
Factorized Databases:
A Knowledge Compilation Perspective

Dan Olteanu
Department of Computer Science

University of Oxford

Abstract
This paper overviews recent work on compilation of rela-
tional queries into lossless factorized representations. The
primary motivation for this compilation is to avoid redun-
dancy in the representation of query results and speed up their
computation and subsequent analytics.

Introduction
The query evaluation problem is fundamental to database
systems: Given a query and a relational database, the task
is to compute the result of the query on the given database.
The key observation underlying this work is that relations
representing query results may entail a large degree of re-
dundancy in both representation and computation.

In this paper, we advocate a knowledge compilation ap-
proach for the query evaluation problem that reduces this
redundancy. The compilation target is the language of fac-
torized databases, which are relational algebra expressions
built using Cartesian product, union, and singleton relations
with one tuple and one attribute. In contrast to the stan-
dard tabular representation of relations, factorized represen-
tations allow for nesting of product and union that exploits
the commutativity of these two operators and the distribu-
tivity of product over union. We consider factorized rela-
tions whose nesting structures are given by orders over its
attributes. For relational queries1, these orders are over the
query variables. The grounding of a variable order over a
database is a factorized, indeed compact, representation of
the query result that we call the factorized query.

Using knowledge compilation nomenclature, the factor-
ized queries can be classified as d-DOMDDs, i.e., deter-
ministic Decomposable Ordered Multi-valued Decision Di-
agrams.

We next introduce factorized queries and discuss their
classification as d-DOMDDs and some of their properties:
uniqueness, succinctness, compilation aspects, constant-
delay model enumeration, and linear-time aggregates used
for model counting and building regression models.

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1For simplicity, we only discuss join queries, i.e., conjunc-
tive queries without free variables, though the framework has
been generalized to arbitrary conjunctive queries with free vari-
ables (Olteanu and Závodný 2015).

Factorized Queries by Example
Factorized databases form a representation system for rela-
tional data that exploits laws of relational algebra, such as
the distributivity of the Cartesian product over union, to re-
duce data and computation redundancy in query processing.

Example 1 To start with a simple example, consider a rela-
tion R over schema (A,B) that consists of a tuple for each
combination of values a1, . . . , an and b1, . . . , bn. Assuming
the notation 〈A : a〉 for a singleton relation over schema (A)
and with one tuple with value a, the relation R can be ex-
pressed in relational algebra as

⋃
1≤i,j≤n〈A : ai〉×〈B : bj〉.

A possible factorization of R is a product of two smaller re-
lations: R = RA × RB , where RA =

⋃
1≤i≤n〈A : ai〉 and

RB =
⋃

1≤j≤n〈B : bj〉. This factorization can naturally
benefit aggregates. To count the tuples in R, we take the
product of the counts of tuples in RA and RB . To sum over
all A-values in R, we multiply the sum of all A-values in
RA with the count of tuples in RB .

We can factorize queries as well: Given a database D and
a query Q, the query result Q(D) exhibits lots of (data and
computation) redundancy that can be reduced by factoriza-
tion. Intuitively, a join of two relations is by definition a
union of products of smaller relations: For every join value,
several tuples from one relation can be paired with several
tuples from the other relation. The factorized query avoids
the materialization of these products whenever possible.

Example 2 Figure 1(a) depicts a database consisting of
three relations along with their natural join: The relation
House records house prices and living areas (in squared me-
ters) within locations given by zipcodes; TaxBand relates
city/state tax bands with house living areas; Shops list shops
with zipcode and opening hours.

