
The Scalability of the HyperPlay Technique for Imperfect-Information Games

Michael Schofield and Michael Thielscher
School of Computer Science and Engineering

The University of New South Wales
{mschofield, mit}@cse.unsw.edu.au

Abstract

In the field of General Game Playing the imperfect-
information games present a special challenge for re-
searchers. In general the search space is larger, and the
lack of information requires a different decision making
technique. A simple Monte Carlo sampling using a par-
ticle filter may serve for the simple games, but this soon
fails when more complex games are played. The Hy-
perPlay technique was one such ”simple” player, soon
enhanced to HyperPlay-II1 capable of handling the most
complex of games. However, this technique is very re-
source hungry and may not scale well for larger games.
We explore the scalability of HyperPlay-II for a variety
of imperfect-information games and test some perfect-
information pruning techniques to see if they will im-
prove efficiency.

Introduction
General Game Playing is a branch of AI research focused
on agents capable of playing any game with no prior experi-
ence (Genesereth, Love, and Pell 2005). The agent is given
a set of declarative rules2 and is expected to play the game
as well as any human player might.

Within the General Game Playing (GGP) domain the
most popular games are those with perfect information as
to the reward structure and the game play (Genesereth and
Björnsson 2013). Games with imperfect information present
a special challenge for AI players as the game play is hidden
and replaced with percepts. So a player may only receive
limited information about the state of play, and hence the
state of the game.

Incomplete-Information Games
In the GGP community the term “imperfect” is used where
general AI uses the term “incomplete.” We will use “imper-
fect” information to mean that the game play may be hidden
from one or more players. The initial state of the game and
reward structure is known as they are declared in the rules.

These games have been added as a challenge for exist-
ing GGP systems (Thielscher 2010; Schiffel and Thielscher
2014), presenting several unique challenges for the AI

1for Imperfect Information
2an example is given in Figure 1

player. Firstly, the search space is often larger than similar
perfect-information games as the player must search parts of
the game tree that would otherwise be known to be inacces-
sible. Secondly, the player must reason across an informa-
tion set3 and choose the move that is most likely to give a
positive outcome.

HyperPlay Technique
We recapitulate a brief description of the HyperPlay (HP)
and HyperPlay-II (HP-II) techniques (Schofield, Cerexhe,
and Thielscher 2012; Schofield and Thielscher 2015).

HyperPlay is a bolt on solution for a perfect-information
player that allows it to play imperfect-information games.
There is no limitation to the type of perfect-information
player, however in this paper we choose to use a simple
player based on Monte Carlo sampling.

The HP technique converts the perfect-information player
by maintaining a bag of models of the true game, updating
them as new information4 comes to hand. The HP technique
uses the bag of models to create a sample of the information
set, as well as a probability of the model being the true game.
In effect we have a weighted particle filter.

Using the weighted particle filter the HP player can con-
duct a perfect-information search and combine the expected
outcomes using the appropriate weighting. This process is
not well behaved as GDL-II allows for players to make il-
legal moves in the true game. Thus, a move that is legal in
the sample may not be legal in the true game. So the sam-
ple weightings also express the likelihood that the moves are
legal in the true game.

The obvious flaw is the elevation of sample to fact via
the perfect-information search, which is overcome in the
HP-II technique by the use of nested playouts or Imperfect-
Information Simulations. This has proved very successful in
correctly valuing information gathering moves, but also very
costly in terms of computational resources.

There is one important difference between the Imperfect-
Information Simulations and a conventional playout. That
is, a conventional playout starts from a sample of the in-

3that is, the set of possible game states that satisfies all the per-
cepts received by the player

4percepts received from the game controller in the GDL form
(sees player percept)

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Computer Poker and Imperfect Information Games: Technical Report WS-16-06

378

1 (role player) (role random)

2 (init (step 0)) (init starttime)

3 (number 1) ... (number 16)

4 (<= (legal random (choosenumber ?n))

5 (number ?n) (true starttime))

6 (<= (legal player (ask lessthan ?n))

7 (number ?n) (true questiontime))

8 (<= (legal player readytoguess) (true questiontime))

9 (<= (legal player (guess ?n))

10 (number ?n) (true guesstime))

11 ...

