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Abstract

Many practical applications (e.g., plannning for cyber-
physical systems) require reasoning about hybrid domains
that contain both probabilistic and nondeterministic paramet-
ric uncertainty. In general, this is an undecidable problem.
We use δ-satisfiability to sidestep undecidability, and we de-
velop an algorithm that computes an enclosure for the range
of probability of reaching a goal region in a given number
of discrete steps. We utilize SMT techniques that enable rea-
soning in a safe way, i.e., the computed enclosure is formally
guaranteed to contain the reachability probability. We demon-
strate the usefulness of our technique on challenging nonlin-
ear hybrid domains.

1 Introduction
Reasoning about hybrid domains is a very important and
difficult problem. Hybrid domains integrate continuous evo-
lution with discrete computation, and are much used, e.g.,
to model cyber-physical systems (anti-lock brakes in cars,
biomedical devices, etc.). However, it is well known that
even basic questions, such as reachability, are undecidable
for anything but the simplest hybrid systems (e.g., reachabil-
ity is PSPACE-complete for timed automata (Alur and Dill
1990)). Also, models of realistic systems typically contain
uncertainty due, for example, to faulty components, random
environmental effects, and user/adversarial behaviors.

In this paper we consider nonlinear hybrid domains in
which the initial conditions are subject to random uncer-
tainty (probability) and/or non-quantified uncertainty (non-
determinism). For such systems we study the probabilis-
tic reachability problem, i.e., computing the probability of
reaching a goal region in a given time and number of discrete
steps. Note that when probability and nondeterminism are
both present, the model will feature not just a single reacha-
bility probability, but rather a range of reachability probabil-
ities (depending on the nondeterministic initial conditions).

Since for nonlinear hybrid domains even standard reach-
ability is undecidable, we relax the problem by using the
notion of δ-satisfiability over the reals (Gao, Avigad, and
Clarke 2012). A δ-complete decision procedure can check
δ-satisfiability of general first-order real formulae (terms
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can include continuous functions and solutions of nonlinear
differential equations). In particular, δ-satisfiability relaxes
standard satisfiability in such a way that when a formula is
“too close to call”, then any decision is allowed. Essentially,
δ-satisfiability sidesteps undecidability by allowing numer-
ical reasoning with errors bounded by an arbitrary positive
rational number δ.

In this work we develop an algorithm that exploits δ-
complete decision procedures to compute a numerically
guaranteed enclosure for the range of reachability probabil-
ities of a (possibly nonlinear) hybrid system with probabilis-
tic and nondeterministic parametric uncertainty. We show
that in certain parameter scenarios the tightness of the en-
closure can be controlled by the user. Furthermore, our algo-
rithm can be used to synthesize formally guaranteed plans.
We have validated our approach against Monte Carlo simu-
lation on realistic and challenging hybrid domains featuring
nonlinear differential equations.

The structure of the paper is as follows: we start by giving
a brief background on the notion of δ-satisfiability, and then
we define parametric hybrid automata and the corresponding
probabilistic bounded reachability problem. Next we present
our algorithm for computing enclosures of the reachability
probability ranges for parametric hybrid automata. Finally,
we empirically evaluate our technique on two hybrid do-
mains featuring both probabilistic and nondeterministic un-
certainty.

2 Parametric Hybrid Automata
In this paper we follow (Gao et al. 2014; Bryce et al. 2015)
and encode parametric hybrid models by first-order formu-
lae over the reals (so called LR-formulae (Gao, Avigad, and
Clarke 2012)) whose syntax is as follows

t := c | x | f(t(x));