The join result exhibits a high degree of redundancy. The
value z1 occurs in 24 tuples, each value h1 to h3 occurs in
eight tuples and they are paired with the same combinations
of values for the other attributes. Since z1 is paired in rela-
tion House with p1 to p3 and in relation Shops with h1 to
h3, all combinations (indeed, the Cartesian product) of the
former and the latter values occur in the join result. We can
represent this local product symbolically instead of eagerly
materializing it. If we systematically apply this observation,
we obtain an equivalent factorized representation of the en-

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Beyond NP: Technical Report WS-16-05

352

Shops
Z H

z1 h1
z1 h2
z1 h3
z2 h4

House
Z S P

z1 s1 p1
z1 s1 p2
z1 s2 p3
z2 s2 p4

TaxBand
S T

s1 t1
s1 t2
s1 t3
s2 t4
s2 t5

Shops on House on TaxBand
Z H S P T

z1 h1 s1 p1 t1
z1 h1 s1 p1 t2
z1 h1 s1 p1 t3
z1 h1 s1 p2 t1
z1 h1 s1 p2 t2
z1 h1 s1 p2 t3
z1 h1 s2 p3 t4
z1 h1 s2 p3 t5

· · · · · · · · ·
the above for h2 and h3

· · · · · · · · ·
z2 h4 s2 p4 t4
z2 h4 s2 p4 t5

(a) The three relations of database D and natural join Q(D).

Z

H S

T P

Shops

HouseTaxBand

(b) Variable order ∆.

∪

z1 z2

× ×

∪ ∪ ∪ ∪

h1 h2 h3 s1 s2 s2 h4

× × ×

∪ ∪ ∪ ∪ ∪
p1 p2 t1 t2 t3 p3 t4 t5 p4

(c) Factorized query ∆(D).

Figure 1: (a) Database D with relations House(Zipcode, Sqm, Price), TaxBand(Sqm, Tax), Shops(Zipcode, Hours), where the
attribute names are abbreviated; (b) Variable order ∆ for the natural join query that is the nesting structure of the factorized
query; (c) Factorized query ∆(D) that is the grounding of the variable order ∆ over the database D.

tire join result that is much more compact than its flat, tabu-
lar representation. The factorization of the first three tuples
in the join result would then be:

φ =〈Z : z1〉 × 〈H : h1〉 × 〈S : s1〉 × 〈P : p1〉×(
〈T : t1〉 ∪ 〈T : t2〉 ∪ 〈T : t3〉

)
.

Figure 1(c) shows the complete factorized query (we
dropped the attribute names and brackets from singletons as
they are clear from context). Each tuple in the query result is
represented once in the factorization and can be constructed
by following one branch of every union and all branches of a
product. To count the number of represented tuples, we take
the sum (product) of the counts of children for each union
(respectively, product) and count each singleton as one.

The factorized join in Figure 1(c) has the nesting struc-
ture depicted in Figure 1(b): It is a union of Z-singletons
occurring in the join of Shops and House on Z. For
each Z-singleton z, we represent separately the union of
H-singletons paired with z in Shops and the union of S-
singletons paired with z in House and with T -singletons in
TaxBand. That is, given z, the H-singletons are indepen-
dent of the S-singletons and can be stored separately; this
is where the factorization saves computation and space as
it avoids an explicit enumeration of all combinations of H-
singletons with S-singletons for a given z. Furthermore, un-
der each S-singleton, there is a union of T -singletons and
a union of P -singletons. This nesting structure thus repre-
sents a partial order of the query variables and is captured
by a tree with variables at nodes.

We can further compress the factorization by caching re-
peated expressions. For this, we exploit the query structure
to understand what can be cached regardless of the database
content. In our example, the union of T -singletons for a
given S-singleton in TaxBand is the same regardless of how

many times s occurs paired with Z and P -singletons in
House, since the variable T does not depend on Z given
S. This union can be defined once and reused for every oc-
currence of s. For instance, we define Ts2 := t4 ∪ t5 under
s2 and all occurrences of s2 under Z-singletons would use a
pointer �Ts2 instead of copying Ts2 .

Three Factorization Flavors
In this section, we define three flavors of factorized
databases (Olteanu and Závodný 2015).