12 (<= (sees player yes)

13 (does player (ask (lessthan ?n)))

14 (true (secretnumber ?m)) (less ?m ?n))

15 (<= (next (secretnumber ?n))

16 (does random (choosenumber ?n)))

17 (<= (next questiontime) (true starttime))

18 (<= (next guesstime) (does player readytoguess))

19 (<= (next right)

20 (does player (guess ?n)) (true (secretnumber ?n)))

21 (<= (next wrong)

22 (does player (guess ?n)) (not (true secretnumber ?n)))

23 ...

24 (<= terminal (true right))

25 (<= terminal (true wrong))

26 (<= (goal player 100) (true right) (true (step 3)))

27 (<= (goal player 90) (true right) (true (step 4)))

28 ... (<= (goal player 0) (true wrong))

Figure 1: GDL-II description of the NumberGuessing game.

formation set and plays to termination, but the Imperfect-
Information Simulations starts from the initial state of the
game and passes through the sample of the information set
on its way to termination, agreeing with all the percepts
received from the true game. This additional length of the
playout adds to the resource requirement.

Related Research
The GGP community has been slow to pick up the chal-
lenge and only a few players have been implemented with
even fewer competitions being conducted. The published
approaches to designing general game players for GDL-
II show how existing complete information GDL players
can be lifted to play general imperfect-information games
by using models as the starting states for a complete
information search (Edelkamp, Federholzner, and Kiss-
mann 2012; Schofield, Cerexhe, and Thielscher 2012). This
has been motivated by set sampling (Richards and Amir
2009) and by particle system techniques (Silver and Ve-
ness 2010). Edelkamp, Federholzner, and Kissmann (2012)
have built a GDL-II player NEXUSBAUM based on perfect-
information Monte Carlo sampling, which they compared
against FLUXII, an imperfect-information extension of
FLUXPLAYER (Schiffel and Thielscher 2007) that maintains
the complete information set throughout a game.

Outside of GGP, Monte Carlo tree search has been applied
to a variety of specific perfect- and imperfect-information
games alike (Browne et al. 2012). Frank and Basin (1998)
have presented a ‘game-general’ tree search algorithm for
the card game Bridge that exploits a number of imperfect-
information heuristics. For the same game, Ginsberg (2001)
has applied perfect-information Monte Carlo sampling.
Similar special case applications of sampling to reduce im-
perfect to perfect information can be found in Kupferschmid
and Helmert (2007).

The so-called strategy fusion error has been identified as
a main issue with straightforward perfect-information model
sampling (Frank and Basin 1998). Long et al. (2010) analyse
the impact of this error and present three conditions on game
trees under which it does not have a strong adverse effect on
the quality of play. For other games, the strategy fusion er-

ror has led to variations of perfect-information sampling that
have been successfully applied to other card games (Wisser
2015). The Alberta Computer Poker Research Group has de-
veloped systems at the forefront of computer Poker play-
ers (Billings et al. 2006). This is a challenging domain
combining imperfect and misleading information, opponent
modeling, and a large state space. While not explicitly in-
terested in GGP, they do describe several techniques that
could generalise to this field, including miximix, fast oppo-
nent modeling, and Nash equilibrium solutions over an ab-
stracted state space.

Contribution
Our motivation for this research is the notion that the HP-II
technique is a ”resource pig” (Schofield and Thielscher
2015) as it uses nested playouts to evaluate move selections.

In this paper we focus on the HP-II technique and its con-
sumption of computational resources for a particular level of
performance. We make comparisons between HP and HP-II
for a variety of games as well as measuring the increase in
resources used by HP-II when a game is scaled up. We then
implement several pruning techniques that have had some
success in nested perfect-information players and measure
the reduction in resources consumed.

This paper seeks to examine the cost of the imperfect-
information aspects of a player, not the embedded perfect-
information search techniques. While the latter is fertile
ground for improvement, we focus on the resource con-
sumed by the imperfect-information algorithms.

Game Description Language
The declarative game description language (GDL) has been
defined as a formal language that allows an arbitrary game
to be specified by a complete set of rules (Genesereth, Love,
and Pell 2005). It uses a logic programming-like syntax
and is characterised by a few keywords. These are high-
lighted in Figure 1. GDL has been extended to GDL-II (for:
GDL with imperfect information) to allow for arbitrary, fi-
nite games with randomised moves and imperfect informa-
tion (Thielscher 2010).

