2001), ICL (Poole
1993), ProbLog (De Raedt, Kimmig, and Toivonen 2007),
LPADs (Vennekens, Verbaeten, and Bruynooghe 2004) and
CP-logic (Vennekens, Denecker, and Bruynooghe 2009)
form one stream of work in these fields. These formalisms
extend the logic programming language Prolog with proba-
bilistic choices on which facts are true or false.

One key inference task in PLP is to compute the proba-
bility that a given ground atom (the query) holds in a proba-
bilistic logic program, possibly given some evidence on the
truth values of other atoms. This inference task can be re-
duced to the well-studied task of weighted model counting
(WMC) (Chavira and Darwiche 2008), for which various
state-of-the-art solvers are available. Within recent PLP sys-
tems, WMC is often supported by knowledge compilation.

In this paper, we provide an overview of such approaches,
with a special focus on how knowledge compilation and
weighted model counting have helped to drastically increase
scalability of PLP inference over the last decade. Further-
more, we also discuss the challenges that are still open.
Specifically, Section 2 provides background on PLP infer-
ence and its reduction to weighted model counting on a
propositional formula. Sections 3 and 4 discuss the most

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

common approaches to construct this propositional formula
and to compute its weighted model count, respectively. Sec-
tion 5 presents techniques that integrate construction and
model counting, and Section 6 concludes with a discussion
of open problems.

2 Inference in Probabilistic Logic Programs
Many probabilistic programming languages, including
PRISM (Sato and Kameya 2001), ICL (Poole 1993),
ProbLog (De Raedt, Kimmig, and Toivonen 2007), and
LPADs (Vennekens, Verbaeten, and Bruynooghe 2004) are
based on Sato’s distribution semantics (Sato 1995). In this
paper, we use ProbLog as it has the simplest syntax of these
languages; for a general overview of PLP and more details
on the relation between these languages, we refer to (De
Raedt and Kimmig 2015).

a b

c
0.8

0.4

0.3

0.4 :: edge(b, a). 0.3 :: edge(b, c).

0.8 :: edge(a, c).

path(X,Y) : - edge(X,Y).

path(X,Y) : - edge(X,Z), path(Z, Y).

Figure 1: A probabilistic logic program modeling a graph.

Probablistic Logic Programs
A ProbLog program P consists of a set of probabilistic facts
F and a logic program, i.e., a set of rules R. A rule is a
universally quantified expression of the form h :− b1, ..., bn
where h is an atom and the bi are literals. The atom h is
called the head of the rule and b1, ..., bn the body, repre-
senting the conjunction b1 ∧ ... ∧ bn. Intuitively, such a rule
states that whenever the body is true, the head has to be true
as well.1 A probabilistic fact is a rule annotated with a prob-
ability p that has true as its body. It is written more com-
pactly as p :: f. As common, we assume that none of the
probabilistic facts unify with the head of a rule.

An example is depicted in Figure 1. This program con-
tains the representation of a graph (as a set of probabilistic
edges), and the definition of a path between two nodes X

1We refer to (Nilsson and Maluszynski 1995) for more details
on logic programming in general.

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Beyond NP: Technical Report WS-16-05

359

and Y . A path either consists of a direct edge between X
and Y , or of an edge between X and a third node Z and a
path from Z to Y . The lower case letters (a, b and c) rep-
resent constants, and the upper case letters (X , Y and Z)
represent logical variables.

Inference
A ProbLog program specifies a probability distribution over
its Herbrand interpretations, also called possible worlds.
Every probabilistic fact2 p :: f independently takes a value
true (with probability p) or false (with probability 1− p).
A total choice C ⊆ F assigns a truth value to every prob-
abilistic fact. Then, logical deduction on the corresponding
logic program C ∪ R results in a model of the theory. The
probability of this model is that of C. Possible worlds that
do not correspond to any total choice have probability zero.

The task we focus on in this paper is to compute the prob-
ability of a single query q, which is defined as the sum over
all total choices whose program entails q:

Pr(q) :=
∑

C⊆F :C∪R|=q

∏
fi∈C

pi ·
∏

fi∈F\C

(1− pi) . (1)

Whereas this formula defines the semantics of ProbLog, it
explicitly iterates over all total choices that entail the query.
This approach is infeasible in practice.