ϕ := t(x) > 0 | t(x) > 0 | ϕ ∧ ϕ | ϕ ∨ ϕ | ∃xϕ | ∀xϕ

where c is a constant, x a variable, and f a Type 2 com-
putable function. Informally, a real function is Type 2 com-
putable if it can be algorithmically computed with arbitrary
precision (most common continuous functions are Type 2
computable — see (Ko 1991) for more details). An LR-
sentence is bounded when all its variables are quantified over
bounded real intervals.
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The notion of weakening is key: given a bounded LR-
sentence ϕ and δ ∈ Q+ ∪ {0}, the δ-weakening ϕδ of ϕ is
obtained by replacing atoms t > 0 and t > 0 by t > −δ and
t > −δ, respectively. In (Gao, Avigad, and Clarke 2012),
the authors presented an algorithm that can correctly de-
cide deciding whether ϕδ is true or ϕ is false — so-called
δ-satisfiability of ϕ. When the two cases overlap, i.e., ϕ is
δ-true and false, then either answer can be returned. Note
that answers must be correct: if the returned answer is “ϕ
false”, then it must actually be that ϕ is false; on the other
hand, from the answer “ϕδ true” we cannot say whether ϕ
is actually true. Algorithms for δ-satisfiability are called δ-
complete decision procedures. The dReal (Gao, Kong, and
Clarke 2013) SMT solver implements a δ-complete decision
procedure for real formulae over a large class of Type 2 com-
putable real functions, including solutions of nonlinear ordi-
nary differential equations (ODEs).

We now extend the hybrid automaton definition of (Bryce
et al. 2015) to our case.
Definition 1. A parametric hybrid automaton is a tuple

〈X,Λ, Q, {flowq(λ, x
0, xt, t) : q∈Q}, {invq(λ, x) : q∈Q},

{jumpq→q′(λ, x
t, x0) : q, q′∈Q}, initq0(λ, x)〉

where X ⊂ Rn is the state space, Λ ⊂ Rp is the parameter
space, Q = {q0, . . . qm} is the set of modes, and the other
components are finite sets of quantifier-free LR-formulae
that define deterministic flows, jumps, and an initial state.
Both X and Λ are compact sets.

A parameter vector λ ∈ Λ is thought to be assigned ini-
tially and remains fixed throughout the system evolution.
Each parameter is assigned either probabilistically or non-
deterministically: probabilistic parameters can be defined
over unbounded intervals, e.g., normally distributed, while
nondeterministic parameters must be defined over bounded
intervals. Random parameters defined over unbounded do-
mains are reduced to bounded domains as explained later.

Next, the LR encoding of the k-stepM -delay reachability
for parametric hybrid automata is a simple modification of
the one presented in (Gao et al. 2014). As in bounded model
checking (Biere et al. 1999), we want a sentence that is true
if for some parameter vector the goal is reachable at the k-th
transition following the hybrid dynamics
Definition 2. The k-step reachability property for a para-
metric hybrid automaton and an LR-formula goalqG is the
bounded LR-sentence ∃Λλ ϕ(λ), where ϕ is formula (1).

The notation ∃Λλ is a shorthand for ∃λ ∈ Λ. The first
line states the quantification for each variable in each step;
the second line constrains the variables in the initial mode
using the flow and the invariant; the third and fourth lines
constrains the possible mode transitions at each step and the
variables using again the flow and the invariant. The fourth
line also encodes the goal that must be reached at step k.
(Also, hk(Q) is the set of all possible mode transitions, and
literal enforce is used to make sure that only the correct
modes are selected. More details are provided in (Gao et al.
2014).) In our implementation we use the dReach tool (Kong
et al. 2015), which generates ϕ from an hybrid automaton

specification and then uses dReal to check its δ-satisfiability.
In particular, dReach will correctly return one of two an-
swers about the sentence ∃Λλϕ(λ): unsat, meaning that the
sentence is unsatisfiable (the system cannot reach a state in
the k-th step satisfying goalqG ); δ-sat, i.e., the sentence is
δ-satisfiable.