379

Example Figure 1 shows some of the GDL-II rules for a
simple game that commences with the random player se-
lecting a number from 1 to 16, and then the player can ask
yes/no questions about the number or announce that they
are ready to guess. The intuition behind the GDL rules is as
follows. Lines 1-2 introduce the roles’ names and the ini-
tial game state, respectively. The possible moves are spec-
ified by the rules for keyword legal: in the first round,
random chooses a number (lines 3-5), then the player can
repeatedly enquire whether this number is less than another
one (lines 6-7), until they declare their intention to guess
(line 8) followed by picking their number (lines 9-10). The
agent’s only percept is the true answer to their questions
(lines 12-14). The remaining rules specify the state update
(rules for next), the conditions for the game to end (rules
for terminal), and the payoff (rules for goal), which de-
pends on the number of questions asked.

Imperfect-Information Games
In the General Game Playing domain for imperfect-
information games, the rules of the game and the reward
structure is fully known to each player. What is not auto-
matically known are the moves made by other players in the
game. Player receive percepts from the game controller ac-
cording to the rules of the game expressed in the GDL-II.
And so, we look at the variations that can occur in the struc-
ture of a game.

Imperfect Move Information
This is perhaps the simplest type of game, where a player
must compete with another player whose moves are hidden,
only receiving some clue about the game play from time to
time. Whilst this is true for almost all imperfect-information
games there are some games where the moves are the only
thing that is hidden.

There are many games that fit this category including
board games that have been adapted for imperfect informa-
tion. We use Hidden Connect to represent this type of game.

Hidden Connect Is a blind version of the children’s two
player board game, Connect 4.

Game Play is turn taking, with players dropping a
coloured token into a vertical column of a grid. A player
wins by making a row, column or diagonal of their tokens.
Reward Structure is constant sum with win, loss and draw
possible for each player.
Player Percepts are received only when a column is full
so that illegal moves are not made. Otherwise players get
no clue as their opponents moves.
Optimal Play Strategy is a very basic modeling of ex-
pected outcomes. The only information gathering moves
come indirectly by filling (or not filling) a column.
Game Tree is variable depth with a diminishing branching
factor as columns fill up. The game tree contains around
1017 states for the five column version of the game.
Scalability is achieved by changing the number of
columns and the number of tokens forming a line.

Imperfect Initial Information
This is also one of the simpler type of game, where a player
must search out the solution to a challenge that starts with
some missing information. Often the random player (nature)
makes some hidden move to begin the challenge.

There are many games that fit this category including
many popular card games, We use the game Mastermind to
represent this type of game.

Mastermind Is a guessing game where the random player
selects a coloured pattern, and the player must replicate the
pattern exactly.

Game Play is single player with the player offering
coloured patterns for evaluation against a target.

Reward Structure is diminishing pro rata according to the
correctness of the guess in a maximum number of turns.

Player Percepts are received every round about the close-
ness of the matching pattern, but are ambiguous.

Optimal Play Strategy is a to reduce the size of the infor-
mation set as quickly as possible, and so a move that can
halve the information set is an optimal move.

Game Tree is variable depth with a constant branching
factor. The game tree contains around 109 states for the
three colour version of the game.

Scalability is achieved by changing the number of colours
and changing the number of tokens forming the pattern.

Information Purchasing
This type of game tests the players ability to value infor-
mation gathering moves. Generally the player can choose
between asking a question about the state of the game, or at-
tempting to meet the criteria for success. Information gather-
ing moves incur a cost through a reduction in the final score.

There are fewer of these games played in General Game
Playing and in the community. We use the Number Guessing
game to represent this type of game.

Number Guessing Is a guessing game where the random
player selects a number from 1 to 16, and the player must ask
questions about the number or guess the number directly.

Game Play is single player with the player asking ques-
tions like “is it less than x” or guess the number directly.

Reward Structure is diminishing per turn. As such, every
question will cost the player a small portion of their final
score.

Player Percepts are received every round in response to
the question asked.

Optimal Play Strategy is to reduce the size of the infor-
mation set as quickly as possible, and so a move that can
halve the information set is an optimal move. A binary
search is achievable in this game.

Game Tree is variable depth with a constant branching
factor. The game tree contains around 1012 states for the
16 number version of the game.

Scalability is achieved by changing the number range.

380

Hidden Objectives
This type of game tests the players ability to identify their
opponents success criteria, or to hide their own success cri-
teria.

