The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Declarative Learning Based Programming: Technical Report WS-16-07

On Declarative Modeling of Structured Pattern Mining

Tias Guns, Sergey Paramonov
KU Leuven, Belgium
{first.lastname @cs.kuleuven.be }

Abstract

Since the seminal work on frequent itemset mining, there has
been considerable effort on mining more structured patterns
such as sequences or graphs. Additionally, the field of con-
straint programming has been linked to the field of pattern
mining resulting in a more general and declarative constraint-
based itemset mining framework. As a result, a number of re-
cent papers have proposed to extend the declarative approach
to structured pattern mining problems.

Because the formalism and the solving mechanisms can be
vastly different in specialised algorithm and declarative ap-
proaches, assessing the benefits and the drawbacks of each
approach can be difficult. In this paper, we introduce a frame-
work that formally defines the core components of itemset,
sequence and graph mining tasks, and we use it to compare
existing specialised algorithms to their declarative counter-
part. This analysis allows us to draw clear connections be-
tween the two approaches and provide insights on how to
overcome current limitations in declarative structured min-
ing.

Introduction

Pattern mining is a well-studied subfield of data mining,
where the goal is to find patterns in data. Different types of
patterns have been investigated, such as itemsets (e.g. a set
of products that customers bought), sequences (e.g. phone
call logs) and graphs (e.g. molecules or designs).

Depending on the application, the user might have a cer-
tain view on which patterns are interesting. In constraint-
based mining the user expresses this interestingness through
constraints on the patterns. The best-known constraint is the
minimum-frequency constraint, which indicates that all pat-
terns that appear frequently in the data (limited by a thresh-
old) are potentially interesting.

A wide range of constraints have been proposed in the
literature, often together with specialised algorithms. How-
ever, combining constraints has typically required modifi-
cations to the original algorithms. Declarative constraint-
based methods offer a promising alternative as they
can handle complex constraints natively. Indeed, many
works (De Raedt, Guns, and Nijssen, 2008a; Guns, Nijssen,

Copyright (© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

396

Benjamin Negrevergne
Inria Rennes, France
{first.lastname @inria.fr}

and De Raedt, 2011; Negrevergne and Guns, 2015) have
shown the benefits of constraint-based itemset mining.

Itemset mining however is a special case, as checking
whether a pattern matches a transaction (a data entry) sim-
ply consists of checking whether the pattern is a substruc-
ture in the transaction. For example, it is easy to verify that
{a,c¢} C {a,b,c,d} and {a,c} € {a,b,d}. For sequence
mining checking this is not so easy: let (a, ¢) be a sequence
pattern, then it matches (x, a, z,y, ¢, a, z, ¢) in three differ-
ent ways, at positions (2, 5), (2, 8), (6, 8). Hence, one should
search for whether there exists at least one embedding, in-
stead of simply checking a logical relation. For graphs this
is further complicated as this amounts to a subgraph isomor-
phism check, which is an NP-complete problem.

To better understand and analyse the situation, we define
the key components of a structured mining problem. We
extend the theory of Mannila and Toivonen (Mannila and
Toivonen, 1997) on constraint-based mining with more fine-
grained operators. More explicitly, we define the concept of
matching operator, canonicity operator and extension oper-
ator.

Using these principles, we analyze how existing state-of-
the-art algorithms implement these operators, and how they
can be formulated for use in declarative systems. This deeper
understanding of both the theory and the relation to practice
can pave the way to more general and declarative structured
pattern mining systems.

Operators of pattern mining

In the seminal paper of Mannila and Toivonen (Mannila
and Toivonen, 1997) pattern mining is presented as the
task of finding Th(L,r,q), given a language of patterns
L, a database r and a selection predicate ¢, such that
Th(L,r,q) = {¢ € L]|q(r,¢)is true}. The paper draws
the link to the level-wise algorithm and how it can be instan-
tiated to tasks such as association rule mining and episode
mining.

The formalism fits a declarative solving approach in that
q is in fact a constraint specification. However, L is left un-
specified and may be non-trivial and ¢ may use more expres-
sive constructs than solvers support, e.g. beyond first order
logic.