3 Probabilistic Reachability
We now define the probabilistic version of k-step reacha-
bility. Since parameters may also be nondeterministic, this
entails that in general the reachability probability will be a
function of the nondeterministic parameters. We divide the
parameter space Λ of a hybrid automaton into two compo-
nents: the random parameters ΛR and the nondeterministic
parameters ΛN , where Λ = ΛR × ΛN . As such, a vector
λ ∈ Λ may be written as (ρ, ν) for ρ ∈ ΛR and ν ∈ ΛN .
Definition 3. Given a parametric hybrid automaton, the k-
step reachability probability for ν ∈ ΛN is the function

p(ν) =

∫
G(ν)

dP (2)

where
G(ν) = {ρ ∈ ΛR : ϕ(ρ, ν)}, (3)

ϕ is the k-step reachability property, and P is the probability
measure of the random parameters (i.e.,

∫
ΛR

dP = 1).

Informally, G(ν) is the set of all random parameters val-
ues for which the system (with nondeterministic parameter
ν) reaches the goal in k steps. Note that by Definition 1 the
dynamics of a parametric hybrid automaton is fully deter-
ministic — it depends only on the parameters Λ and the ini-
tial state initq0 .

Note that p(ν) needs not to be a continuous function of
ν ∈ ΛN . Because of hybrid dynamics and discrete random-
ness, p can have jumps, i.e., points for which the right and
left limits differ. On the other hand, if p does not depend
on ν then it is a constant function. In this paper we aim at
computing enclosures for the range of function p.
Definition 4. Given Y ⊆ ΛN , an enclosure for the range of
p is an interval [a, b] such that

∀ν ∈ Y p(ν) ∈ [a, b].

Note that enclosures depend on the given nondeterminis-
tic parameter set Y . It is easy to build examples for which
it is necessarily a = 0 and b = 1, and p takes any value in
[0,1]. By reducing Y it is sometimes possible to reduce the
size of the enclosure (e.g., if p is strictly monotonically in-
creasing in the one-dimensional parameter ν) but this is not
possible in general. However, there can be cases for which
the enclosure can be made arbitrarily tight, in the sense that
a and b are close to the infimum and supremum of the range
of p over Y .

4 Computing Probability Enclosures
In Algorithm 1 we present our technique for computing
probabilistic reachability enclosures in parametric hybrid
automata. For space reasons we present the algorithm for
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ϕ(λ) = ∃Xx0
0∃Xxt0 · · · ∃Xx0

k∃Xxtk∃[0,M ]t0 · · · ∃[0,M ]tk

initq0(λ, x0
0) ∧ flowq0(λ, x0

0, x
t
0, t0) ∧ enforce(q0, 0) ∧ ∀[0,t0]t∀Xx (flowq0(λ, x0

0, x, t)→ invq0(λ, x))∧
k−1∧
i=0

∨
(q,q′,i)∈hk(Q)

(
jumpq→q′(λ, x

t
i, x

0
i+1) ∧ flowq′(λ, x

0
i+1, x

t
i+1, ti+1) ∧ enforce(q, i) ∧ enforce(q′, i+ 1)∧

∀[0,ti+1]t∀Xx (flowq′(λ, x
0
i+1, x, t)→ invq′(λ, x))

)
∧ enforce(qG, k) ∧ goalqG(xtk).

(1)

the case in which every parameter type (random and non-
deterministic) is present in the model. The algorithm takes
as input a k-step reachability formula ψ (Definition 2) and a
domain of continuous nondeterministic parameters ΛN , and
returns a list of enclosures for the reachability probability
(as per Definition 4). Such a list will be indexed by a finite
set of disjoint (possibly multi-dimensional) parameter boxes
that will cover ΛN , i.e., to each parameter box there will be
associated a probability enclosure. If the model has no non-
deterministic parameters, then of course only one enclosure
is returned, and its size is bounded above by the ε input. In
general, if nondeterministic parameters are present the size
of the enclosure(s) cannot be controlled by ε. This is because
the reachability probability function p (Definition 3) might
have jumps, hence the enclosure’s size cannot be reduced
by refining the nondeterministic parameters box. The algo-
rithm thus has an input εN that limits the size of the smallest
nondeterministic parameter box that will be analyzed.