There are very few of these games played in General
Game Playing and in the community. We use Banker and
Thief from the GGP competition at the Australasian Joint
Conference on Artificial Intelligence to represent this type
of game.

Banker and Thief Is a strategy game where the random
player gives the banker a secret target. The banker must
avoid giving clues to the thief that will allow the thief to
steal from the banker.

Game Play is a two player game with an uneven reward
structure. The banker is given a target bank (from many
banks) to make deposits, however if the thief can guess
the target bank then the banker loses.

Reward Structure is uneven. The banker can keep all of
the money deposited in the target bank after the thief has
struck. The thief can only keep money stolen if it comes
from the target bank.

Player Percepts are received every round about deposits
made into each bank.

Optimal Play Strategy is to fool the thief into choosing
the wrong target. As such the banker must give up more
than half the money. A greedy strategy will always fail in
this game.

Game Tree is fixed depth with a constant branching fac-
tor. The game tree contains around 107 states for the 4
bank, ten deposit version of the game.

Scalability is achieved by changing the number of banks
and the number of deposits.

Tactical Information Valuing
This type of game tests the players ability to correctly value
information in terms of a tactical advantage in the game play,
both the cost of collecting information and the cost of keep-
ing secrets. There is no direct cost for information gathering
moves, but there is a tactical cost/benefit in terms of the ex-
pected outcome of the game.

There are very few of these games played in General
Game Playing and in the community. We use Battleships in
the Fog as played in the GGP competition at the Australasian
Joint Conference on Artificial Intelligence to represent this
type of game.

Battleships in the Fog Is a tactical two player game with
a random starting position.

Game Play is turn taking. Players can choose from three
basic actions; scan, fire or move. Scanning reveals the lo-
cation of their opponent, but tells them they have been
scanned. Firing upon an adjacent square may lead to vic-
tory, but reveals the location of the square being fired
upon. Moving changes a players location on the board.

Reward Structure is win/loss/draw. In practical terms the
game is win/loss as a draw takes many moves of avoiding
each other.
Player Percepts are received according to the action
taken. Scanning gives the location of the scanned vessel
to both players, and Firing gives the location of the square
being fired upon.
Optimal Play Strategy is to correctly value the risks and
rewards of moves that generate a percept. Ultimately this
is a game of calculating what information your opponent
knows about you based on what you know about your op-
ponent. And hence, correctly valuing moves that reveal
information.
Game Tree is variable depth with a constant branching
factor. The game tree contains around 1033 states for the
five-by-five grid.
Scalability is achieved by changing the size of the grid.

Heuristics and Pruning
Using a heuristic to improve the search and/or pruning the
search space are effective ways to improve the computa-
tional efficiency of the move selection process for perfect
information sampling. The extension of these techniques to
the HP player seems straight forward, but there is no evi-
dence to suggest that such techniques will work in the HP-II
Imperfect-Information Simulation.

We examine several techniques implemented in a Nested
Monte Carlo (NMC) player (Cazenave et al. 2016) as there is
some similarity between the nesting examined in this paper
and the nesting in the HP-II technique.

Figure 2: Playouts for a Monte Carlo Sampling and Nested
Playouts for an Imperfect-Information Simulation

States Visited
The HP-II technique utilises a nested playout for evaluat-
ing move choices which causes a significant increase in the
number of states visited during the analysis. As we are deal-
ing with imperfect information the nested playout must start
from the initial state of the game, not the current round. This
doubles the number of states visited in a game compared to
the perfect information version of a nested playout.

In Figure 2 we see the impact of the nested playout on
the number of states visited. This explains the significant in-
crease in computational resources required to play a game

381

of depth d; from O(bf · d2) for the HP player to O(bf 2 · d4)
for the HP-II player.

Discounting
Discounting is a way of improving the information extracted
from a playout to give a rich set of terminal results instead
of the usual 0 or 100. Discounting based on the depth of
the playout has been demonstrated (Cazenave et al. 2016)
to improve the search performance and to facilitate search
pruning.

A discount factor 0 < γ < 1 is applied to the goal value
to give the discounted value for decision making:

v′(t, r) = v(t, r)× γd, where

v(t, r) is the terminal value, and
d is the playout depth.

Discounting can only be effective in games with variable
playout depth, so our player’s performance will not be im-
proved by discounting when playing the fixed depth games.

