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Abstract

Hybrid planning with nonlinear continuous change is a signif-
icant challenge for existing planners. Prior works limit their
scope to linear change or base their formalisms in model
checking frameworks with inherent limitations. We address
nonlinear PDDL+ planning with a new encoding in first or-
der logic over real valued functions. Our planner, PluReal,
translates PDDL+ to this logical encoding and applies the
dReal Satisfiability Modulo Theories (SMT) solver to con-
struct plans. Unlike prior work that uses dReal in the hybrid
system model checking tradition, PluReal is based in the
planning as satisfiability (SAT) heritage. Adopting the SAT
approach helps lift several unnatural restrictions that are im-
posed by the translation through hybrid systems and leads to
improved scalability even without SMT solver variable selec-
tion heuristics.

Introduction
Most contemporary work on hybrid planning focuses on lin-
ear continuous change. Those that allow nonlinear contin-
uous change, dReach (Bryce et al. 2015) and UPMurphi
(Della Penna et al. 2009), suffer from the state explosion
problem because they flatten the discrete aspects of the prob-
lems. These works, and a majority of hybrid planners, trans-
form hybrid planning into model checking hybrid automata.
As we describe, there are a number of hybrid planning con-
structs that are difficult to express as hybrid automata and
motivate us to seek another formalism.

We revisit the encodings of TM-LPSAT (Shin and Davis
2005) in the context of Satisfiability Modulo Theories
(SMT) and apply the dReal SMT solver. Our resulting plan-
ner, Planning Using Reals (PluReal), handles the full
PDDL+ language, including processes, events, durative ac-
tions, nonlinear change, and timed initial literals. The pri-
mary difference from the TM-LPSAT encoding stems from
using a nested universal quantification over time to handle
“zero-crossing” happenings. Zero-crossings refer to cases
where an exogenous process or event becomes dis/enabled
and the encoding must ensure that a happening occurs at
that point. Where Shin and Davis (2005) use an arguably
elegant/complicated set of constraints that assumes linear
change, we use a simple invariant constraint that applies to
general nonlinear change.

Figure 1 illustrates how PluReal and our prior work
(Bryce et al. 2015) with dReach encode and solve PDDL+
problems with dReal. Our prior work encodes PDDL+ prob-

lems as a hybrid automata, and then applies dReach to con-
struct a counter-example corresponding to a plan. The crit-
ical limitation of dReach is that it reasons with hybrid au-
tomata, and our prior encoding of PDDL+ is susceptible to
state explosion – the hybrid automaton associates each logi-
cal state with a mode. In contrast, PluReal avoids the state
explosion problem with its encoding. Following the plan-
ning as SAT tradition, PluReal encodes discrete state flu-
ents as Boolean variables.

Aside from factoring the discrete part of the state, the
new encoding largely resembles dReach’s SMT-based en-
codings of hybrid automata. Assignments to discrete vari-
ables correspond to modes, and discrete changes occurring
at happenings correspond to jumps, and continuous change
between happenings correspond to continuous change while
occupying a mode. The encoding also consolidates multi-
ple simultaneous discrete or continuous changes due to ac-
tions, processes, or events to specify the equivalent of a hy-
brid automaton’s flows and jump guards and updates. Unlike
in hybrid automata where “must” semantics (Bogomolov et
al. 2015) for event or processes transitions are difficult to
encode, our encoding facilitates these easily and naturally.
Moreover, we are not aware of any hybrid automata ap-
proaches to hybrid planning that handle timed initial literals.

We find that the new happening-based encoding is not
only smaller than the dReach encoding, but more able to ex-
ploit parallelism in the PDDL+ problems. The primary dif-
ference is that we factor concurrency so that it can occur
at the same happening (if possible) rather than over multi-
ple hybrid automaton jumps that do not advance time. We
show significant scale-up in the generator problem, where it
is possible to simultaneously run a generator and refill it with
multiple tanks. PluReal also performs competitively with
dReach in the dribble domain, but is less efficient in the car
domain. We attribute the lower scalability in these domains
to the lack of a reachability heuristic (as used by dReach),
and how parallelism cannot be capitalized upon to the same
degree as the generator problem. We are encouraged by the
strong performance without a heuristic, and mention av-
enues for incorporating heuristics into PluReal.