To better investigate the characteristics of different struc-
ture mining problems, we present a more fine-grained frame-

Graph G
D B
d T® C

Graph G Isomorphism mapping i

D 1
1O—@= 2
c A 2 3
3 4
c T@ b 4 1
Figure 1: Example of two isomorphic graphs, when two syntacti-
cally different graphs are semantically equivalent

work with an explicit pattern type and different operators.
The two prime operators are the generating operator, corre-
sponding to £, and the constraining operator, corresponding
to q.

Data, patterns and operators

Data Pattern mining is done in the context of a dataset
from which we can derive which patterns are interesting and
which ones are not. We assume a dataset is a set of trans-
actions (tid, instance) where tid is the transaction identifier
and instance is an observation (e.g. a single purchase).

Pattern A pattern is an object of a certain type with a
specific representation. For example, an itemset such as
{bread, cheese} represented as a set of items or as a bitvec-
tor; or a graph pattern represented as a set of nodes and
edges.

Given a pattern p, the length operator length, (p) returns
the length of a pattern of type ¢, for example the number of
items in an itemset or number of edges of a graph.

Generating operator G, is the operator that generates all
possible patterns of type . We simply write G if the pattern
type is irrelevant or clear from the context. The generating
operator will ensure only valid patterns are generated. For
example, in a vector representation of an itemset every item
must appear only once, and a graph pattern has to be con-
nected.

We also need to ensure that every pattern is generated only
once. For example, Figure 1 shows two graphs that are syn-
tactically different (different labels for different identifiers),
however they are isomorphic and semantically represent the
same graph. For this, we introduce the canonicity opera-
tor %. It maps a pattern p to a canonical representation of
the pattern % (p). This canonical representation will be the
same (syntactically) for any two patterns that are semanti-
cally equal. The generating operator should only generate
one pattern from the class of patterns with the same canon-
ical representation, for example, the canonical pattern for
which X(p) = p.

Constraining operator (. is the operator checking valid-
ity of a pattern p on a set of constraints c. Each constraint can
involve constants such as thresholds or datasets. C.(p) = T
iff p satisfies all constraints in c.

397

The most fundamental constraint is the minimum fre-
quency constraint. To define this constraint we need the
matching operator M. We use this operator to count the
number of transactions (instances) that the pattern matches
with in the dataset. The relation C is the relation defining
structure specificity, that is, when an object of a certain type
is a sub-structure (e.g. subset, subgraph, ...) of another object
of the same type.

Matching operator #. This operator maps a pattern p
and a data point g of the same type, to a set of functions h
over p for which h(p) is a sub-pattern of g: Mc(p, g) = {h :
h(p) C g}. One h(p) is sometimes called an embedding or
an occurence of p in g. For example for graphs, C is the sub-
graph relation and h is an isomorphism between the nodes,
see Figure 1.

The goal of the matching operator is to enumerate all
possible embeddings/occurrences h. Often, the operator is
used just to detect whether an embedding exists, that is:
Mc(p, g) # 0. An important concept is the cover of a pat-
tern in a dataset, that is, the set of all transaction identifiers
that it matches:

cover(p, D) = {(tid,g) € D | M(p,g) # 0} (1)

Pattern mining formalization

Using these operators, we can define, in line with Mannila
and Toivonen (Mannila and Toivonen, 1997), the generic
constraint-based pattern mining problem as that of gener-
ating all canonical solutions that satisfy the constraints, that
is:

A={peg|x(p)=pAcp)}

Standard frequent pattern mining consists of enumerat-
ing all patterns that match at least a minimum number 6 of
transactions:

A={peG|K(p)=p A |cover(p,D)| > 0}

Pattern-extension formalization

While the above formalization is correct, it hides the fact
that in all efficient mining algorithms, the pattern generation
process grows new patterns by extending a smaller pattern.
The main benefit is that one can then identify the frequent ex-
tensions, extensions leading to a frequent pattern, and avoid
generating and testing patterns that will be infrequent.

The extension of a pattern of size [into a pattern of size
I + 1 is made explicit through an extension operator W.
The operator W is such that p W e = p’ with length(p’) =
length(p) + 1 and p’ O p.