Pruning
We draw on two pruning techniques presented for NMC and
adapt them to our player. In each technique we stop the play-
out when certain conditions are met. In each case the legal
moves are evaluated in a random order so as not to bias the
pruning process.

Cut on Win This technique works well with a NMC
player in turn taking two player win/loss games, but has
problems being implemented in games where players pur-
chase information. The Cut on Win (CoW) technique re-
quires a strict win/loss reward structure to be effective.

The player stops evaluating the legal moves when one
move return the maximum possible score, that move is then
selected. This can be problematic in games like Number
Guessing as the maximum score is reduced each round. So
we explore a variation where the player ”knows” the max-
imum achievable score under optimal play conditions and
uses that as a cut-off-point for the CoW pruning.

Pruning on Depth This technique also works well with a
NMC player in turn taking two player win/loss games, but is
ineffective when the playout depth is fixed.

The player makes decisions using discounted goal values
and remembers the shortest depth to the maximum achiev-
able score. All playouts are terminated when they exceed
the shortest depth and a goal value of zero is returned. When
multiple playouts are used for the evaluation, the player re-
members the totals for both goal value and depth.

Implementation
We implement each of these techniques at both levels of the
nested HP-II player, that is, the high level player and the em-
bedded HP players in the Imperfect-Information Simulation,
and report on the reduced computational resources and the
change in performance level.

Design of Experiments
We design experiments to answer two basic questions:
• Does HP-II perform better than HP at this type of game,

and at what computational cost; and
• What is the impact of up-sizing the game on the compu-

tational cost for HP-II to achieve the same level of perfor-
mance.

Game Play
For single player games there is no issue with game play,
but with two player games we need a consistent opponent to
make some useful measurements. To this end we instantiate
an opponent who uses the HP technique and is adequately
resourced so as to be competitive. Since we are making com-
parisons between different instantiations of our player, the
experiments will not be overly sensitive to the performance
of the opponent.

Measuring Performance
It is common in GGP to simulate the game play of a com-
petition by giving each player a time budget for each move.
However, there have been very few GGP-II competitions and
the idea of a time budget has less meaning. Also a time bud-
get is very dependent on the hardware being used for the
computations.

Therefore we use the number of states visited by the
player in playing the game as the measure of computational
resources. We are careful to measure this across the multi-
ple samples of the information set and to include the states
visited in the backtracking of invalid samples5. So we mea-
sure the states visited in creating the samples plus the states
visited in the playouts.

Player Configuration
For the HP player we can alter two resource parameters: the
size of the bag of models,6 and the number of playouts per
legal move. We say that HP(4, 2) maintains 4 models of the
true game and uses two playouts for each legal move to make
a move choice. That would mean in a game with a branching
factor of 10 and a playout depth of 10 there would be 800
states visited in make a move choice, and 4,400 states visited
in playing a game.

The HP-II player is twice as complex as it is a level 2
nested player, so we can alter four resource parameters. For
example, we would say that HP-II(4, 2, 4, 2) was equivalent
to HP(4, 2, HP(4 ,2)) which significantly increased the num-
ber of states visited from 800 to 3520007 for a move choice.

Preliminary experiments were conducted to find the best
configuration of both players for each game. The intent was
to show the best performance for each player in terms of
maximising the score and minimising the number of states
visited. Once that configuration was found we then used
multiples of 2 to produce characteristic curves presented in
the results.

5this may consume half of the resources in some games
6samples of the information set
74 x 2 x 10 x 4400, remember the Imperfect-Information Sim-

ulation starts at the beginning of the game, not the next round

382

Game Variants
The game variants were chosen to cast the strongest light on
the experimental aims. We wanted to show the best possible
performance for both players. With many game variations
and player variations we chose configurations that gave a
fair representation of the relative performances in context of
the imperfect information present in each game.

Confidence Level
Each game variant and player configuration was played one
thousand times8 and the average results reported. For the
two player games a result of zero indicated that the oppo-
nent scored the maximum payoff in every game, and a result
of 100 indicated that the nominated player scored the maxi-
mum payoff in every game.

A confidence level of 99% is shown using error bars in
a two-tailed calculation of the standard error of the mean
for both the states visited and the average payoff. That is to
say that we were 99% confident that the player would score
within the range reported using the computational resources
reported. In some cases the error bars are smaller than the
marker used to plot the point.

Equipment
The experiments were conducted on the high-throughput
computer facilities at the School of Computer Science and
Engineering at the University of New South Wales. That is,
each experiment was distributed across several hundred lab-
oratory PCs and the results collected and tabulated.