In the following, we provide a brief introduction to
the PDDL+ planning model, an overview of our encoding
through an example based in the car domain, a description
of the encoding, an empirical evaluation, related work, and
conclusion.
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Figure 1: PluReal and dReach encode and solve instances
with the dReal SMT solver.

Background
Hybrid Planning
Following (Bogomolov et al. 2014), a PDDL+ planning
instance is a pair I = (Dom,Prob) where Dom =
(Fs,Rs,As,Es, Ps, arity) is a tuple comprising a finite
set of function symbols Fs, a finite set of relation symbols
Rs, a finite set of durative and atomic actionsAs, a finite set
of events Es, a finite set of processes Ps, and a function ar-
ity mapping all symbols in Fs∪Rs to their respective arities.
The triple Prob = (Os, Init,G) comprises a set of domain
objects Os, the initial state Init, and the goal specification
G. In the following, we restrict our focus to grounded plan-
ning instances that are grounded in the conventional manner.
We discuss each element of the planning task description as
we describe the encoding.

First-order Theories of the Reals
Our work formulates LRF encodings, where LRF represents
the first-order signature over the reals with the setF of com-
putable real functions. We use the dReal solver to solve (i.e.,
find satisfying solutions of, or lack thereof) these encodings.
In the following, we provide an overview of LRF .

LRF -Formulas LRF -formulas are first-order formulas over
real numbers, whose signature allows an arbitrary collection
F of Type 2 computable real functions (Gao, Avigad, and
Clarke 2012). The syntax is:

t := c | x | f(t(~x));

ϕ := t(~x) > 0 | t(~x) ≥ 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xiϕ | ∀xiϕ.
A function is Type 2 computable if it can be algorithmically
evaluated up to an arbitrary numerical accuracy. All com-
mon continuous real functions are Type 2 computable.

dReal
dReal checks whether an LRF formula is δ-satisfiable (a
decidable problem) by combining a SAT solver (Eén and

t0 = 0 t1 = 0

v`0 = 0 va0 = 0 v`1 = 0

d`0 = 0 da0 = 0 d`1 = 0

t2 = 6

va1 = 6 v`2 = 6

da1 = 18 d`2 = 18

a`
0 = 0 aa

0 = 0 a`
1 = 1 aa

1 = 1 a`
2 = 0
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Figure 2: Example solution for variation of the car domain.

Sörensson 2004) with an ICP solver (Granvilliers and Ben-
hamou 2006). dReal employs the DPLL(T) framework
(Bruttomesso et al. 2010) for SMT. It first solves the Boolean
constraints to find a satisfying set of literals of the form
(t(~x) ≥ 0) or ¬(t(~x) ≥ 0). This conjunctive set of liter-
als imposes a set of numeric constraints that are solved us-
ing ICP. If successful, dReal finishes, and otherwise, the ICP
solver returns a set of literals that explain inconsistency. The
inconsistent literals become a conflict clause that can be used
by the SAT solver. If the SAT solver cannot find a satisfying
set of literals, then it returns with an unsatisfiability result.

The ICP solver uses the branch and prune (Van Henten-
ryck, McAllester, and Kapur 1997) algorithm to refine a set
of intervals over the continuous variables (called a box).
Each branch splits the interval of a single continuous vari-
able, creating two boxes. Pruning operators propagate the
constraints to shrink the boxes. ICP continues to branch and
prune boxes until it finds a box that is δ-satisfiable or estab-
lishes that no such box exists (i.e., the constraints are incon-
sistent). A box is δ-satisfiable when for any vector of values
~x represented by the box, each constraint f(~x) ≥ −δ is sat-
isfied.

Overview of the Happening Encoding
We explain our encoding by first describing how we encode
a solution. Figure 2 illustrates the variable assignments that
correspond to the plan:

0.0 : song[6.0]

0.0 : accel[0.0]

6.0 : decel[0.0]

for a variation of the PDDL+ car domain (where the start
times are noted before the colon and durations are in paren-
theses). For the sake of this example, we extend the car do-
main with the durative action song because the car domain
(Fox and Long 2006) does not include durative actions.