The algorithm works by going through all (finite) possible
combinations of random discrete parameters and then alter-
nate partitioning the continuous random and nondeterminis-
tic parameters in order to try to reduce the size of the com-
puted enclosures. A key part of the algorithm is the func-
tion eval (line 13), which evaluates reachability and is used
to decide how the continuous random and nondeterminis-
tic parameter boxes are going to be processed. The function
is shown in Algorithm 2: essentially, it utilizes (lines 3 and
5) a δ-complete decision procedure to find out whether the
goal is reachable for no, all, or some value of the parame-
ters in box b. In line 1 of Algorithm 2, the precision δ to be
passed to the δ-complete decision procedure is computed as
a fraction (η) of the smallest dimension of box b. This is an
important point: δ must be smaller than the smallest dimen-
sion of b in order to decide correctly whether b is inside the
unsat or sat parameter region. (We empirically found that
η = 0.001 is a good compromise between avoiding spurious
δ-sat answers and computational complexity.) In our imple-
mentation we use dReal (Gao, Kong, and Clarke 2013), but
any other δ-complete decision procedure would be fine.

Formula ψc is displayed in (4). It is essentially the same
as ψ, except that in the last line it has an implication that
checks for the system not reaching the goal.

If eval (line 13) returns unsat then there is no value in
bN × bR for which goalqG is reachable — this is formally
correct. So, we can reduce the upper bound of the probabil-
ity enclosure by

∫
bR
dP (line 16), where P is the probability

measure of the continuous random parameters. (Given an
interval I = [a, b] we define I = a and I = b.) If eval re-

turns sat then for every value in bN × bR it is possible to
reach goalqG . Again, this answer is formally correct. Thus,
we can increase the lower bound of the enclosure by

∫
bR
dP

(line 18). We remark that these answers are formally correct
because they rely on the unsat answer from the δ-complete
decision procedure, which can be trusted to be actually true.
Finally, if eval returns undet it means that bN×bR is a mixed
box, i.e., it contains some parameter values for which reach-
ability is true and some others for which it is false. There-
fore, we need to refine the parameter boxes and repeat the
process. Note that first we refine the (continuous) random
parameter boxes (line 20) and then the nondeterministic pa-
rameter boxes (line 25), if we have not reached the lower
bound εN on their size (line 22). The final enclosure for a
given nondeterministic parameter box is obtained when ei-
ther the enclosure has length smaller than ε, or the size of
the nondeterministic parameter box is smaller than εN (line
22). Otherwise, each dimension of the nondeterministic pa-
rameter box is split into two parts (line 25) and the resulting
boxes are further analyzed.
Verified integration. Computing probability enclosures
(see Definition 4) essentially amounts to computing integrals
with bounded error (see, e.g., (Petras 2007) and (Gonnet
2012) for an overview). For use in lines 16 and 18, we need
to compute

∫
bR
dP with precision ε, i.e., we need to compute

an interval of size smaller than ε that contains the true value
of
∫
bR
dP . To do so, we provide to Algorithm 1 a finite par-

tition ΠR of the (compact) random parameters domain such
that 1−

∑
b∈ΠR

∫
b
dP < ε.

Unbounded, multiple random parameters. A random pa-
rameter with unbounded domain (e.g., Gaussian) cannot
be directly used, since it would define an unbounded LR-
formula. However, for any 0 < ε < 1 it is possible to find a
bounded region of the random parameter domain over which
the integral with respect to the probability measure is larger
than 1− ε. For example, in the one-dimensional case we can
find an interval I ⊂ R such that

∫
I
dP > 1− ε. This means

that we can compute the reachability probability p(ν) over I
instead of the full space R, and the error will be bounded by
ε. Therefore, we can use the verified integration procedure
mentioned above. Again, the same procedure can be used for
the case of multiple independent bounded random param-
eters, provided each parameter is integrated with a stricter
precision ξ such that ε ≥ (1 + ξ)l − 1, where ε is the re-
quired precision for computing probability reachability.