We can now refine the generating operator using layers
of patterns of a particular length. We introduce a parame-
terized generating operator G', where [is the pattern size
such that for each p in G' it holds that length(p) = | and
p € G. We can inductively define G' with g0 = {0} as
follows:

G ={p |peg' Np=pwen K(p) =1}

Frequent extensions Before defining frequent extensions
we first define the possible extension of a single transaction,
transaction extensions TE(p, g) of a pattern p and a trans-
action (tid, g) € D, as follows:

TE(p,g) ={e|h e M=(p,g) N h(p)Wel g} (2

We can then derive the set of frequent extensions FE as
the set of all transaction extensions that are frequent wrt to a
constant 6:

FE(p, D,0) = {e | |{(tid,g) € Dle € TE(p, 9)}| > 9}(3)
We can now inductively define G! with frequent exten-
sions as follows:

G ={p |pe G A ecFEp, D, A
Pmpue K@) =p) @

This is the generation operator that is used in all state-of-the-
art pattern mining algorithms. Also, when using declarative
systems, we want to use the concept of frequent extensions
as it is a key factor to scalability.

Pattern types

We now discuss for itemset, sequence and graph mining how
these operators are typically implemented; both in state-of-
the-art methods and in existing declarative methods for that
pattern type.

Itemsets

An itemset pattern is simply a set of items, where we as-
sume that the set of possible items Z is known beforehand.
The generating operator enumerates all 27! subsets of Z,
while the relation C of the matching operator is simply the
subset relation (and the mapping h is the identity mapping
and is unique for each p and g).

Machine representation In highly efficient algorithms
such as LCM (Uno, Kiyomi, and Arimura, 2005) and
Eclat (Zaki and Gouda, 2003), the itemset pattern has a ma-
chine representation of either a Boolean vector of size |Z]|,
or a sparse vector.

The generating operator has to avoid generating the
same machine representation twice. Algorithms typically
employ a pattern extension approach and assume an or-
der r : T — N over the items. By only extending pat-
terns with items that have a higher order than the high-
est ordered item in the pattern, one can avoid generating
the same pattern twice. The generation operator is hence:
Gl ={pUe|pe g AeeT A r(e)>max;e,r(i)}.

Furthermore, highly efficient algorithms use database
projection to obtain the frequent extensions. Before extend-
ing a pattern, first all transactions that do not include the
pattern are projected away. Then, the frequency of all re-
maining items (higher in the order than the current highest
item) are counted and only the frequent ones are considered.
More formally, the transaction extensions TE(p, g) of pat-
tern p in transaction g are: TE(p,g) = {e|e € g A r(e) >
max;ep, A pUe C g} The set of frequent extensions and

398

generator operator are given in Eq. 3 and 4 and use the TE
defined here. This can be done with a single scan over the
database.

Declarative solvers A solver is declarative, if its input is a
set of constraints and its output is the satisfying solution(s).
We consider several types of solvers. Constraint program-
ming has been used to model and solve constraint-based
itemset mining. Also ASP (Jarvisalo, 2011), SAT (Jabbour,
Sais, and Salhi, 2015) and compilation to BDDs (Cam-
bazard, Hadzic, and O’Sullivan, 2010) has been used. Most
work has happened using CP (De Raedt, Guns, and Nijssen,
2008b; Guns, Nijssen, and De Raedt, 2011), so we detail that
formulation.

The CP representation of a pattern is a Boolean vector
of size |Z|. The generating operator is the search strategy
employed by the solver, which is depth-first search over the
Boolean variables. This implicitly imposes an order on the
variables and so no two identical patterns will be generated.

The cover(p, D) set is modeled explicitly as a Boolean
vector of size |D| and whether a transaction is cov-
ered is expressed for each transaction separately: tid €
cover(p, D) <« I C trans(tid) where trans(tid) is as-
sumed to return the transaction with identifier #id. Tak-
ing into account that [is represented as a Boolean vector,
this constraint can be written as a reified linear sum over
Booleans (De Raedt, Guns, and Nijssen, 2008b).