The happening variables indicate the initial state is at time
0.0 (t0), the plan starts at 0.0 (t1), and the song action ends
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and the final action occurs at 6.0 (t2). The real valued vari-
ables hold values just after (` superscript) and just prior to
(a superscript) each happening. For example, between hap-
penings one and two, the acceleration variable a is 1.0, the
velocity v changes continuously from 0.0 to 6.0, and the
distance d changes from 0.0 to 18.0. The Boolean variables
hold their values between happenings, and only change over
happenings. For example, in − zone changes from false to
true over happening 2 (as an effect of the song action).

The moving process is active between each happening
because its condition running is true. It defines the rate at
which the velocity and distance change. The explode event
does not occur at any happening because its precondition is
never satisfied. The accel action occurs at happening 1 (in-
creasing a discretely by 1) and the decel action occurs at
happening 2 (decreasing a discretely by 1). The durative ac-
tion song may start s, continue c, or end e at any happening.
In this plan, it starts at happening 1 and ends at happening 2.
In longer plans it may also continue over a happening if the
happening occurs prior to its duration being exhausted.

In the following section, we detail the constraints neces-
sary to ensure that assignments to these variables represent
valid plans.

PDDL+ to SMT2 Encoding
The translation of a PDDL+ instance I with k time points
(happenings) involves finding a satisfying assignment to the
logical formula:

∃~F0:k∃ ~A1:k∃ ~E1:k∃ ~PS0:k∃ ~til∃t0:k∃~∆1:k∃~Γ0:k∃ ~dur1:k.

init(~F0:k, ~til, t0:k)∧(
k∧

i=1

trans(~Fi:k, ~Ai:k, ~Ei:k, ~PSi:k, ti:k, ~duri, ~Γi, ~∆i, ~til)

)
∧

(t0 = 0) ∧

(
k∧

i=0

ti ≤ ti+1

)
∧ goal(~Fk+1)

where the clauses encode the initial state, transition rela-
tion, happening order, and goal. The existentially quantified
variables refer to time-stamped instances of the variables
described in the previous section. The abbreviation of the
form ∃ ~X0:k, denotes ∃ ~X0∃ ~X1 . . . ∃ ~Xk. Each ∃ ~Xi denotes
∃xi . . . ∃x′i, where xi is a Boolean, integer, or real variable.

More specifically, ~Fi denotes all time-stamped fluents of
the form f`i and fai for real values just after happening i and
just before happening i + 1, and fi for Boolean values per-
sisting between happenings i and i+ 1. The action variables
~Ai include ai to indicate if an atomic action occurs at i, and
asi , a

c
i , and aei to denote that a durative action respectively

starts at, continues over, or ends at happening i. The event
variables ~Ei include Boolean event variables ei that indicate
whether an event occurs at happening i. The process vari-
ables ~PSi include Boolean process variables psi to indicate
if a process is active between happenings i and i+1. Each til
variable in ~til denotes the happening at which a timed initial
literal assignment occurs. Each variable ti denotes the ab-

solute time at which happening i occurs. The ∆i(a, f) vari-
ables denote the value by which an action a increases the
value of fluent f at happening i. The Γi(a) variables are 0-1
integers that indicate whether a durative action or process is
active between happenings i and i + 1. The duri(a) vari-
ables denote the duration of an instance of a durative action
a starting at happening i.
Initial State: The clause init(~F0:k, ~til, t0:k) encodes both
initial fluent values and any timed initial literals. It defines: ∧

I(f,0)∈I0

f∗0 = I(f, 0)

 ∧
 ∧

I(f,t)∈Itil

til(f, t, F0:k, t0:k)


(1)

where f∗0 denotes f`0 if f is real and f0 if f is Boolean, Itil
is a set of timed initial literals and I0 is a set of initial state
assignments.