Definition 3 A factorized representation is a list of expres-
sions (D1, . . . , Dm) where Di can contain references to Dj

for j > i and is referenced at least once if i > 1. Such ex-
pressions are relational algebra expressions over a schema Σ
and of the following forms:

• ∅, representing the empty relation over Σ,
• 〈〉, representing the relation consisting of the nullary tu-

ple, if Σ = ∅,
• 〈A : a〉, representing the singleton relation with one tuple

(a), if Σ = {A} and a ∈ Dom(A),
• (E1 ∪ · · · ∪ En), representing the union of the relations

represented byEi, where eachEi is an expression over Σ,
• (E1×· · ·×En), representing the Cartesian product of the

relations represented by Ei, where each Ei is an expres-
sion over schema Σi such that Σ is the disjoint union of
all Σi.

• a reference �E to an expression E over Σ.

We abuse notation and use interchangeably the singleton
〈A : a〉 and its value a.

The factorized representations of Definition 3 are called
d-representations. The d-representations without definitions
are called f-representations. For any d-representation D

353

consisting of expressions {D1, . . . , Dn}, we can start with
the root expressionD1 and repeatedly replace the references
�Dj by the expressions Dj until we obtain a single expres-
sion without references, which is an f-representation. The
flat representations are f-representations where in each prod-
uct E1× · · · ×En all but at most one expression Ei are sin-
gletons. Although products of unions are not allowed in flat
representations, they can be rewritten into (potentially expo-
nentially larger) unions of permissible products. Flat repre-
sentations are trie representations of relations. They are our
proxy for the standard tabular representation of relations.

Variable Orders
We now turn to queries and variable orders and introduce
necessary vocabulary. The size |Q| of a query Q is the num-
ber n of its relation symbols. For a variable A, rel(A) de-
notes the set of relation symbols containingA. For a setX of
variables and a query Q over relation symbols R1, . . . , Rn,
the X-restriction of Q is a join query QX over the relation
symbols RX1 , . . . , R

X
n restricted to variables in X .

Given a queryQ, two variablesA andB are conditionally
independent given a set of variables C, if for any database
D, A’s assignments do not constrain B’s assignments given
assignments for C in D; otherwise, A and B are dependent.
Conditional independence captures multivalued dependen-
cies. For instance, in the join query R1(A,B), R2(A,C),
the variables B and C are independent given variable A,
whereas A and B are dependent on each other as dictated
by relation R1; if A and B were independent (conditioned
on the empty set of variables), thenR1 would be equal to the
Cartesian product of its projections on A and B.
Definition 4 Given a join query Q, a variable order ∆ for
Q is a rooted forest with one node per variable in Q. For
a variable A, let key(A) be the set of ancestors of A in ∆
and on which the variables in the subtree rooted at A may
depend. Then, ∆ satisfies the following constraints:
• The variables of each relation symbol in Q lie along the

same root-to-leaf path.
• For any child B of a node A, key(B) ⊆ key(A) ∪ {A}.

Variable orders serve three purposes. (1) They define
the nesting structure of the factorized queries. (2) They
guide the grounding process that computes the factorized
query. (3) They define asymptotic size bounds for factor-
ized queries and the time complexity to compute them.

The conditional independence of variables is modeled in
a variable order by branching: Two variables A and B on
different branches in a variable order ∆ are conditionally
independent given their common ancestors. The first con-
straint in Definition 4 states that all variables of a relation
symbol are dependent so they cannot lie on different paths
in ∆ since that would mean they are independent. The sec-
ond constraint captures the dependency between the vari-
ables under A and those above A: If we let desc(A) be the
set of variables under A, then the functional dependency
key(A) → desc(A) ∪ {A} holds. The keys of A are thus
its ancestors on which A and its descendants depend.
Example 5 The keys of each variable in the variable order
in Figure 1(b) are its ancestors except for key(T) = {S}.

Each of the three factorization flavors corresponds to a
restriction of variable orders.

The d-trees are the variable orders from Definition 4 and
represent the nesting structures of d-representations of query
results. There is a one-to-one mapping between d-trees and
hypertree decompositions of the join hypergraph.