Weighted Model Counting
The task of probabilistic inference in PLP (cf. Equation 1) is
in direct correspondence with that of weighted model count-
ing. We can exploit this to tackle the problem in two steps:
(1) construct a propositional formula representing the pos-
sible worlds, and (2) perform weighted model counting on
this formula. More specifically, ground probabilistic facts fi
correspond to propositional random variables, probabilities
provide weights, and the sum is over a propositional formula
representing all possible worlds where the query is true, i.e.,

WMC (λ) :=
∑

I⊆V :I|=λ

∏
a∈I

w(a) ·
∏

a∈V \I

w(¬a) . (2)

where λ is a formula over a set of propositional variables
V , the weight function w(·) assigns a real number to every
literal for an atom in V , and I is the set of interpretations
of V , i.e. the set of all possible truth value assignments to
variables in V .

For the weight function we have that w(fi) = pi and
w(¬fi) = 1 − pi for probabilistic facts pi ::fi, and w(a) =
w(¬a) = 1 else. Once we have a formula λ such that for ev-
ery total choice C ⊆ F , C ∧ λ |= q ↔ C ∪R |= q, we can
compute Pr(q) as WMC(λ). While λ may use variables be-
sides the probabilistic facts, their values have to be uniquely
defined for each total choice.

We note that the reduction also allows us to perform ap-
proximate inference with lower and upper bounds. Specif-
ically, we have that whenever λl |= λ |= λu, then
WMC (λl) ≤ WMC (λ) ≤ WMC (λu). This is especially
useful if constructing the full formula λ is infeasible.

2For ease of notation, we assume that F is ground.

Knowledge Compilation
The conversion of a probabilistic logic program towards
a propositional formula is only effective in case computa-
tion of the weighted model count can be done efficiently. In
most PLP systems, weighted model counting is supported by
knowledge compilation. The idea here is to compile the for-
mula into a more tractable target representation after which
inference can be performed in time linear in the size of the
compiled structure.

The knowledge compilation languages of interest in
this paper are disjunctive normal form (DNF), conjunc-
tive normal form (CNF), models (MODS), deterministic de-
composable negation normal form (d-DNNF), ordered bi-
nary decision diagram (OBDD) and sentential decision dia-
gram (SDD) (Darwiche and Marquis 2002; Darwiche 2011).
Within the knowledge compilation map, MODS, a DNFwhere
each conjunction contains all variables, is the most tractable
language. More useful target languages are d-DNNF, OBDD
and SDD. While d-DNNF is the most general of these lan-
guages and comes with the least restrictions, the advantage
of OBDD and SDD is that they allow for incremental formula
construction.

3 Constructing the Propositional Formula
It is straightforward to convert a probabilistic logic program
to a propositional formula in MODS representation by simply
enumerating all total choices (conjunctions of literals) that
entail the query. In the example of Figure 1, the formula for
query path(b, c), where we use xy for edge(x, y) being in
the model, would be

(ba ∧ bc ∧ ac) ∨ (¬ba ∧ bc ∧ ac) ∨
(ba ∧ bc ∧ ¬ac) ∨ (¬ba ∧ bc ∧ ¬ac) ∨
(ba ∧ ¬bc ∧ ac)

listing a total of 5 total choices (or subgraphs) explicitly.
However, this is clearly infeasible for all but the tiniest pro-
grams, and existing PLP inference techniques therefore use
other representations, most often DNF or CNF. We discuss
these two alternatives next.

3.1 Explanation Based Conversion to DNF
The first approach to construct a more efficient representa-
tion of λ is based on the observation that, instead of list-
ing total choices entailing the query, we can also list partial
choices. A partial choice is a truth value assignment to a sub-
set of the probabilistic facts where all total choices extend-
ing the assignment entails the query. We refer to such par-
tial choices as explanations of the query. As each explana-
tion corresponds to a set of total choices, a DNF of explana-
tions is often more compact than a MODS representation. In
our graph example, this means listing paths instead of sub-
graphs, i.e., for query path(b, c) we would get bc∨(ba∧ac).

In probabilistic logic programming, a covering set of
explanations can easily be obtained by backtracking over
all successful derivations of the query, i.e., using standard
logic programming inference such as SLD-resolution. Fig-
ure 2 shows the SLD-tree obtained by evaluating the query
path(b, c) on the example from Figure 1. Each success
branch corresponds to one explanation in the DNF.