Each timed initial literal is a fluent assignment I(f, t),
where t > 0. We associate a unique integer variable til with
each timed initial literal to denote the happening at which it
occurs. The clause til(f, t, F0:k, t0:k) defines:

(1 ≤ til ≤ k) ∧
( k∨

i=1

(til = i)→ (f∗i = I(f, t)) ∧ (ti = t)

)
(2)

where f∗i is f`i if f is a real variable, and fi if it is a Boolean
variable. The clause states that the timed initial literal must
occur at some happening and if it occurs at happening i then
the corresponding fluent is assigned appropriately and the
time specified by the happening is equal to the time of the
timed initial literal.
Transition Relation: The transition relation states for each
happening i which discrete changes can or must occur
and what continuous changes occur between i and i + 1.
The clause trans(~Fi:k, ~Ai:k, ~Ei:k, ~PSi:k, ti:k, ~duri, ~Γi, ~∆i)
defines:

acts( ~Ai, ~Fi−1:i) ∧ duracts( ~Ai:k, ~Fi−1:i, ~duri)∧
events( ~Ei, ~Fi−1:i) ∧ procs(~PSi, ~Fi)∧
concur( ~Ai, ~Ei, ~til, ~PSi, ~Fi) ∧ frame( ~Ai, ~Ei, ~til, ~Fi)∧
mutex( ~Ai, ~Ei) (3)

where acts, duracts, events, and procs define the semantics
of the respective elements, concur defines how simultaneous
concurrent change is reconciled, frame defines the frame ax-
ioms, and mutex defines mutexes.
Atomic Actions: For each happening i, the clause
acts( ~Ai, ~Fi−1:i) encodes the following:∧

a∈Asatomic

pre(ai, ~Fi−1) ∧ eff(ai, ~Fi−1:i) (4)

whereAsatomic is the set of ground atomic actions. The pre-
condition clause pre(ai, ~Fi−1) defines:

ai → preai−1(a) (5)
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where preai−1(a) is the clause obtained by substituting each
fluent in pre(a) by fi−1 if Boolean and fai−1 if real. The
effect clause eff(ai, ~Fi−1:i) defines:

ai →

 ∧
(f :=α)∈eff(a)

(f∗i = αai−1)

∧ (6)

 ∧
(f+=α)∈eff(a)

(∆i(a, f) = αai−1)

 (7)

where each assignment f := α assigns the value of f`i if f
is real or fi if Boolean (denoted by f∗i ), and each increment
effect f+ = α assigns the increment variable ∆i(a, f). We
describe below how the increment variables are aggregated
to express simultaneous increases from multiple concurrent
actions. We also convert decrease effects into increase ef-
fects without loss of generality. The value αai−1 assigned to
these variables is the value of the expression α evaluated just
prior to happening i (i.e., by substituting the fluents f in α
by fai−1 or fi, as appropriate).
Events: Events resemble atomic actions, except that
they must occur if their preconditions are satisfied. The
events( ~Ei, ~Fi−1:i) clause defines:∧
e∈Es

immed(ei, ~Fi−1) ∧ pre(ei, ~Fi−1) ∧ eff(ei, ~Fi−1:i)

(8)

where Es is the set of ground events. The immed(ei, ~Fi−1)
clause asserts that if the event is enabled by a change at hap-
pening at i− 1, then happening i must occur immediately:

pre`i−1(e)→ (ti = ti−1) (9)

where pre`i−1(e) is the formula obtained by replacing fluents
in pre(e) by their time indexed fluents.

An event must occur at happening i iff its precondition is
satisfied by a change at happening i−1 or it became satisfied
between i − 1 and i. The precondition clause pre(ei, ~Fi−1)
defines:

ei ↔
(
pre`i−1(e)

)
∨(

preai−1(e) ∧ ∀t ∈ [ti−1, ti).¬pret(e)
)

(10)
so that the precondition must be satisfied just after happen-
ing i − 1 or just before i. We note that the immed and pre
clauses solve the zero-crossing problem for events by ensur-
ing that a happening occurs at the first time that the event
condition is satisfied. The above clause also ensures the
“must” semantics for events in that it uses a bi-implication,
as opposed to the similar clause for actions the uses an impli-
cation for “may” semantics. The effect clause eff(ei, ~Fi−1:i)
defines:

ei →

 ∧
(f :=α)∈eff(e)

(f∗i = αai−1)

∧
 ∧

(f+=α)∈eff(e)

(∆i(e, f) = αai−1)