In case not all ancestors of a variableA are in key(A) in a
variable order ∆, then in a d-representation over ∆ the same
factorization fragments rooted at A-values may be repeated
for every tuple of values for variables not in key(A). Here
is where definitions come in handy: We give names to such
factorization fragments and refer to them by their names in-
stead of repeatedly copying them.

The f-trees are d-trees where for each variable A, all
of its ancestors are in its key. The f-trees are the nesting
structures of f-representations. In contrast to d-trees, def-
initions cannot save repetitions of factorization fragments
in f-representations since a tuple t of values for the ances-
tor variables of A functionally determines the factorization
fragment rooted at anA-value and in general a different frag-
ment may occur under each distinct tuple t.

The f-paths, which are the variable orders for flat repre-
sentations, are f-trees restricted to (forests of) paths.

Size Measures and Relative Succinctness
There may be several possible variable orders for Q and
they define factorized representations of different sizes. Size
measures for factorized representations are defined on the
query hypergraph: For Q, the hypergraph H(Q) = (V,E)
has one node in the set V per query variable in Q and one
(hyper)edge in the set E per relation in Q. Figure 2(a) de-
picts the hypergraph of the triangle query.

An edge cover is a subset of the edges of H(Q) such that
each node appears in at least one edge. Edge cover can be
formulated as an integer programming problem by assigning
to each edge Ri a weight xRi

that can be 1 if Ri is part of
the cover and 0 otherwise. The size of an edge cover upper
bounds the size of the query result, since the Cartesian prod-
uct of the relations in the cover includes the query result:

|Q(D)| ≤ |R1|xR1 · . . . · |Rn|xRn ≤ N
∑n

i=1 xRi .

By minimizing the size of the edge cover, we can obtain a
more accurate upper bound on the size of the query result.
This bound becomes tight for fractional weights (Atserias,
Grohe, and Marx 2008). Minimizing the sum of the weights
now becomes the objective of a linear program.

Definition 6 (Atserias, Grohe, and Marx 2008) Given a join
query Q over a database D = (R1, . . . , Rn), the fractional
edge cover number ρ∗(Q) is the cost of an optimal solution
to the linear program with variables {xRi

}ni=1:

minimize
n∑
i=1

xRi

subject to
∑

Ri∈rel(A)

xRi
≥ 1 for each query variable A

xRi ≥ 0 for each 1 ≤ i ≤ n.

354

R1 R2

R3

A

B C

(a) Hypergraph.

A : xR1
+ xR2

≥ 1

B : xR1 + xR3 ≥ 1

C : xR2
+ xR3

≥ 1

(b) Linear program excerpt.

Figure 2: Hypergraph for the triangle query Q/ and the in-
equalities for query variables in the linear program for com-
puting the tight size bound on the query result.

Figure 2(b) gives the sum-inequalities in the linear pro-
gram for the fractional edge cover of the triangle query
Q/ = R1(A,B), R2(A,C), R3(B,C). An optimal solu-
tion is ρ∗(Q/) = 3/2 with xR1

= xR2
= xR3

= 1/2. Con-
sequently, the result of the triangle query has O(N3/2) tu-
ples. Furthermore, there exist classes of databases for which
its size is at least Ω(N3/2). While the size upper bound is
given in Definition 6 as a function of the query structure, the
linear program may also incorporate cardinality constraints,
e.g., the sizes of relations and their projections.

The fractional edge cover number is our measure for sizes
of flat representations of query results.

The f-tree width, denoted by s(Q), is the fractional edge
cover number of a subquery of Q. For an f-representation
over an f-tree ∆ of a join query Q, the number sA of val-
ues of a variable A is dependent on the number of possible
tuples of values of its ancestors, whose set is key(A), and
is independent of the number of values for variables that are
not on the same branch. A tight bound on sA is then given
by the fractional edge cover number of the join query that is
a (key(A) ∪ {A})-restriction of Q. Then, an upper bound
on the size of the f-representation over ∆ is the maximum
over all variables in ∆ of the number of values of A:

s(∆) = max{ρ∗(Qkey(A)∪{A})|A is variable in ∆}
The f-tree width s(Q) is then the minimum over all possible
f-trees of the previous upper bound:

s(Q) = min{s(∆)|∆ is an f-tree of Q}
The d-tree width s↑(Q) is defined similarly to s(Q), with

the difference that the key of a variable may not be the set
of all ancestors as for f-trees. In other words, we iterate over
d-trees instead of only over their strict subset of f-trees:

s↑(Q) = min{s(∆)|∆ is a d-tree of Q}
The d-tree width is equal to the fractional hypertree width of
the join query (Olteanu and Závodný 2015), which is fun-
damental to problem tractability with applications spanning
constraint satisfaction, databases, matrix operations, prob-
abilistic graphical models, and logic (Ngo, Khamis, and
Rudra 2015).

We know that 1 ≤ s↑(Q) ≤ s(Q) ≤ ρ∗(Q) ≤ |Q|. The
gap between s(Q) and ρ∗(Q) can be as large as |Q| (e.g.,
for hierarchical queries), whereas the gap between s↑(Q)
and s(Q) can be as large as log |Q|, e.g., for path queries.
Clique queries, e.g., triangles, are the pathological cases for
which factorizations bring no asymptotic saving.

Proposition 7 (Atserias, Grohe, and Marx 2008; Olteanu
and Závodný 2015) Given a join query Q, for any database
D, the join result Q(D) admits

• a flat representation over f-paths of size Θ(|D|ρ∗(Q));
• an f-representation over f-trees of size Θ(|D|s(Q));

• a d-representation over d-trees of size Θ(|D|s↑(Q)).

Note that the size bounds in Proposition 7 are asymptoti-
cally tight. Furthermore, there are algorithms to compute
the join result in each of the three representations in worst-
case optimal time, i.e., the computation time is the same as
the size bound modulo log factors in the size of the input
relations (Ngo et al. 2012; Olteanu and Závodný 2015).

Example 8 A trivial upper bound for the flat representation
of the natural join Q in our example is the product of the
sizes of the three relations, so O(|D|3) assuming each re-
lation has size |D|. We construct a matching lower bound
for a class of databases where the Z and S values are the
same across all tuples and the attributes H , T , and P have
as many distinct values as |D|. The join becomes a product
of the three sets of values for H , T , and P . The fractional
edge cover number ρ∗(Q) is thus three.

For an f-representation, the above lower bound argument
yields a size |D|2. The factorization for the branch Z − H
in the f-tree has size at most linear in |D|, since for a Z-
singleton we list the union of its H-singletons and their
overall number is bounded by the number of singletons in
Shops. The factorization for this branch is independent of
the branch Z − S, since the singletons for H and S are rep-
resented independently of each other. The number of sin-
gletons for S and P is bounded by the number of single-
tons in House. The number of T -singletons can however be
quadratic in |D|, e.g., when one S-singleton is paired with
|D| T -singletons in TaxBand and with |D| Z-singletons in
House. The f-tree width s(Q) is thus two.

For a d-representation, the construction used to attain the
quadratic lower bound in the previous case does not work
anymore: We cache the union of T -singletons for each S-
singleton and reuse it under every Z-singleton. This means
that the d-tree width is one. This is not surprising since Q is
acyclic and its hypertree width is one.

Knowledge Compilation Perspective
Factorized queries can be presented as a special kind of an
existing knowledge compilation formalism. Using appro-
priate nomenclature, they can be classified as d-DOMDDs,
i.e., deterministic Decomposable Ordered Multi-valued De-
cision Diagrams. They are specifically tailored at represent-
ing relational data over a given schema and variable orders.
As such, they are unique in the space of existing formalisms.

Multi-valued Decision Diagram
A factorized query is a multi-valued decision diagram: Each
union node has possibly many children representing distinct
values for the same attribute. Such union nodes capture the
many possible values of a query variable corresponding to
an attribute in the query result. For instance, the top node

355

in Figure 1(c) is a union of two values z1 and z2 for the
attribute Z, whereas the node under z1 is a union of three
values h1, h2, and h3 for the attribute H .