Our main result identifies a subclass of parametric hy-
brid automata for which it is possible to compute the k-step

626



ϕc(λ) = ∃Xx0
0∃Xxt0 · · · ∃Xx0

k∃Xxtk∃[0,M ]t0 · · · ∃[0,M ]tk

initq0(λ, x0
0) ∧ flowq0(λ, x0

0, x
t
0, t0) ∧ enforce(q0, 0) ∧ ∀[0,t0]t∀Xx (flowq0(λ, x0

0, x, t)→ invq0(λ, x))∧
k−1∧
i=0

∨
(q,q′,i)∈hk(Q)

(
jumpq→q′(λ, x

t
i, x

0
i+1) ∧ flowq′(λ, x

0
i+1, x

t
i+1, ti+1) ∧ enforce(q, i) ∧ enforce(q′, i+ 1)

∧∀[0,ti+1]t∀Xx (flowq′(λ, x
0
i+1, x, t)→ (invq′(λ, x) ∧ (enforce(qG, k)→ ¬goalqG(x)))

)
(4)

reachability probability with arbitrary precision. Namely, for
parametric hybrid systems featuring only random parame-
ters (without nondeterministic parameters) Algorithm 1 re-
turns a probability enclosure of the size not larger than ε.
Remarks. Remember that for an event to have zero proba-
bility does not necessarily mean that such event cannot abso-
lutely occur. This is because (Lebesgue) integration cannot
“see” sets with countable numbers of points — they all inte-
grate to zero. That is, if a system reaches the goal (say a bad
state) for no value of the random parameters but one, then
we cannot say that the system is absolutely safe.

A property is said to be “robust” when its truth value re-
mains invariant under small numerical perturbations. It has
been recently shown that safety verification of robust proper-
ties is decidable (Ratschan 2014). Also, bounded and robust
LR-sentences are decidable (Gao, Avigad, and Clarke 2012).
Here we do not need any robustness assumption, since in our
framework we reason about probabilities.

Our algorithm can also be applied to planning in systems
that do not feature any randomness (only nondeterminism).
In this case we only need to introduce a “dummy” random
parameter (e.g., uniformly distributed) such that it does not
affect the behavior of the model, and has the only aim of
introducing a probability measure. Then whenever the eval
function returns sat or unsat the probability enclosure is re-
fined to [1,1] or [0,0] respectively. If eval returns undet the
enclosure remains [0,1].

5 Evaluation
We have implemented our technique in C++ and OpenMP,
and have evaluated it on two hybrid models: a car decelera-
tion model and a battery load management model.

Car deceleration model. We consider a car accelerating
from 0 to 27.78 m/s (100 km/h) and then stopping. This
problem is rather nontrivial as the dynamics of the car is
governed by nonlinear differential equations and the model
features random (e.g., road condition) and nondeterministic
(e.g., driver’s reaction time) behaviour. The objective of the
experiment is to compute enclosures for the probabilities of
reaching a target distance depending on the value of nonde-
terministic parameters.