Experimental Results
We have conducted experiments on various configurations
of players for each of the games reported. The lines joining
points plotted in each chart do not represent a continuous
function, but are used to link results for similar configura-
tions of player and game.

Each point represents a different resourcing of that player
in terms of the number of samples taken from the informa-
tion set, and the number of playouts made when selecting a
move. Typically resources were doubled from one configu-
ration to the next, so a log scale is used for the horizontal
axis of the chart.

Hidden Connect
In Hidden Connect we used two variants of the game, con-
nect 3 in a 3x3 grid and connect 4 in a 5x5 grid. As this
game does not have any information gathering or purchasing
moves the HP player performed as well as the HP-II player
but consumed considerable fewer resources with both play-
ers improving their performance as they visited more states.

From the experimental results in Figure 3 we see the HP-II
player required more than ten times the resources for a sim-
ilar level of performance in the 3x3 grid, and 100 times the
resources for the 5x5 grid. We also note that a the increase
from 3x3 with a playout depth of 9 to the 5x5 with a depth

8for larger game variants fewer games were played and this is
reflected in the error bars shown on the chart

Figure 3: Hidden Connect game showing the HP player and
the HP-II player performance

of 25 would give a predicted 13 fold9 increase for the HP
player and a 165 fold increase for the HP-II player. These
predictions appear to be consistent with the experimental re-
sults.

Mastermind
In Mastermind we used two variants of the game: two
colours in three positions with three guesses, and three
colours in four positions with four guesses. The reward was
pro rata for the number of correct positions. The number
of guesses was restricted to see if an increase in resources
would improve the guessing strategy. This game has no hid-
den game play, only a hidden initial setting created by the
random player. As such, even the simplest HP player was
able to solve the puzzle.

The HP-II player consumed considerable more resources
for no additional improvement in performance.

Figure 4: Mastermind game showing the HP player and the
HP-II player performance

From the experimental results in Figure 4 we see a very
flat performance from both players. This game is solved
more in the backtracking of invalid samples, and less in
the cleverness of the guesses. Whilst a skilled player might
achieve a binary search, even the least resourced player was
able to achieve an optimal result10.

9from O(bf · d2) for the HP player to O(bf 2 · d4) for the HP-II
player, if all games were played out to a draw

10given there were limited guesses

383

Number Guessing
In the Number Guessing Game we use variants of 4, 8 &
16 numbers. As expected the HP player was unable to cor-
rectly value the information gathering moves and performed
no better than a random player would. Whereas, the HP-II
player tended towards optimum play as the resources were
increased.

The performance of the HP player may seem unusual, but
is not unexpected as it tends towards score for a random
guesser. That is, when fully resourced it should score 1/n.
However, when poorly resourced it asks a few random ques-
tions and hence accidentally11 narrows the field.

Figure 5: Number Guessing game showing the HP player
and the HP-II player performance

From the experimental results in Figure 5 we see the HP-II
player required significantly more resources than its HP
counterpart. We also note that a doubling of the game size
increased the computation resource requirements by several
orders of magnitude for the same level of performance12.
Without any increase in game play complexity we would
expect a theoretical increase of 10 fold for a doubling of the
game size.

Banker and Thief
In the Banker And Thief game we use variants with 2 and
4 banks and a deposits of 10 by $10.00. As expected the
fully resourced HP banker uses a greedy strategy when mak-
ing deposits and falls victim to the thief. Whereas, the HP-II
player tended towards optimum play as the resources were
increased13.

From the experimental results in Figure 6 we see a rela-
tively small shift from one game variant to the next as this
game has a fixed depth and only variable branching factor.
Theoretically we should see a factor of 2 for the HP player
and 4 for the HP-II player from one game variant to the next.
However, we are measuring backtracking states as well as
playout states. We Also see that the HP-II player requires
resources an order of magnitude more than its HP counter-
part.

11from its point of view after elevating sample to fact
12optimal play with 4 number scores 80, 8 numbers scores 70

and 16 numbers scores 60
13optimum play rewards $40.00 by creating a false target of

$60.00

Figure 6: Banker and Thief game showing the HP player and
the HP-II player performance

Battleships in Fog
In this game we use 3x3, 4x4 and 5x5 grid variants with a
game length of 10 moves. This is a tactical game where play-
ers must evaluate every round for a tactical advantage. As
expected the HP player plays little better than random with
a score just above 50. This is due to some lucky first shots.
Whereas, the HP-II player tends towards optimum play as
the resources are increased.