 (11)

where each assignment f := α assigns the value of f`i if f
is real or fi if Boolean (denoted by f∗i ), and each increment
effect f+ = α assigns the increment variable ∆i(e, f).
Durative Actions: The clause duracts( ~Ai:k, ~Fi−1:k) de-
fines:∧
a∈Asdur

dur(ai, ~Ai:k, ~duri, ti:k, ~Fi:k)∧

coher(ai, ~Ai:k, ~duri, ti:k)∧
pres(ai, ~Fi−1) ∧ pree(ai, ~Fi−1) ∧ preo(ai, ~Fi−1)∧
effs(ai, ~Fi−1:i) ∧ effe(ai, ~Fi−1:i) ∧ effo(ai, ~Fi−1:i)

(12)

where Asdur is the set of ground durative actions. A dura-
tive action a, if executed, starts at happening i, continues
over happenings i+ 1, . . . j − 1, and ends at j. The action’s
duration duri(a) is either evaluated just prior to its occur-
rence, defining dur(ai, ~Ai:k, ~duri, ti:k, ~Fi:k) as:

asi → (duri(a) = durai−1(a)) (13)

or just prior to its end, defining dur(ai, ~Ai:k, ~duri, ti:k, ~Fi:k)
as: ∧

j∈[i+1,k]

asi ∧ aci+1 ∧ . . . ∧ acj−1 ∧ aej →

(duri(a) = duraj−1(a)) (14)

For action coherence, the coher(ai, ~Ai:k, ~duri, ti:k)
clause defines that the duration is equivalent to the differ-
ence of the start and end time point, and that the starting,
ending, and continuation of actions at happenings are well
formed: ( ∧

j∈[i+1,k]

asi ∧ aci+1 ∧ . . . ∧ acj−1 ∧ aej →

(tj − ti = duri(a))

)
∧(

asi → aci+1 ∨ aei+1

)
∧(

aei → aci−1 ∨ asi−1
)
∧(

aci → aci+1 ∨ aei+1

)
∧(

aci → aci−1 ∨ asi−1
)

The at-start precondition clause pres(ai, ~Fi−1) defines:

asi → spreai−1(a) (15)

where spreai−1(a) is a conjunction of at-start preconditions
whose values are evaluated just prior to happening i. The
at-end precondition clause pree(ai, ~Fi−1) defines:

aei → epreai−1(a) (16)

where epreai−1(a) is a conjunction of at-end preconditions
whose values are evaluated just prior to happening i. The
overall preconditions clause preo(ai, ~Fi−1) defines:

asi ∨ aci → ∀t ∈ [ti, ti+1].opret(a) (17)
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where opret(a) is a conjunction of overall preconditions.
The at-start effect clause effs(ai, ~Fi−1:i) defines:

asi →

 ∧
(f :=α)∈seff(a)

(f∗i = αai−1)

∧ (18)

 ∧
(f+=α)∈seff(a)

(∆i(a, f) = αai−1)

 (19)

where seff(a) are the set of start effects. The terms in the
clause resemble those appearing in the atomic action ef-
fect clause. The at-end effect clause effe(ai, ~Fi−1:i) is de-
fined similarly, but substitutes the at-end effects eeff(a) for
the at-start effects and aei for asi . The overall effect clause
effs(ai, ~Fi−1:i) defines when the continuous effects are ac-
tive because the action has just started or is ongoing:(

(asi ∨ aci ) ∧ (aci+1 ∨ aei+1)↔ (Γi(a) = 1)
)
∧(

¬((asi ∨ aci ) ∧ (aci+1 ∨ aei+1))↔ (Γi(a) = 0)
)

(20)

where Γi(a) is an indicator function that is used below to
determine whether a is active and contributes to the simul-
taneous continuous change of real fluents it effects.
Processes: The procs(~PSi, ~Fi−1:i) clause states the condi-
tions under which each process is (in)active and how each
process effects the real fluents. It defines:∧

ps∈Ps
pre(psi, ~Fi) ∧ eff(psi, ~Fi) (21)

The pre(psi, ~Fi) clause defines:

(psi ↔ ∀t ∈ [ti, ti+1].pret(ps))∧
(¬psi ↔ ∀t ∈ [ti, ti+1].¬pret(ps)) (22)

so that between happenings, processes are active iff their
preconditions are satisfied and are inactive iff their precon-
ditions are not satisfied (i.e., the “must” semantics). Sim-
ilar to events, the universally quantified time variable en-
sures that the processes dis/enable on happenings (i.e., zero-
crossings). The eff(psi, ~Fi) clause defines:

(psi ↔ (Γi(ps) = 1))∧
(¬psi ↔ (Γi(ps) = 0)) (23)

whether the process is active or not, and the Γi(ps) indicator
function helps define whether it contributes to the continu-
ous change of real fluents.
Concurrent Modifications: The
concur( ~Ai, ~Ei, ~til, ~PSi, Fi) clause defines how to ag-
gregate multiple simultaneous discrete or continuous
changes to each fluent:∧

f

concurdisc( ~Ai, ~Ei, ~til, ~PSi, fi) ∧ concurcont( ~Ai, ~PSi, fi)

(24)

The concurdisc( ~Ai, ~Ei, ~til, ~PSi, fi) clause defines:

¬assignersi(f)→
(
f`i = fai−1 +

∑
a∈A(f)

∆i(a, f)

)
(25)

where A(f) denotes the actions and events that increase f ,
and assignersi(f) defines: ∨

til∈til(f)
(til = i)

 ∨
 ∨
e∈E(f)

ei

 (26)

where til(f) denotes the set of timed initial literals that as-
sign f , and let E(f) denote the actions and events that as-
sign f . In order to simplify the notation, we assume that the
sets E(f) and A(f) include durative actions and we des-
ignate appropriately the literals asi or aei for each durative
action that increase f at the start or end, respectively. If no
assignments are made to f at happening i, its value just after
happening i is the sum of all increase effects.

The concurcont( ~Ai, ~Ei, ~til, ~PSi, fi) defines:

fai = f`i +

∫ ti+1

ti

∑
a∈A(f)

Γi(a)efff (a)(s)d(s) (27)

where A(f) denotes the durative actions and processes that
effect f continuously, and efff (a) denotes the differential
d[f ]/dt defined by a.
Frame Axioms: The frame( ~Ai, ~Ei, ~til, ~Fi) clause defines:

¬effectorsi(f)→ (f`i = fai ) (28)

where effectorsi(f) is defined by: ∨
til∈til(f)

til 6= i

 ∧
 ∨
a∈A(f)

ai

 (29)

where A(f) are the action or events effecting f discretely
and til(f) are the timed initial literals effecting f .
Interference: The mutex( ~Ai, ~Ei) clause defines:∧

a,a′∈As∪Es:
interfere(a,a′)

ai → ¬a′i (30)

where interfere(a, a′) uses the standard PDDL 2.1 rules
for interference. With a slight abuse of notation, we treat
durative actions as two actions, a start and an end, that can
interfere with other actions and events.
Goal: The goal clause goal(~Fak+1) is an expression over the
fluents that must hold at a special happening k + 1, where
no other actions or events may be active or occur, stated as:

Gak+1 (31)

where Gak+1 substitutes each fluent in the goal expression
by a time stamped version of the fluent variable. The goal
can also be thought of as an atomic action occurring at hap-
pening k + 1 and whose preconditions (the goal) must be
satisfied just prior to its execution (as denoted by the “a”
superscript). This allows the planner to decide what time the
goal is satisfied following the last normal happening k.
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Plan Evaluation
dReal can be used to decide whether a δ-satisfiable solution
exists for the encoding described in the previous section. If
no such δ-satisfiable solution exists, then dReal will report
unsatisfiability. A δ-satisfiable solution is an assignment to
Boolean variables and an interval for each real variable. The
solution encodes a plan tube, a set of possible plans. Real-
izing a plan involves selecting a start time and duration for
each action from the plan tube. In the results reported in the
following section, we report the time to encode and find a
solution, but not to extract a plan.

We do not extract a plan from the plan tube for two rea-
sons. First, we can reduce δ so that the plan tube is arbi-
trarily precise. While reducing δ does not guarantee that the
plan tube reduces to a single plan, it can lead to intervals
for action start times and durations that are smaller than the
precision attainable by a finite-precision plan executor. Sec-
ond, the plan tube is identical, in principle, to the plan tube
created by VAL while validating plans. VAL defines a set of
intervals around the each action start time and duration and
then uses Monte Carlo sampling from the intervals to check
whether a sufficient number of plan perturbations are valid.
Validating a δ plan tube is identical to that of a plan, with
the exception that we provide the plan tube directly. Because
VAL grows the plan tube symmetrically around a plan, one
possible plan extraction strategy is to select the center point
of the plan tube – in this case, the VAL generated plan tube
matches the δ plan tube.