360

?- path(b,c).

?- edge(b,c). ?- edge(b,Z’),path(Z’,c).

?- path(a,c). ?- path(c,c).

?- edge(a,c).

success

?- edge(c,c).

fail

?- edge(a,Z’’),path(Z’’,c). ?- edge(c,c),path(c,c).

fail

success

?- path(c,c).

?- edge(c,c).

fail

?- edge(c,c),path(c,c).

fail

Z’ = a

Figure 2: The SLD-tree of our example and the query
path(b, c). We find two explanations.

The idea of a DNF based on explanations has been used,
for instance, in the context of PHA, ICL, PRISM, ProbLog
and LPADs (Poole 1993; 2000; Sato and Kameya 2001; De
Raedt, Kimmig, and Toivonen 2007; Riguzzi 2007; Riguzzi
and Swift 2011), cf. also Sections 4.1 and 4.3.

Approximate Inference
It is also common to approximate inference by selecting a
subset of explanations only, which then results in a lower
bound after model counting. Possible selection criteria in-
clude all explanations up to a certain length, all explanations
for which the probability of the partial choice is above a cer-
tain threshold, or the k explanations (for a given number
k) for which this probability is the highest. In our exam-
ple, the probabilities of the explanations are 0.3 (for bc) and
0.8 ·0.4 = 0.32 (for ba∧ac), and with k = 1 we would thus
select the longer explanation.

3.2 Rule Based Conversion to CNF
The standard input format for most off-the-shelf weighted
model counting solvers is a CNF. Hence, it is attractive to
convert a probabilistic logic program into a CNF.

For programs without cyclic dependencies, such as our
example, conversion to CNF requires three steps: (1) find
all ground rules used in some proof of the query, (2) ap-
ply Clark’s completion (Nilsson and Maluszynski 1995) to
obtain a formula in propositional logic, and (3) rewrite this
formula to CNF. In our example, the relevant ground rules
for query path(b, c) are

path(b, c) : - edge(b, c).

path(b, c) : - edge(b, a), path(a, c).

path(a, c) : - edge(a, c).

The propositional formula contains one subformula for each
ground atom appearing in the head of some rule. This sub-
formula states that the propositional variable corresponding
to this atom is equivalent to the disjunction of all its rules
bodies, i.e., we get

ppc ↔ bc ∨ (ba ∧ pac)
∧ pac ↔ ac

We omit the CNF.
For programs with cyclic dependencies, however, Clark’s

completion does not correctly capture the semantics. Con-
sider our example, but with an extra probabilistic fact
edge(a, b) which introduces a directed cycle in the graph.
Now, the ground program for path(b, c) is

path(b, c) : - edge(b, c).

path(b, c) : - edge(b, a), path(a, c).

path(a, c) : - edge(a, c).

path(a, c) : - edge(a, b), path(b, c).

The completion of this set of rules can be satisfied by set-
ting path(a, c), path(b, c), edge(b, a), edge(a, b) to true
and everything else to false, but this is not a valid possible
world under logic programming semantics.

It is well-known that this problem can be solved by rewrit-
ing the ground program, and state-of-the-art inference for
ProbLog relies on this approach (Fierens et al. 2015). This
rewriting step, however, introduces auxiliary atoms and may
drastically increase the size of the ground program, and thus
also of the CNF. Intuitively, rewriting can be seen as dupli-
cating ground atoms, and using the different copies in differ-
ent contexts. E.g., one could rewrite the above example to

path(b, c) : - edge(b, c).

path(b, c) : - edge(b, a), aux path(a, c).

path(a, c) : - edge(a, c).

path(a, c) : - edge(a, b), aux path(b, c).

aux path(b, c) : - edge(b, c).

aux path(a, c) : - edge(a, c).

The size of the transformed program, and thus the CNF, in-
creases dramatically with the number of cyclic dependencies
and limits the scalability of inference based on CNF. For ex-
ample, the conversion of the complete grounding for a path
query on a fully connected undirected graph with only 10
nodes (and thus 90 probabilistic facts) results in a CNF for-
mula with 26995 variables and 109899 clauses.