Figure 7: Battleships in Fog game showing the HP player
and the HP-II player performance

From the experimental results in Figure 7 we see the
HP-II player required significantly more resources than its
HP counterpart. We also note that an effective doubling of
the game size14 increased the computation resource require-
ments by an order of magnitude for the same level of perfor-
mance. Without any increase in game play complexity, and
hence the length of the game, we would expect a theoretical
increase of 4 fold for a doubling of the game size.

Discounting and Pruning
We implemented discounting and pruning for the HP-II
player to guage its effectiveness. We chose a fully resourced
version of the player so as to give the greatest opportunity
for improvement.

For each of the games we implemented each of the vari-
ation of discounting and pruning and reported the average
score and average number of states per game below.

14from 3x3=9 to 4x4=16

384

HP-II player
Game Enhancement Score States

Hidden Connect None 78.8 768,687
(3x3) CoW 63.6 548,684

Discounting 79.4 753,236
PoD 52.7 520,416

Mastermind None 83.1 307,619
(2x3) CoW 81.2 68,300

Discounting 84.1 303,373
PoD 81.6 82,812

Number Guessing None 78.2 677,314
(4) CoW 70.6 677,190

Discounting 78.3 672,235
PoD 70.5 699,806

Banker & Thief None 28.3 743,705
(2x10) CoW 14.9 660,727

Discounting 27.1 744,103
PoD 26.7 744,071

Battleships in Fog None 89.1 5,236,047
(3x3) CoW 42.3 2,482,041

Discounting 86.6 5,157,731
PoD 48.8 3,027,023

Figure 8: Results of pruning the search space on player per-
formance

Hidden Connect We used the 3x3 grid and saw only a
slight reduction in states visited using pruning, but a signifi-
cant degradation of performance.

Mastermind We used the two colour, three position ver-
sion and saw a significant reduction in resource using prun-
ing with no degradation of performance.

Number Guessing We used the 4 number version of this
game and saw no real improvement from pruning, in fact
pruning extended some games, reducing the score and in-
creasing resources per game.

Banker and Thief We used the 2 bank, 10 deposit version
of this game and saw only a small reduction in resources for
Cut on Win, but a significant degradation of performance.

Battleships in the Fog We used the 3x3 grid for this game
and saw a significant reduction in resources using pruning,
but a significant degradation of performance.

Conclusions
In each of the game types we see confirmation of the two
basic questions:

• Does HP-II perform better than HP at this type of game,
and at what computational cost; and

• What is the impact of up-sizing the game on the compu-
tational cost for HP-II to achieve the same level of perfor-
mance.

HP versus HP-II When the topology is favourable the HP
player performs as well as the HP-II player, improving its
score as resources increase and reaching the same level of
optimal play. So we would conclude that the HP player is an
acceptable choice, except where the game topology makes it
ineffective.

Computation Cost of HP-II The HP-II player requires
significantly more resources to instantiate than the HP
player. In each of the games tested the number of states vis-
ited increased by an order of magnitude. The only benefit in
using the HP-II player is that it correctly values information.
So we conclude that the HP player should be the first choice,
except where the game topology makes it ineffective.

Up-sizing the Game In all of the games tested we saw a
significant impact when the game was up-sized. This was
consistent with the theoretical analysis that stated the HP
player as being O(bf · d2) and the HP-II player as being
O(bf 2 · d4).
Discounting In all of the games discounting had little im-
pact on the outcome. In games with fixed depth, discounting
is known to have no impact. In the other games discounting
did not hasten the win, or prolong the loss in any real way.

Pruning There was only one game out of five where prun-
ing had a positive impact. Cut on Win and Pruning on Depth
are known to be safe (Cazenave et al. 2016) for Nested
Monte Carlo players with complete information. The results
from Banker and Thief, and Battleships in Fog suggest they
may not be safe in Imperfect-Information Simulations, but
the reason is not clear15.

General The HP-II player will always play as well as the
HP player, and will correctly value information in the con-
text of the reward structure and the expected outcome of the
game. Whereas, the HP player falls into the trap of elevating
sample to fact and consequently values information at zero.