Empirical Evaluation
We compare PluReal with dReach and existing planners,
including SpaceEx (Bogomolov et al. 2014), CoLin (Coles
et al. 2012), and UPMurphi (Della Penna et al. 2009). We
use the generator and car instances from the literature (Bo-
gomolov et al. 2014) and the Dribble domain (Bryce et al.
2015). We compare on linear and nonlinear versions of gen-
erator and car, but only a nonlinear version of Dribble.
Domains: The car domain includes only instantaneous ac-
tions and processes. The actions are to start or stop the car,
and accelerate or decelerate. The moving process models
one-dimensional kinematics (distance as a function of veloc-
ity and velocity as a function of acceleration) and the wind-
resistance process models the drag effect upon velocity. Ad-
ditional actions for additional acceleration or deceleration
increments increases the branching factor of the problem.
The linear and nonlinear versions of the domain differ in
whether they include the nonlinear wind-resistance process.

The generator domain includes two durative actions: gen-
erate, and refuel. The generate action has a duration of 1000
time units and consumes fuel at a linear rate. Its at-end effect
satisfies the goal. Its overall condition requires that the fuel
level is non-negative. The instances scale in the number of
tanks required to refuel the generator so that its overall con-
dition is satisfied. The refuel actions increase the fuel level
in the generator continuously, by a linear rate (in the linear
version) or a nonlinear rate (in the nonlinear version). For
example, the refuel action defines the effects linearly as

(increase (fuel ?g) (* #t 2))

or nonlinearly
(increase (ptime ?t) (* #t 1))
(increase (fuel ?g)

(* #t (* 0.1 (* (ptime ?t)
(ptime ?t)))))

The dribble domain involves a process effecting the loca-
tion of a ball, upward velocity (v) decreasing due to gravity
(−g) and drag (−0.1v2), and vertical position (x) increas-
ing with velocity (v). The available actions are dribble(f )
which decrease velocity by f ∈ {0, 1, 2, 4}. The dribble ac-
tions have the precondition that velocity is zero. The bounce
event increases velocity by−0.9v and has the condition that
the ball position x is zero. The initial state places the ball
at x = 1 with velocity v = 0 and the goal is to reach
1.5 ≤ x ≤ 3.0.
Results: Table 1 lists results for nonlinear problems, and
Table 2, linear problems. The tables list the domain, plan-
ner, and runtimes in seconds for several instances. The
PluReal and dReach results were run on the same machine
with a 2.6 GHz Intel Core i7 and 8GB RAM. The results for
other planners are reproduced from prior work (Bogomolov
et al. 2014). CoLin is only capable of addressing the genera-
tor problem, so we omit it from the car results. The SpaceEx
results are the time to show that the goal is reachable in an
over-approximation of the hybrid state space (i.e., possible
plan existence), and not to generate/extract a plan. Similarly,
the PluReal and dReach results are the total time (includ-
ing translation and encoding) to show that there exists a δ-
satisfiable solution for an SMT instance, where δ = 0.1.
That is, the plan encoded by the δ-satisfiable solution is cor-
rect up to δ perturbation of the real variables.

We compare only PluReal and dReach on the nonlin-
ear instances. We see that PluReal excels in the genera-
tor domain compared to dReach, is competitive in the drib-
ble domain, and is not able to scale well in the car domain.
The same trends hold in the linear problem instances. The
reason that PluReal performs well in generator, is that it
can find a solution in a three happening (k = 3) encoding
by parallelizing the refuel actions with the generate action.
The competing approaches cannot exploit parallelism in this
way because they involve encoding each action as a series
of transitions in a hybrid automaton. While the transitions
may not advance time, they essentially serialize the deci-
sions for parallel actions. While PluReal must also seri-
alize its decisions within the SMT solver variable assign-
ments, the happening-based encoding is more compact (and
hence uses less variables) because it specifies action choice
variables once per happening, and not once per hybrid au-
tomata transition. PluReal performs comparatively worse
when problems require serial actions, as in the car and drib-
ble domains. dReach performs better in these domains be-
cause it employs a reachability heuristic, where PluReal
does not.