Approximate Inference
One way to approximate inference based on the CNF is pro-
vided by (Renkens et al. 2014). Here, the explanation search
on the CNF is formulated as a weighted partial MaxSAT
problem and is further encoded such that solutions can itera-
tively be obtained from a standard weighted MaxSAT solver.
These explanations then provide a lower bound for the prob-
ability of the query. An upper bound can be obtained based
on explanations for the negation of the query.

4 Weighted Model Counting
We now discuss various options to perform weighted model
counting on the formulae constructed above, including com-
pilation of a propositional formula into a suitable target rep-
resentation. We first specifically consider DNF and CNF for-
mulae, and then discuss general methods usable with any
representation (including DNF and CNF).

361

4.1 DNF formula
If all explanations of the query are mutually exclusive, i.e.,
no two partial choices can be extended to the same total
choice, the weighted model count or probability can directly
be computed on the DNF. To benefit from this, PHA (Poole
1993) and PRISM (Sato and Kameya 2001) require that
programs ensure mutually exclusive explanations. This ex-
cludes certain natural models such as our path example (note
that the possible world where all edges are true contains
both of the paths that prove our query).

An alternative is to explicitly disjoin the explanations
in the DNF, for instance, using the inclusion-exclusion-
principle, or by systematically adding additional choices to
explanations. The former has been used for probabilistic
Datalog (pD) (Fuhr 2000), where it is reported to scale to
about ten explanations. An example of the latter has been
proposed for ICL (Poole 2000), but again has limited scala-
bility.

A much more scalable approach is to compile the DNF
into a target language suitable for weighted model counting.
Many of-the-shelf compilers, however, do not support DNF,
or general formulae, as input language. We discuss compila-
tion for general formulae below.

4.2 CNF Formula
A formula in CNF is the standard input format for most
weighted model counting tools. Hence, conversion into CNF
allows one to easily integrate and compare different solvers.
One common approach is compilation to d-DNNF or SDD
as done in ProbLog (Fierens et al. 2015; Vlasselaer et
al. 2014). Alternatives are on-the-fly counters which com-
pute the WMC without keeping a trace, i.e. without explic-
itly compiling the formula. For approximate counting, one
could rely on sampling approaches, such as MC-SAT (Poon
and Domingos 2006), which only return an estimate of the
WMC.

4.3 Any Formula
ProbLog (De Raedt, Kimmig, and Toivonen 2007) was the
first system that used knowledge compilation to solve the
problem of overlap between explanations, with OBDD as
the target compilation language. Exact inference effectively
scaled up to, e.g., path queries with a few hundred thousand
explanations. Instead of explicitly representing the set of ex-
planations as DNF, a more compact internal representation
is used that exposes repeated subformulae to the OBDD com-
piler. This approach has later been adopted also for LPADs
in the cplint (Riguzzi 2007) and PITA (Riguzzi and Swift
2011) systems , where the latter directly represents the for-
mula as OBDD during explanation search.

These approaches crucially rely on the fact that OBDD al-
lows for efficient bottom-up compilation, i.e., any proposi-
tional formula can be used as input. Bottom-up compilation
relies on an efficient implementation of the apply-operator
which allows for Boolean operations on formulae. As a con-
sequence, OBDD could be easily replaced by other target lan-
guages with this property, such as SDD.

5 Integrating Conversion and Counting
The approaches discussed so far completely separate logi-
cal reasoning (formula construction) from probabilistic rea-
soning (weighted model counting). For approximate infer-
ence, at most the probabilities are used to guide the selection
of explanations, i.e. one searches for explanations with the
highest probability. Avoiding this separation has been shown
beneficial in a number of settings, however.

First, when constructing a DNF with a fixed maximal
number k of explanations for approximate inference, it
makes sense to chose the explanations based on how much
they contribute to the weighted model count of the final se-
lection, rather than on their individual probability. This con-
tribution can efficiently be evaluated on an OBDD represen-
tation of the current selections. With this approach, one can
achieve results with optimality guarantees (Renkens, Van
den Broeck, and Nijssen 2012).

Second, conversion into CNF is often prohibitively expen-
sive as it requires explicit handling of cyclic dependencies.
One way to avoid CNF conversion is proposed by (Vlasse-
laer et al. 2015). Instead of constructing a single formula,
they iteratively construct a collection of formulae, one for
each ground atom. The formulae are directly represented as
SDDs. Formulae for probabilistic facts are initialized to their
corresponding propositional variable and all other formulae
to false. The approach then iteratively updates formulae
based on rules. Using SDDs allows one to efficiently con-
struct these formulae as well as to recognize when no further
updates are needed (i.e., for all atoms, the previous and next
formulae are logically equivalent). An additional advantage
of this technique is that it avoids the need for a compact in-
ternal representation, as often used for the explanation based
conversion.