The player of choice should be the HP player, only util-
ising the information valuing properties of the HP-II player
when the game topology dictates.

Future Work
We see ample opportunity for extending this work. Specifi-
cally, looking for ways to reduce the resources consumed by
the nested playouts in the HP-II player.

Another obvious area of interest is the safeness of the
pruning technique used in Imperfect-Information Simula-
tions.

Acknowledgments
This research was supported by the Australian Research
Council under grant no. DP120102023. The second author
is also affiliated with the University of Western Sydney.

15samples of the information set may not contain the same legal
moves, but to offer this as a reason would be speculation

385

References
Billings, D.; Davidson, A.; Schauenberg, T.; Burch, N.;
Bowling, M.; Holte, R.; Schaeffer, J.; and Szafron, D. 2006.
Game-tree search with adaptation in stochastic imperfect-
information games. In Proceedings of the International
Conference on Computers and Games (CG), 21–34.
Browne, C.; Powley, E.; Whitehouse, D.; Lucas, S.; Cowl-
ing, P.; Rohlfshagen, P.; Tavener, S.; Perez, D.; Samothrakis,
S.; and Colton, S. 2012. A survey of Monte Carlo Tree
Search methods. IEEE Transactions on Computational In-
telligence and AI in Games 4(1):1–43.
Cazenave, T.; Saffidine, A.; Schofield, M.; and Thielscher,
M. 2016. Discounting and pruning for nested playouts in
general game playing. In Proceedings of the AAAI Confer-
ence on Artificial Intelligence.
Edelkamp, S.; Federholzner, T.; and Kissmann, P. 2012.
Searching with partial belief states in general games with
incomplete information. In Proceedings of the German An-
nual Conference on Artificial Intelligence (KI), 25–36.
Frank, I., and Basin, D. 1998. Search in games with incom-
plete information: A case study in using Bridge card play.
Artificial Intelligence 100(1–2):87–123.
Genesereth, M., and Björnsson, Y. 2013. The international
general game playing competition. AI Magazine 34(2):107–
111.
Genesereth, M. R.; Love, N.; and Pell, B. 2005. General
game playing: Overview of the AAAI competition. AI Mag-
azine 26(2):62–72.
Ginsberg, M. L. 2001. GIB: Imperfect information in a
computationally challenging game. Journal of Artificial In-
telligence Research 14:303–358.
Kupferschmid, S., and Helmert, M. 2007. A Skat player
based on Monte-Carlo simulation. In Proceedings of the
International Conference on Computers and Games (CG),
135–147.
Long, J.; Sturtevant, N.; Buro, M.; and Furtak., T. 2010. Un-
derstanding the success of perfect information M Carlo sam-
pling in game tree search. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, 134–140. Atlanta: AAAI
Press.
Richards, M., and Amir, E. 2009. Information set sampling
for general imperfect information positional games. In Pro-
ceedings of the IJCAI Workshop on General Intelligence in
Game-Playing Agents (GIGA), 59–66.
Schiffel, S., and Thielscher, M. 2007. Fluxplayer: A suc-
cessful general game player. In Proceedings of the AAAI
Conference on Artificial Intelligence, 1191–1196.
Schiffel, S., and Thielscher, M. 2014. Representing and
reasoning about the rules of general games with imper-
fect information. Journal of Artificial Intelligence Research
49:171–206.
Schofield, M., and Thielscher, M. 2015. Lifting model sam-
pling for general game playing to incomplete-information
models. In Proceedings of the AAAI Conference on Artifi-
cial Intelligence, 3585–3591.

Schofield, M.; Cerexhe, T.; and Thielscher, M. 2012. Hy-
perPlay: A solution to general game playing with imperfect
information. In Proceedings of the AAAI Conference on Ar-
tificial Intelligence, 1606–1612.
Silver, D., and Veness, J. 2010. Monte-Carlo planning in
large POMDPs. In Proceedings of the Annual Conference
on Neural Information Processing Systems (NIPS), 2164–
2172.
Thielscher, M. 2010. A general game description language
for incomplete information games. In Proceedings of the
AAAI Conference on Artificial Intelligence, 994–999.
Wisser, F. 2015. An expert-level card playing agent based
on a variant of perfect information Monte Carlo sampling.
In Proceedings of the International Joint Conference on Ar-
tificial Intelligence (IJCAI), 125–131. Buenos Aires: AAAI
Press.

386