To achieve the same effect as database projection, the gen-
erating operator is not changed. Instead, the frequent exten-
sion property is expressed as an additional constraint and
added to the constraining operator. The constraint states for
each item individually that the item has to be frequent when
projecting away transactions that are not covered: Vi € 7 :
[{tid € cover(p, D) A i € trans(tid)}| > 0. Indeed, every
item in a frequent pattern will be frequent. However, during
search this constraint will remove items that are infrequent
given a partial solution, and hence those items will not be
considered in the search, which corresponds to the generat-
ing operator with frequent extensions.

Because all operators including the frequent extension
property can be expressed as regular constraints, declara-
tive constraint based methods are very suited for this type
of problem: standard search can be used and everything else
is expressed as constraints.

Sequence mining

In sequence mining, a pattern is a sequence of symbols
taken from an alphabet Y. The matching operator is such
that M (p, g) = {h : h(p) C g¢}. For sequences, h is called
an embedding and it is a tuple of integer that maps the sym-
bols at certain positions in a pattern to different positions.
For example, embedding h = (2,4) = (1 — 2,2 — 4)
maps sequence (a,b) to sequence (-, a, -, b) with the sym-
bols at positions 1 and 3 undefined. The inclusion relation
C verifies that the defined symbols of the source match the
symbols at that position in the target pattern:

s Pm)
, gn) be two sequences with sizes m < n.

Definition 1 (Sequence inclusion) Let p = (py,...
and g = (g1, .. .
pCgeViel,...om:p, # - —p;i =g

The inclusion relation is a key part of the matching oper-
ator. For example, one can verify given h = (2,4) that
h({a,b)) E (x,a,y,b,b) and so h is one embedding of the

pattern in the transaction. Also, Mt ({a,b), (z,a,y,b,b)) =

{(2,4),(2,5)}.

Machine representation Specialised algorithms repre-
sent the sequence as an ordered list of symbols, similar to
the above formulation.

The use of frequent pattern extensions is very natural
given all possible embeddings. However, in order to be more
efficient the PrefixSpan (Pei et al., 2001) algorithm includes
the following observation: one must not consider all possi-
ble embeddings h, instead one should only verify the *earli-
est’ embedding, that is, the embedding h such that the last
position max;ep, [is minimal. In sequence mining, all sym-
bols after this earliest last position are possible extensions.
More formally, the transaction extension operator TE(p, g)
is: TE(p, g) = {g; | ¢ > min{max(h)|h € pMg}}. It can
be verified and collected with a single scan over the transac-
tion, in contrast to enumerating all embeddings.

Declarative solvers In many declarative constraint
solvers, a finite-domain fixed-length representation of the
pattern is needed. In two related constraint programming
formulations of sequence mining (Negrevergne and Guns,
2015; Kemmar et al., 2015), sequence patterns are defined
as follows: let £ be the length of the largest sequence (e.g.
largest in the data), a sequence pattern is then modeled
as an array of k symbols including a distinct 'no symbol’
symbol e. With this representation, the sequence (a, b, c) is
represented as [a, b, ¢, €, €] for k = 5.

The size of a pattern sequence is simply the number of
symbols that are not £. So the size of [a, b, ¢, £, €] is 3.

The canonical form of a sequence pattern is such that e
symbols may only appear at the very end of the pattern, i.e.
X ([a,€,b,e]) = [a, b, e, €].

The main challenge is in implementing the matching op-
erator used in the cover relation. In logical form, M (p, g) #
() conforms to 3h : h(p) C g. However, the number of pos-
sible embeddings h is exponential, so this constraint can not
efficiently be expressed in propositional logic. Three alter-
natives have been proposed in the constraint programming
literature: in (Métivier, Loudni, and Charnois, 2013) the pro-
posal is to encode each transaction as a (non-) deterministic
finite automaton and use the automaton constraint to verify
that an embedding exists. In (Negrevergne and Guns, 2015)
one proposal is to expose for each transaction the embed-
ding h as a separate set of variables, and to do a separate ex-
istential search after all pattern variables are assigned. Also,
in (Negrevergne and Guns, 2015) it is proposed to hide the
matching operator in a global constraint. Furthermore, this
global constraint implements the same linear-scan technique
as pioneered by PrefixSpan, and can also export the transac-
tion extensions as explained earlier.