An alternative way to avoid conversion to CNF is to mod-
ify a propositional model counter to count stable models of a
ground logic program rather than models of a propositional
formula. This has been done with the DSHARP knowledge
compiler (Aziz et al. 2015).

6 Discussion and Challenges
By building on top of advanced model counting techniques,
probabilistic logic programming systems have tackled prob-
lems like the disjoint-sum problem. Furthermore, scalabil-
ity is significantly improved. Standardization across the field
makes it possible to easily interchange different solvers and
to use the best approach for a given problem. While inter-
changeability is partially thanks to the strict input formats
(e.g., a full formula in CNF), this also poses a challenges to
probabilistic logic inference techniques.

As shown throughout the text, the conversion of a logic
program into a propositional formula is not straightfor-
ward. For example, generating a CNF is often infeasible for
highly cyclic programs. As a consequence, the bottleneck
for certain programs is situated even before calling weighted
model counters or knowledge compilers. Several results
have shown that it is more efficient to interweave logic pro-
gramming reasoning and knowledge compilation (Renkens,
Van den Broeck, and Nijssen 2012; Vlasselaer et al. 2015;

362

Aziz et al. 2015). That way, model counting can be used
throughout the entire chain and we can build upon the al-
ready compiled formulae to keep them small.

The use of WMC during conversion has shown to be ben-
eficial when compiling approximate formulae. Hence, a first
challenge for the community is to provide knowledge com-
pilers that, given a weighted formula and resource restric-
tions (e.g. time or memory), compile a formula that maxi-
mizes the WMC. To our knowledge, different tools for ap-
proximate weighted model counting exist but none of the
knowledge compilers support approximate compilation.

Interleaving reasoning on the logic program with con-
struction of a propositional formula for WMC heavily re-
lies on efficient operations on already compiled formulae.
Hence, a second challenge for the community is to provide
more tools with an interactive interface that allows one to
incrementally build and manipulate formulae. To our knowl-
edge, only a subset of the current tools provide such an in-
terface, e.g. compilers to OBDD or SDD, while most other
solvers require as input a propositional formula in a strict
format, e.g. CNF or DNF.

All techniques we discussed so far require a propositional
input and, as such, the first step of PLP inference techniques
involves grounding the program, either explicitly or during
explanation search. A third challenge for the community
is to provide tools that allow us to omit this grounding step
by using first order knowledge compilation. While the first
steps into this direction have already been taken (Van den
Broeck, Meert, and Darwiche 2014), more work is certainly
needed.

Acknowledgments
The authors wish to thank Guy Van den Broeck for valuable
discussions. Jonas Vlasselaer is supported by IWT (agency
for Innovation by Science and Technology). Angelika Kim-
mig is supported by FWO (Research Foundation-Flanders).
This work is partially supported by FWO projects and GOA
13/010.

References
Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. J. 2015.
Stable Model Counting and Its Application in Probabilistic
Logic Programming. In Proceedings of the 29th AAAI Con-
ference on Artificial Intelligence (AAAI).
Chavira, M., and Darwiche, A. 2008. On probabilistic in-
ference by weighted model counting. Artif. Intell. 172(6-
7):772–799.
Darwiche, A., and Marquis, P. 2002. A knowledge compi-
lation map. Journal of AI Research 17:229–264.
Darwiche, A. 2011. SDD: A New Canonical Representa-
tion of Propositional Knowledge Bases. In Proceedings of
the 22nd International Joint Conference on Artificial Intelli-
gence (IJCAI).
De Raedt, L., and Kimmig, A. 2015. Probabilistic (logic)
programming concepts. Machine Learning.
De Raedt, L.; Frasconi, P.; Kersting, K.; and Muggleton, S.
2008. Probabilistic Inductive Logic Programming — Theory