The model is a three-mode hybrid system inspired by a
model presented in (Bryce et al. 2015). In the first mode the
car moves with velocity according to the following ODE:

υ′(t) = α exp−αt+β −cdv2(t)

where α = 0.05776 and β ∼ N(4, 0.1) are coefficients
modelling the acceleration properties of the car, and cd =
3.028 ·10−4 m−1 is the drag coefficient. When the target ve-
locity 27.78 m/s is reached, the driver needs tr seconds to
react and push the brakes pedal. The reaction time depends
on various factors (e.g., driving experience) so we consider
it to be nondeterministic (tr ∈ [0.8, 1.5]). In this “delay”
mode the car is not accelerating, and its velocity is gov-
erned by the equation υ′(t) = −cdv2(t). In the final (brak-
ing) mode the car is decelerating according to the equation
υ′(t) = µad−cdv2(t) where ad = −5.25m/s2 is a constant
deceleration and µ = 1 is a coefficient modelling normal
road conditions (e.g., friction). Throughout the modes the
distance S traveled by the car is governed by S′(t) = υ(t).

We consider the following scenarios: 1) the car must
stop before reaching 300 metres; 2) the car must stop in
the [300, 310] metre range. We used the following settings
for the algorithm: ε = 0.01 and εN = 0.01. Our results
were validated by computing Monte Carlo confidence inter-
vals (of size 0.01 and coverage probability 0.99) using the
Chernoff-Hoeffding bound (Hoeffding 1963). The nonde-
terministic parameter for this experiment (driver’s reaction
time) was discretized at 10 points.

The probability range of the car stopping within 300
metres having a reaction time within [0.8, 1.5] seconds is
[0.266026, 0.468775], and the probability range of stopping
within the range of [300, 310] metres is [0.091,0.1224]. The
enclosures of the probability values depending on the value
of the nondeterministic parameter are plotted in Figure 1 and
Figure 2. The CPU times for computing all of the enclosures
were the following: 774 minutes for scenario 1) and 1,457
minutes for scenario 2), both on a 2.8GHz, 4-core system.

Multiple battery load management. In this experiment
we use our algorithm to synthesize formally guaranteed
plans for a battery load management model (Fox, Long, and
Magazzeni 2012). Many autonomous systems (e.g., electric
prosthetics) require heavy batteries to service a sufficient
level of current and power. Sometimes these requirements
can be met by utilizing multiple smaller batteries, however
not very efficiently as it is possible to extract more energy
from a single, large battery than from multiple batteries of
the same total capacity. Also, due to their chemical prop-
erties, batteries can recovery: when the load is applied, the
charge is drawn out faster then it is supplied by the chemi-
cal reaction. The available charge can be depleted before the
total (available and stored in the chemical reaction) charge
is used. Hence, finding an efficient load distribution policy
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Algorithm 1: Probabilistic reachability enclosures
Input : ψ: k-step reachability formula

c ∈ (0, 1): tuning constant for unbounded RVs
ε ∈ Q+: enclosure precision
D: discrete random parameters domain
ΠR: continuous random parameters partition
ΛN : continuous nondet. parameters domain
εN∈Q+: precision for nondet. parameter box

Output: L: list of (nondet. parameter box, enclosure)
1 BN = ΛN ; bN = BN .front()
2 L[bN ] = [0, 1] // initial enclosure
3 repeat
4 for b ∈ BN .keys() do
5 PR[b] = ΠR

6 E[b] = [0, 1] // temporary enclosures
7 d = D.pop()
8 repeat
9 repeat

10 bN = BN .pop()
11 BR = PR[bN ]
12 repeat
13 bR = BR.pop()

// evaluate reachability
14 res = eval(ψ, d, bN , bR)
15 if res == unsat then

// goal unreachable from bN × bR
16 E[bN ] = [E[bN ], E[bN ]−

∫
bR
dP ]

17 if res == sat then
// goal reachable ∀λ ∈ bN × bR

18 E[bN ] = [E[bN ] +
∫
bR
dP ,E[bN ]]

19 if res == undet then
// branch on random parameters

20 for b ∈ branch(bR) do BmR .push(b)

21 until BR.empty()
// |b| = max dimension of box b

22 if (|E[bN ]| ≤ ε) ∨ (|bN | ≤ εN ) then
23 L[bN ] = L[bN ] + E[bN ]·Prob(d)

24 else
// branch on nondeterministic param.