Caching via Definitions
Factorized queries need not be trees, but diagrams. This
is on a par with the difference between decision trees
and decision diagrams, where common suffixes are cached
across distinct branches. Caching is achieved via defini-
tions and the difference between f-representations and d-
representations, as explained in the previous section: For
each S-value, e.g., s2, there is a union of T -values as
dictated by the relation TaxBand, e.g., t4 ∪ t5. An f-
representation would have a copy of the union of T -values
for each occurrence of its S-value. As depicted in Fig-
ure 1(c), in a d-representation we cache the union and point
to it from each occurrence of its S-value.

Ordering via Variable Orders
Factorized queries are ordered since the fragments under the
children of any of its union nodes have the same variable
order (nesting structure). For instance, the leftmost branch
in the d-representation in Figure 1(c) has values z1 and h1
and their order is as in the leftmost branch in the f-tree in
Figure 1(b). The branch with values z2, s2, p4 follows the
order of the rightmost branch.

Giving up order may bring more succinct factorizations:
A free-order factorization could use different orders for the
expressions under different values in a union. The differ-
ence between ordered and free-order factorized queries is on
a par with the difference between OBDDs and FBDDs for
Boolean formulas. As such, free-order factorizations can be
more succinct than ordered ones. They would be adaptive,
data-dependent, and exploit degree information in the input
relations (e.g., how many S-values occur under different Z-
values in relation House). For free-order flat representations,
there is seminal work that gives the most general width no-
tions known to date, called adaptive width and submodular
width (Marx 2013). Our notions of f-tree width and d-tree
width can be refined by using submodular width in place of
the fractional edge cover number.

Determinism
Factorized queries are deterministic representations in the
sense that each model (satisfying assignment of the query
variables) is represented exactly once. This is ensured by
two constraints: (1) Each union only has distinct values; (2)
the expressions in a product represent relations over disjoint
sets of attributes. Determinism is key for a host of desirable
properties, including linear-time aggregates such as model
counting and constant-delay model enumeration.

Decomposability
Factorized queries use decompositions to exploit multi-
valued dependencies in the query results for succinct rep-
resentation. For instance, the choices of opening hours for
shops and the choices of house square meters or price are

independent given the zipcode in our example. This in-
dependence is expressed using product nodes. The effect
of decomposability on succinctness is great: The gap be-
tween flat representations, which are not decomposable, and
f-representations, which are decomposable, can be exponen-
tial (as discussed before Proposition 7).

Properties of Factorized Queries
The factorized queries enjoy properties that make them de-
sirable for a range of applications, as highlighted next.

Uniqueness
Given a database D and a variable order ∆ of a query, there
is one grounding of ∆ over D modulo commutativity of
product and union, which represents the query result.

Worst-case Optimal Grounding
Proposition 7 gives asymptotically tight size bounds for fac-
torized queries within each of our representation system.
Factorized queries over variable orders can be computed
within time bounded by their sizes.

Constant-delay Model Enumeration
The models represented by a factorized query are the tu-
ples in the (equivalent) relation R representing the query re-
sult. Constant-delay enumeration means that the time and
extra space needed to list the first model and the time be-
tween listing two consecutive models are constant (more
precisely, the delay is linear in the number arity of R, but
this is constant under the usual data complexity assump-
tion). An enumeration with constant delay is desirable since
this holds for enumerating tuples from the (possibly expo-
nentially larger) relation R. In general, given a query and
a database, asking whether a given tuple is in the query re-
sult is NP-hard. Tuple enumeration remains constant-delay
for acyclic queries (Bagan, Durand, and Grandjean 2007),
in which case the input database together with the query al-
ready serve as a compact representation of the query result.
Constant-delay model enumeration can be in interesting or-
ders as long as they agree with a topological order of the
variable order of the factorization (Bakibayev et al. 2013).