and Applications, volume 4911 of Lecture Notes in Artificial
Intelligence. Springer.
De Raedt, L.; Kimmig, A.; and Toivonen, H. 2007. ProbLog:
A Probabilistic Prolog and Its Application in Link Discov-
ery. In Proceedings of the 20th International Joint Confer-
ence on Artificial Intelligence (IJCAI).
Fierens, D.; Van den Broeck, G.; Renkens, J.; Shterionov,
D.; Gutmann, B.; Thon, I.; Janssens, G.; and De Raedt, L.
2015. Inference and learning in probabilistic logic programs
using weighted Boolean formulas. Theory and Practice of
Logic Programming 15(03):358–401.
Fuhr, N. 2000. Probabilistic Datalog: Implementing log-
ical information retrieval for advanced applications. Jour-
nal of the American Society for Information Science (JASIS)
51(2):95–110.
Getoor, L., and Taskar, B. 2007. Introduction to Statistical
Relational Learning (Adaptive Computation and Machine
Learning). The MIT Press.
Goodman, N. D., and Stuhlmüller, A. 2014. The Design and
Implementation of Probabilistic Programming Languages.
http://dippl.org. Accessed: 2015-10-20.
Nilsson, U., and Maluszynski, J. 1995. Logic, Programming,
and PROLOG. New York, NY, USA: John Wiley & Sons,
Inc., 2nd edition.
Pfeffer, A. 2014. Practical Probabilistic Programming.
Manning Publications.
Poole, D. 1993. Logic programming, abduction and proba-
bility. New Generation Computing 11:377–400.
Poole, D. 2000. Abducing through negation as failure: sta-
ble models within the independent choice logic. Journal of
Logic Programming 44(1-3):5–35.
Poon, H., and Domingos, P. 2006. Sound and Efficient In-
ference with Probabilistic and Deterministic Dependencies.
In Proceedings of the 21st National Conference on Artificial
Intelligence, 458–463.
Renkens, J.; Kimmig, A.; Van den Broeck, G.; and De Raedt,
L. 2014. Explanation-based approximate weighted model
counting for probabilistic logics. In Proceedings of the 28th
AAAI Conference on Artificial Intelligence (AAAI).
Renkens, J.; Van den Broeck, G.; and Nijssen, S. 2012.
k-optimal: A novel approximate inference algorithm for
ProbLog. Machine Learning 89(3):215–231.
Riguzzi, F., and Swift, T. 2011. The PITA System: Tabling
and Answer Subsumption for Reasoning under Uncertainty.
Theory and Practice of Logic Programming 11(4–5):433–
449.
Riguzzi, F. 2007. A Top Down Interpreter for LPAD and
CP-Logic. In 10th Congress of the Italian Association for
Artificial Intelligence (AI*IA).
Sato, T., and Kameya, Y. 2001. Parameter Learning of Logic
Programs for Symbolic-Statistical Modeling. J. Artif. Intell.
Res. (JAIR) 15:391–454.
Sato, T. 1995. A statistical learning method for logic
programs with distribution semantics. In Proceedings of

363

the 12th International Conference on Logic Programming
(ICLP).
Suciu, D.; Olteanu, D.; Christopher, R.; and Koch, C. 2011.
Probabilistic Databases. Morgan & Claypool Publishers,
1st edition.
Van den Broeck, G.; Meert, W.; and Darwiche, A. 2014.
Skolemization for weighted first-order model counting. In
Proceedings of the 14th International Conference on Prin-
ciples of Knowledge Representation and Reasoning (KR).
Vennekens, J.; Denecker, M.; and Bruynooghe, M. 2009.
CP-logic: A language of causal probabilistic events and its
relation to logic programming. Theory and Practice of Logic
Programming 9(3).
Vennekens, J.; Verbaeten, S.; and Bruynooghe, M. 2004.
Logic programs with annotated disjunctions. In In Proc.
Int’l Conf. on Logic Programming.
Vlasselaer, J.; Renkens, J.; Van den Broeck, G.; and De
Raedt, L. 2014. Compiling probabilistic logic programs
into sentential decision diagrams. In Proceedings of the 1st
Workshop on Probabilistic Logic Programming (PLP).
Vlasselaer, J.; Van den Broeck, G.; Kimmig, A.; Meert, W.;
and De Raedt, L. 2015. Anytime inference in probabilistic
logic programs with Tp-compilation. In Proceedings of 24th
International Joint Conference on Artificial Intelligence (IJ-
CAI).

364