399

These choices have trade-offs: the DFA approach is a pure
constraint formulation and most generic but does not sup-
port frequent extensions and is least scalable; the existential
search approach requires non-trivial changes to the solver
search to avoid side-effects; and the global constraint is most
scalable but constraining the matching operator (max-gap,
max-span) would require re-implementing the global con-
straint.

Graphs

In graph mining, a pattern is a set of labeled edges, i.e. a
graph. Each labeled edge is a tuple (v1,ve, a1, a2, a) where
v1, V9 are vertices of the edge, a1, ao their labels and a is the
label of the edge itself. The length is the number of edges in
a pattern, i.e. the size of the graphs in Figure 1 is four. The
generating operator generates all possible subgraphs of the
graphs in D. The upper bound on the number of edges is the
length of the largest graph in D.

For graphs, the embedding / is a graph isomorphism, that
is, a label preserving bijection of the vertices, and the inclu-
sion relation C is the subgraph relation. Then, for a pattern
p and a graph g the matching operator M (p, g) is equal to
the set of all subgraph isomorphisms from p to g.

Machine representation Specialised algorithms such as
gSpan (Yan and Han, 2002) and Gaston (Nijssen and Kok,
2005) represent a graph as a sequence of labeled edges
(a1, az,a) and use a pattern extension approach.

The generating operator must ensure that only con-
nected graphs and no two isomorphic graphs are generated.
Doing an isomorphism check between the generated pattern
and all previously generated patterns would be overly ex-
pensive. Instead, a canonical form of a graph can be used.
gSpan (Yan and Han, 2002) proposes the use of a DF'S code
to verify canonicity: a graph can be traversed using depth-
first search in multiple ways and each traversal imposes a
linear order over the edges. Together with an order over the
labels, one can search for the traversal that leads to the mini-
mal DFS code. Isomorphic graphs can be proven to have the
same minimal DFS code. Hence, if for the current pattern
there exists a DFS code smaller than the DFS code induced
by its sequence of edges representation, we know that the
current pattern is not canonical and should be discarded.

Frequent extensions Checking subgraph isomorphism
between a pattern and each transaction is very expensive,
hence it pays to consider only the frequent extensions. To
collect the frequent extensions, one should not just check
that an embedding exists (M (p, g) # () but rather to enu-
merate each all embeddings and to collect the possible ex-
tensions ((a1,as,a) tuples) of these embeddings (Eq. 2).
Some methods store the possible embeddings per transaction
(occurrence lists), this is a memory/computation trade-off.

Declarative solvers Graph mining with declarative
solvers has not been investigated much, with the exception
of the use of inductive logic programming where there is
a whole body of work on learning rules (patterns) from

Algorithm 1: Naive graph mining solver
Specify: M, X, C, W
Input : D Output: ps
ps < 0;
forl €0...ln. do
G' + generate(ps, M, X, ¥,D) ©>Eq.4for g € G
do
| if C(g) then ps < ps U {g};
end
end

relational data (King, Srinivasan, and Dehaspe, 2001;
Kramer, De Raedt, and Helma, 2001; Muggleton, 1995).

Looking at constraint-based solvers, we only know of re-
cent work (Paramonov et al., 2015) where an FO(.) system
is used. The generating operator is simplified by assuming
a template pattern that the pattern needs to be a subgraph
of; this template can be inferred from the data and typically
domain-specific. The matching operator is implemented as a
separate call to the FO(.) solver to check for each transaction
whether it is subgraph isomorphic to the pattern. Canonicity
is verified by checking whether there is a lower ordering for
this pattern in the template.

Compared to sequences, the main challenge in graph
mining is not only the matching operator/subgraph isomor-
phism, but also to verify canonicity. The main problem is
that the whole graph mining process can not be expressed in
first order logic. We see three possible ways in which declar-
ative solvers can be used for graph mining nonetheless:

The first is to write the function of each operator as a sepa-
rate declarative program (e.g. subgraph isomorphism check,
canonicity check). Then, we can devise an algorithm that
calls these operators/programs as needed. An example is
given in Algorithm 1. This is close in spirit to what was
done recently for graph and query mining (Paramonov et al.,
2015).