25 BmN = branch(bN )
// populate new grid

26 for b ∈ BmN do
27 E[b] = E[bN ] // enclosures
28 L[b] = L[bN ]
29 PR[b] = BmR // partition

// bN was split, so delete
30 L.remove(bN )
31 BmR .clear(); E.remove(bN ); PR.remove(bN )
32 until BN .empty()
33 BN = BmN ; BmN .clear()
34 until E.empty()

// bring forward the refined grid
35 BN = L.keys()
36 until D.empty()

// compensate for unbounded RVs
37 for b ∈ BN do L[b] = L[b] + [0, c · ε]
38 return L

Algorithm 2: Function eval(ψ, d, bR, bN )

Input : ψ: k-step reachability formula
d, bR, bN : parameter boxes

Output: goal never/always/sometimes reachable from
bR × bN

1 δ = “min dimension of box bR” · η
2 b = bR × bN
3 if ψ(δ, d, b) = unsat then // δ-complete decision proc.
4 return unsat
5 if ψc(δ, d, b) = unsat then // δ-complete decision proc.
6 return sat
7 return undet // ψ and ψc both δ-sat

Reaction time (s)
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Figure 1: Car deceleration model. Probability enclosure (vs.
reaction time) that the car stops within 300m. The colored
dots are confidence intervals bounds.

between the batteries is an important planning problem.
We consider a system model with two batteries introduced

in (Fox, Long, and Magazzeni 2012) and modeled as a three-
mode hybrid system (see Fig. 3).

Initially, battery one is used for some time t1 and the sec-
ond battery remains unused. After that the first battery starts
recovering and battery two is used for t2. Then the second
battery is recovering and the first one is used. Then mode
2 and 3 alternate. When the battery is used its dynamics is
defined by the system of differential equations:

δ′(t) =
i(t)

c
γ′(t) = −i(t)

where γ is the total charge of the battery, δ is the distance
between the available-charge well and bound-charge well,
c = 0.166 is the fraction of the charge in the available-
charge well and i is the continuous load. When the battery is
recovering its dynamics is governed by the system:

δ′(t) = −δ(t)k γ′(t) = 0

where k = 0.122 is the conductance of a “valve” between
the bound-charge well and the available-charge well. The
load applied to the battery in each mode is represented by
a differential equation i′(t) = i(t) with initial condition
i(0) = 0.18 in every mode. The condition for the battery
to be “dead” (empty) is γ ≤ (1− c)δ.
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Reaction time (s)
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Figure 2: Car deceleration model. Probability enclosure
(vs. reaction time) that the car stops inside the range
[300, 310]m. The colored dots are confidence intervals
bounds.

 

mode 1 

t=t1; 

B1 is used 
B2 is full 

 

𝛾’ = 5;  𝛿’ = 0;  𝑖’ = 0.18;  𝑡 = 0; 

𝑡 ≥ 𝑡1; 

B1 is used 
B2 is full 

 

mode 3 

t=t1; 

B1 is used 
B2 is full 

 

𝛾’ = 𝛾;  𝛿’ = 𝛿;  𝑖’ = 0.18;  𝑡 = 0; 

𝑡 ≥ 𝑡3; 

B1 is used 
B2 recovers 

 

mode 2 

t=t1; 

B1 is used 
B2 is full 

 

𝛾’ = 𝛾;  𝛿’ = 𝛿;  𝑖’ = 0.18;  𝑡 = 0; 

𝑡 ≥ 𝑡2; 

B1 recovers 
B2 is used 

 

Figure 3: A hybrid model of the two-battery system

We assume that the time for which each battery is used
is defined over the interval [0.5, 1.5]. We are interested in
synthesizing a plan of length 4 (values of t1, t2, t3, t4) ac-
cording to which the batteries will service the load for at
least t = 5 before either of them dies. For this experiment
we used εN = 0.01 (ε can be ignored as the model features
nondeterministic parameters only). Our algorithm explored
2,385 plans and found 63 of them such that for all the val-
ues in the obtained ranges neither battery dies within 5 sec-
onds. For example, one of the plans is t1 ∈ [1.25, 1.375],
t2 ∈ [1.25, 1.375], t3 ∈ [0.75, 0.875], t4 ∈ [0.875, 1]. The
computation took 133 min. on a 2.9GHz, 32-core system.