Linear-time Model Counting
Counting the models represented by a factorized query can
be done in one pass, since factorized queries are determinis-
tic: Turn each product node into multiplication, each union
node into summation, and each singleton into value 1. The
factorized query in our example encodes 26 models.

Support for Subsequent Processing
Factorized queries are materialized views that are computed
once to support subsequent processing. SQL queries can
be evaluated directly on them (Bakibayev, Olteanu, and
Závodný 2012). A wide palette of aggregates can be pro-
cessed in linear time over factorized representations: stan-
dard SQL-like aggregates with group-by clauses (Bakibayev
et al. 2013) and gradient aggregates used for learning regres-
sion models (Schleich, Olteanu, and Ciucanu 2016).

356

Example 9 In the absence of a group-by clause, the stan-
dard aggregates count, sum, avg, min, and max can be eval-
uated in one pass over the factorization. We already exem-
plified counting. To sum the H-values in our example, we
turn each union node into summation, each product node
into multiplication, each H-value remains the same while
each value for a different attribute turns into value 1.

In the presence of a group-by clause, the factorization
may require partial restructuring. We give in earlier work
a characterization of variable orders that support one-pass
aggregates (Bakibayev et al. 2013). In our example, if we
would like to count the number of tuples for each Z-value
(i.e., we group by Z and count all tuples within each group),
we only need to employ the above counting procedure under
each Z-value in the top union. This is sufficient since these
Z-values are non-repeating. However, if we would like to
count the tuples in the query result for each S-value, we can
use two strategies. The first strategy is to restructure the vari-
able order such that the query variable S becomes root and
then count the tuples represented under each S-value. The
second strategy does not require restructuring. It counts the
tuples containing each occurrence of an S-value and adds
the counts for the same S-value.

APPLY Function for Factorizations

Arbitrary join queries can be computed by starting with flat
representations of relations and incrementally combining
these representations into d-representations using a multi-
way join operator, which takes time linear in the sum of
sizes of the input factorizations (Ciucanu, Kirk, and Olteanu
2016). We next define the binary set operations difference
.−, intersect ·∩, and union ·∪ on f-representations, and leave a

complete treatment of the APPLY function for future work.
These operations are defined recursively on the structure

of f-representations. We thus have three cases: singletons,
unions of expressions, or products of expressions. By defi-
nition, they require that the input f-representations are over
the same f-tree. Their key challenge is to preserve the deter-
minism of the factorized representation.

For the intersection of two union expressions, we assume
without loss of generality that the unions are arranged such
that first min values of the two unions are the same. Since
equal values in the union may nevertheless have disjoint
subexpressions, we need to recurse. For product expres-
sions, we also assume that expressions Li and Ri have the
same schema so we can intersect them. In case of inter-
secting two distinct values, we obtain ⊥, which stands for
empty intersection. After we finish the intersection, we can
simplify the result in one bottom-up pass by (1) replacing
all expressions that are connected with ⊥ via product nodes
and all unions that only have⊥ children by⊥ and (2) subse-
quently removing all these ⊥ expressions. The intersection
takes time linear in the sizes of the input f-representations.

∪
L1

. . . Ln

·∩
∪

R1
. . . Rm

=
∪

L1 ·∩R1
. . .Lmin ·∩Rmin

a ·∩ a = a a ·∩ b = ⊥

l

×
L1

. . . Ln

·∩

r

×
R1

. . . Rn

=

l ·∩ r

×
L1 ·∩R1

. . . Ln ·∩Rn

The difference of two unions U(L1, . . . , Ln) .−
U(R1, . . . , Rm) takes the difference of the first min
expressions with the same values and adds the remaining
expressions from the first union, yielding:

∪

L1
.−R1

. . .Lmin
.−Rmin Lmin+1. . . Ln

The difference on values is as expected: a .− a = ⊥,
a .− b = a. For product expressions, we may incur a blowup
since we need to take away from the first expression the in-
tersection with the second expression and keep the rest. For
this, we define S = {(X1, . . . , Xn)|Xi ∈ {(Li .−Ri), (Li ·∩
Ri)}, 1 ≤ i ≤ n}} − {(L1 ·∩ R1, . . . , Ln ·∩ Rn)}. How-
ever, the size of S is exponential in the arity of the schema
(2n − 1 for n variables) and not in the data size, since the
expressions of a product have disjoint sets of variables.

l

×
L1

. . . Ln

.−

r

×
R1

. . . Rn

=
⋃

(X1,...,Xn)∈S

l .− r

×
X1

. . . Xn

The union of two f-representations L and R can then be
expressed as L ·∪R = (L ·∩R) ∪ (L .−R) ∪ (R .− L).

Factorization: Old Friend in New Clothes
Factorizing data and computation is commonplace across
Computer Science. Query hypergraphs define probabilistic
graphical models (PGMs), where the hyperedges and query
variables become factors and random variables, respectively.
Inference is thus expressible using sum and count aggre-
gates on factorized queries. By this connection, our frame-
work gives new algorithms and complexity results for in-
ference in PGMs (there are classes of instances with un-
bounded treewidth and s↑ one). Recent work shows how
factorized computation can effectively solve a host of prob-
lems in databases, logic, CSP, coding theory, and matrix op-
erations (Ngo, Khamis, and Rudra 2015).

The closest in spirit to our factorization framework are the
d-DNNFs over vtrees, which also exploit structural decom-
posability of the input (Pipatsrisawat and Darwiche 2008),
and the multivalued decomposable decision graphs (Koriche
et al. 2015). Our framework is a special instance of these two
and distinct due to its root in relational databases. Factoriza-
tions represent relations over a fixed schema and not arbi-
trary expressions. They draw on the separation of queries
from data for defining variable orders and associated com-
plexity results. Finally, they are specifically designed to sup-
port aggregates and queries. Related work in databases is
reviewed elsewhere (Olteanu and Závodný 2015).
Acknowledgements. The author would like to thank his
former and current group members who contributed to this
work: Nurzhan Bakibayev, Radu Ciucanu, Tomáš Kočiský,
Max Schleich, and Jakub Závodný.

357

References
Atserias, A.; Grohe, M.; and Marx, D. 2008. Size bounds
and query plans for relational joins. In FOCS, 739–748.
Bagan, G.; Durand, A.; and Grandjean, E. 2007. On
acyclic conjunctive queries and constant delay enumeration.
In Computer Science Logic, 208–222.
Bakibayev, N.; Kociský, T.; Olteanu, D.; and Závodný, J.
2013. Aggregation and ordering in factorised databases.
PVLDB 6(14):1990–2001.
Bakibayev, N.; Olteanu, D.; and Závodný, J. 2012. FDB:
A query engine for factorised relational databases. PVLDB
5(11):1232–1243.
Ciucanu, R.; Kirk, J.; and Olteanu, D. 2016. Worst-case
optimal join at a time. In (under submission).
Koriche, F.; Lagniez, J.; Marquis, P.; and Thomas, S. 2015.
Compiling constraint networks into multivalued decompos-
able decision graphs. In IJCAI, 332–338.
Marx, D. 2013. Tractable hypergraph properties for
constraint satisfaction and conjunctive queries. J. ACM
60(6):42.
Ngo, H. Q.; Porat, E.; Ré, C.; and Rudra, A. 2012. Worst-
case optimal join algorithms. In PODS, 37–48.
Ngo, H. Q.; Khamis, M. A.; and Rudra, A. 2015. FAQ:
Questions Asked Frequently, CoRR:1504.04044.
Olteanu, D., and Závodný, J. 2015. Size bounds for fac-
torised representations of query results. TODS 40(1):2.
Pipatsrisawat, K., and Darwiche, A. 2008. New compilation
languages based on structured decomposability. In AAAI,
517–522.
Schleich, M.; Olteanu, D.; and Ciucanu, R. 2016. Learning
linear regression models over factorized joins. In SIGMOD.

358