Another approach is to use a higher order logic, e.g.,
matching of a pattern p in a dataset D is a second order con-
struction — Vtid : tid € cover(p,D) <> Jh : h(p) — ¢
(simplified statement). That might be executed in an SMT
solver that would be able to solve subproblems such as find-
ing constrained functions (second order existential quanti-
fiers) and propagate such constraints.

Finally, another possibility is to hide the higher order
complexity in global constraints in CP. Once can imple-
ment the DFS code computation, and the isomorphism check
(+frequent extension enumeration) as separate global con-
straints. Together with the ‘graph as sequence of labeled
edges’ representation, this would be close in spirit to the
sequence mining in CP approach (Negrevergne and Guns,
2015).

Constraints & dominance relations

We discriminate between constraints added to the constrain-
ing operator and constraints that modify the matching opera-
tor. We also consider preferences over the set of all solutions

400

through the dominance operator.

Constraining operator. These constraints apply to each
individual pattern. Examples include minimum/maximum
frequency, minimum/maximum pattern length, inclusion/ex-
clusion of pattern elements, weighted sums over pattern el-
ements or transactions, etc. Sequences can furthermore be
subject to regular expression constraints (Garofalakis, Ras-
togi, and Shim, 2002). Graphs can have minimum/maximum
degree constraints or constraints on the topology such as
having cycles.

Matching operator. Some constraints change the defini-
tion of what a valid embedding h is. This is not applica-
ble to itemsets (h is unique). For sequences, the best ex-
ample is a constraint on the maximum gap in the match-
ing between two subsequent symbols. For example, (a,b)
is included in (a, ¢, b) with a maximum gap of 1 but not in
(a,c,c,b) where h = (1,4) has a gap of 2. For graphs, one
can consider approximate matchings, where node-edge in-
sertions and deletions are allowed (Tian et al., 2007). Also
applicable is the case where the frequency is defined by total
number of occurrences across all transactions: freq(p, D) =
Z(tid,g)eD |M (p, g)]-

Dominance operator. Some constraints are over all pairs
of possible solutions, e.g. that there exists no other valid
pattern such that... (Négrevergne et al., 2013a). Constraints
that fall in this category are maximality (no super pattern is
also frequent), closedness (no super pattern with same fre-
quency) and relevant subgroup discovery (no pattern with
higher frequency on one part of the data and lower on the
other). In general, these constraints impose a preference (a
preorder) over the solutions.

Machine representation If possible, it is typically better
to push constraints into the generation operator so that pat-
terns that do not satisfy the constraints aren’t generated in
the first place. This is the case for frequency and frequent
extensions for example. Another example is the maximum
length constraint which can be pushed in the generating op-

erator G'*1 as follows:

{P'lp € g’ Alength(p) < sAp =pweA K(p) =p'}

This approach is correct for all anti-monotonic constraints
¢, that is, if for any two patterns p and p’ s.t. p C p’ it follows
that ¢(p) — <(p').

Other constraints can not be pushed in the generating op-
erator as extensions in G* not satisfying them may be still be
in GiT for x > 0.

Some dominance constraints can be formulated to be a
part of the constraining operator, for example closedness and
maximality for itemsets (Uno, Kiyomi, and Arimura, 2005).
However, in general they can not and algorithms maintain a
repository of previously found solutions and check each new
solution to the ones in the repository.

Declarative solvers The constraining operator naturally
fits declarative solvers. Pushing constraints in the generat-
ing operator is typically not possible, but the propagation
mechanisms of the constraint-based solvers might have the
same effect (e.g. for max size this is the case).

Generic methods for adding constraints to the matching
operator is an open problem when using declarative solvers,
indeed, the encoding of the matching operator for sequences
and graphs is challenging in itself (see previous section).

The dominance operator on the other hand has a natural
solution method by solving a chain of satisfaction problems
(e.g. a dynamic CSP (Rojas et al., 2014)). A generic frame-
work for dominance relations and itemset mining using CP
exists (Négrevergne et al., 2013a).