6 Related Work
Recently, the planning community has been quite active
on hybrid domains, although without uncertain parameters,
and considering continuous linear dynamics only (Shin and
Davis 2005; Coles and Coles 2014; Coles et al. 2012) or dis-
cretizing nonlinearities (Della Penna et al. 2009). In (Bogo-
molov et al. 2014; 2015) the authors map PDDL+ (Fox and
Long 2006) domains to (linear) hybrid automata, and then
utilize the SpaceEx model checker (Frehse et al. 2011). The
paper (Bryce et al. 2015) focuses on nonlinear PDDL+ do-
mains and encode them as reachability problems which are
solved by the δ-complete decision procedure dReal (Gao,
Kong, and Clarke 2013). With respect to probabilistic plan-
ning, (Younes et al. 2005) introduced a probabilistic version
of PDDL, albeit it focuses on discrete-state systems only.
Also, efficient value iteration algorithms for Markov Deci-
sion Processes with imprecise probabilities have been pre-
sented in (Delgado et al. 2009).

For an overview of recent progress on SMT-based veri-
fication of (non-probabilistic) hybrid systems, see (Cimatti,

Mover, and Tonetta 2012). An algorithm for deciding safety
of robust (non-probabilistic) hybrid systems has been pre-
sented in (Ratschan 2014). SiSAT (Fränzle, Teige, and Eg-
gers 2010) solves probabilistic bounded reachability us-
ing SMT, but it does not currently support continuous ran-
dom parameters, and nondeterminism is solved by Monte
Carlo simulation, so the approach can only provide statisti-
cal guarantees (Ellen, Gerwinn, and Fränzle 2015). In (En-
szer and Stadtherr 2010) the authors present a technique
for computing p-boxes for ODEs, but for finite-support ran-
dom parameters and without giving theoretical guarantees.
UPPAAL SMC (David et al. 2015) handles dynamic net-
works of stochastic hybrid automata, but it utilizes Monte
Carlo simulation for nonlinear models. The PRISM model
checker (Kwiatkowska, Norman, and Parker 2011) is limited
to probabilistic timed automata. ProHVer computes an up-
per bound for the maximal reachability probability (Zhang
et al. 2010), but handles continuous random parameters via
discrete overapproximation (Fränzle et al. 2011). FAUST2

(Soudjani, Gevaerts, and Abate 2015) utilizes abstraction to
verify nondeterministic continuous-state, but discrete-time,
Markov models.

7 Conclusions
We have presented an SMT-based approach for comput-
ing bounded reachability probability in uncertain hybrid au-
tomata. Uncertainty is modeled by parameters that can be
random (continuous/discrete) or continuous nondeterminis-
tic. We do not pose any restriction on the model dynamics,
and our approach can be applied to nonlinear hybrid do-
mains. Our technique computes enclosures (i.e., intervals)
that are guaranteed to contain the reachability probabilities.
Furthermore, we show that in some cases we can compute
arbitrarily small enclosures. We have applied our technique
to two examples of hybrid domains, and validated the results
by Monte Carlo simulation. The experiments show that our
technique is usable in practice, even for complex dynamics
(e.g., nonlinear differential equations). We have also showed
that our algorithm can be used for synthesizing plans that are
formally guaranteed to reach their goal. In the future we plan
to generalize our technique to hybrid models featuring state-
dependent probabilistic jumps and continuous probabilistic
dynamics (stochastic differential equations).
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