Related Work
While PDDL+ has been an accepted language for planning
with continuous change for nearly a decade, very few plan-
ners have been able to handle its expressivity. Planners ei-
ther assume that all continuous change is linear (Shin and
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Dom Planner 1 2 3 4 5 6 7 8
Gen PluReal 0.84 0.78 0.90 1.17 1.25 1.44 1.81 1.57
Gen dReach 12.80 71.63 1696.84 - - - - -
Dribble PluReal 25.49 45.07 106.38 439.09 2030.05 n.a. n.a. n.a.
Dribble dReach 192.52 33.50 65.16 122.91 224.61 n.a. n.a. n.a.
Car PluReal - - - - - - - -
Car dReach 16.62 16.64 16.25 16.77 16.56 16.79 17.44 16.6

Table 1: Runtime results (s) on nonlinear generator and car.

Dom Planner 1 2 3 4 5 6 7 8
Gen PluReal 0.34 0.38 0.54 0.83 1.34 2.72 4.68 9.01
Gen dReach 3.07 15.6 134.71 1699.87 - - - -
Gen SpaceEx 0.01 0.03 0.07 0.1 0.19 0.28 0.45 0.65
Gen CoLin 0.01 0.09 0.2 2.52 32.62 600.58 - -
Gen UPMur 0.2 18.2 402.34 - - - - -
Car PluReal 362.05 1015.22 - - - - - -
Car dReach 1.07 1.17 1.16 1.22 1.23 1.29 1.26 1.21
Car SpaceEx 0.01 0.01 0.01 0.03 0.04 0.05 0.06 0.07
Car UPMur 28.44 386.5 - - - - - -

Table 2: Runtime results (s) on linear generator and car. “-” indicates a timeout.

Davis 2005; Coles and Coles 2014; Bogomolov et al. 2014;
Coles et al. 2012) or handle nonlinear change by discretiza-
tion (Della Penna et al. 2009).

Unlike UPMurphi, dReal does not discretize to deal with
nonlinear continuous change. While dReal uses ICP search
to split real intervals and its constraint propagation may re-
duce an interval to a single value, it does not produce a finite
set of values from an interval in a lossy manner. dReal differs
from UPMurphi in that it reasons about continuous change
as intervals, and not as sets of values.

TM-LPSAT (Shin and Davis 2005) is the basis for our
work because it uses a SAT solver to solve Boolean con-
straints and an LP solver to solve continuous (linear) con-
straints. The nature of the encodings is somewhat different in
that our encoding handles zero-crossing events with univer-
sal quantification and can thus address problems with non-
linear change.

Bryce et al. (2015), Bogomolov et al. (2014) and
Della Penna et al. (2009), make use of the planning as model
checking paradigm. Unlike our work, Bogomolov et al. en-
code a network of linear hybrid automata and handle dura-
tive actions and events. Bogomolov et al. use the SpaceEx
model checker (Frehse et al. 2011), which performs a sym-
bolic search over the hybrid automata.

Coles and Coles (2014) and Coles et al. (2012) approach
PDDL+ from the perspective of heuristic state space search.
Coles and Coles exploit piecewise linear representations of
continuous change to derive powerful pruning conditions
for forward heuristic search. It is possible to combine this
work with our happening-based encoding to manage the
constraints describing a single partial plan, rather than the
entire plan space. That is, it is conceivable to replace the LP
constraints and associated solver with dReal.

Conclusion
We present a new approach to PDDL+ planning that com-
piles problems into the LRF language, and is based in the
planning as satisfiability tradition. The encoding is espe-
cially compact for problems with parallelism, as is typi-
cal of most SAT-based approaches to planning. By phrasing
PDDL+ planning in SMT, we open future work on applying
many of the useful SAT planning techniques developed for
classical planning. Most notably, we hope to develop vari-
able selection heuristics to prioritize the search and reacha-
bility analysis for computing mutexes and filtering unreach-
able actions and variables.
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