Related works

Data Mining Template Library (DMTL) (Al Hasan et al.,
2005) has been proposed as a unifying framework for min-
ing tasks. It aims to define basic building blocks (in C++)
that can be combined to build any mining algorithm. Gaston
(Nijssen and Kok, 2005) is a pattern mining algorithm de-
signed for both sequences and graphs in the presence of only
a coverage constraint. Generic constraint-based imperative
methods have been studied as well (Soulet and Crmilleux,
2005; Bonchi et al., 2009).

Building on more theoretical grounds, (Boley et al., 2010;
Arimura and Uno, 2009; Negrevergne et al., 2013b) pro-
posed to formalise the problem of mining patterns as the
problem of mining closed sets in a set system. This generic
framework can be used to solve a variety of mining tasks
ranging from itemset mining problems to simple instances
of graphs under constraints.

De Raedt et al. (De Raedt, Guns, and Nijssen, 2008a)
have proposed constraint programming as a unifying frame-
work for itemset mining. This has been extended to struc-
tured mining tasks (Negrevergne and Guns, 2015; Kemmar
et al., 2015; Métivier, Loudni, and Charnois, 2013) as well
as dominance relations (Négrevergne et al., 2013a).

Conclusions

We investigated the key components of structured pattern
mining tasks through a formal framework. Using that, we
reviewed how specialised methods implement these opera-
tors and how they can be formulated in declarative constraint
solvers.

We showed how itemset mining fits a declarative ap-
proach especially well, as its matching and canonical op-
erator are trivial to express. This is not the case for sequence
and graph mining, and we discussed possible solutions to
this.

In the future, we expect higher-order languages and hy-
bridisations between solvers and specialised methods/oper-
ators to further boost declarative pattern mining. How to
maintain generality in hybrid approaches is an open ques-
tion though.

References

Al Hasan, M.; Chaoji, V.; Salem, S.; Parimi, N.; and Zaki,
M. 2005. Dmtl: A generic data mining template library.
Library-Centric Software Design (LCSD) 53.

Arimura, H., and Uno, T. 2009. Polynomial-delay and
polynomial-space algorithms for mining closed sequences,

401

graphs, and pictures in accessible set systems. In SDM,

1088-1099. SIAM.

Boley, M.; Horvéth, T.; Poigné, A.; and Wrobel, S. 2010.
Listing closed sets of strongly accessible set systems with
applications to data mining. Theoretical Computer Science

411(3):691-700.

Bonchi, F.; Giannotti, F.; Lucchese, C.; Orlando, S.; Perego,
R.; and Trasarti, R. 2009. A constraint-based querying sys-
tem for exploratory pattern discovery. Inf. Syst. 34(1):3-27.

Cambazard, H.; Hadzic, T.; and O’Sullivan, B. 2010.
Knowledge compilation for itemset mining. In /9th ECAI,
volume 215 of Frontiers in Artificial Intelligence and Appli-
cations, 1109-1110. IOS Press.

De Raedt, L.; Guns, T.; and Nijssen, S. 2008a. Constraint
programming for itemset mining. In /4th SIGKDD interna-
tional conference on Knowledge discovery and data mining,
204-212. ACM.

De Raedt, L.; Guns, T.; and Nijssen, S. 2008b. Con-
straint programming for itemset mining. In Proceedings
of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-08), 204—
212. ACM.

Garofalakis, M.; Rastogi, R.; and Shim, K. 2002. Min-
ing sequential patterns with regular expression constraints.
Knowledge and Data Engineering, IEEE Transactions on
14(3):530-552.

Guns, T.; Nijssen, S.; and De Raedt, L. 2011. Itemset min-
ing: A constraint programming perspective. Artificial Intel-
ligence 175(12-13):1951-1983.

Jabbour, S.; Sais, L.; and Salhi, Y. 2015. Decomposition
based sat encodings for itemset mining problems. In Ad-
vances in Knowledge Discovery and Data Mining, volume

9078 of Lecture Notes in Computer Science. Springer Inter-
national Publishing. 662—-674.

Jarvisalo, M. 2011. Ttemset mining as a challenge applica-
tion for answer set enumeration. In LPNMR, volume 6645
of Lecture Notes in Computer Science, 304-310. Springer.

Kemmar, A.; Loudni, S.; Lebbah, Y.; Boizumault, P.; and
Charnois, T. 2015. Prefix-projection global constraint for
sequential pattern mining. arXiv preprint arXiv:1504.07877.

King, R.; Srinivasan, A.; and Dehaspe, L. 2001. Warmr: a
data mining tool for chemical data. Journal of Computer-
Aided Molecular Design 15(2):173-181.

Kramer, S.; De Raedt, L.; and Helma, C. 2001. Molecular
feature mining in HIV data. In Proceedings of the 7th ACM
SIGKDD International Conference on Knowledge Discov-
ery and Data Mining., 136-143.

Mannila, H., and Toivonen, H. 1997. Levelwise search and
borders of theories in knowledge discovery. Data Mining
and Knowledge Discovery 1(3):241-258.

Métivier, J.-P.; Loudni, S.; and Charnois, T. 2013.
A constraint programming approach for mining sequen-
tial patterns in a sequence database. arXiv preprint
arXiv:1311.6907.

Muggleton, S. 1995. Inverse entailment and progol. New
Generation Comput. 13(3&4):245-286.

Negrevergne, B., and Guns, T. 2015. Constraint-based se-
quence mining using constraint programming. In Integra-
tion of Al and OR Techniques in Constraint Programming.
Springer. 288-305.

Négrevergne, B.; Dries, A.; Guns, T.; and Nijssen, S. 2013a.
Dominance programming for itemset mining. In 2013 IEEE
13th International Conference on Data Mining, Dallas, TX,
USA, December 7-10, 2013, 557-566.

Negrevergne, B.; Termier, A.; Rousset, M.-C.; and Mehaut,
J.-F. 2013b. ParaMiner: a Generic Pattern Mining Algo-
rithm for Multi-Core Architectures. Journal of Data Mining
and Knowledge Discovery (DMKD). Advance online publi-
cation. doi 10.1007/s10618-013-0313-2.

Nijssen, S., and Kok, J. N. 2005. The gaston tool for fre-
quent subgraph mining. Electr. Notes Theor. Comput. Sci.
127(1):77-87.

Paramonov, S.; van Leeuwen, M.; Denecker, M.; and De
Raedt, L. 2015. An exercise in declarative modeling for
relational query mining. In Inductive Logic Programming,
Kyoto, Japan, August 2015. Proceedings.

Pei, J.; Han, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.;
Dayal, U.; and Hsu, M. 2001. Prefixspan: Mining sequential
patterns by prefix-projected growth. In Proceedings of the
17th International Conference on Data Engineering, 215—
224. Washington, DC, USA: IEEE Computer Society.

Rojas, W. U.; Boizumault, P.; Loudni, S.; Crémilleux, B.;
and Lepailleur, A. 2014. Mining (soft-) skypatterns using
dynamic csp. In Integration of Al and OR Techniques in
Constraint Programming. Springer. 71-87.

Soulet, A., and Crmilleux, B. 2005. An efficient framework
for mining flexible constraints. In Ho, T.; Cheung, D.; and
Liu, H., eds., Advances in Knowledge Discovery and Data
Mining, volume 3518 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg. 661-671.

Tian, Y.; McEachin, R. C.; Santos, C.; States, D. J.; and Pa-
tel, J. M. 2007. SAGA: a subgraph matching tool for bio-
logical graphs. Bioinformatics 23(2):232-239.

Uno, T.; Kiyomi, M.; and Arimura, H. 2005. Lcm ver.3:
Collaboration of array, bitmap and prefix tree for frequent
itemset mining. In Ist International Workshop on Open
Source Data Mining: Frequent Pattern Mining Implemen-
tations, OSDM, 77-86.

Yan, X., and Han, J. 2002. gspan: Graph-based substruc-
ture pattern mining. In Proceedings of the 2002 IEEE In-
ternational Conference on Data Mining (ICDM 2002), 9-12
December 2002, Maebashi City, Japan, 721-724.

Zaki, M. J., and Gouda, K. 2003. Fast vertical mining using
Diffsets. In 9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining.

402

