
Learning Constraints and Optimization Criteria

Samuel Kolb
KU Leuven, Leuven, Belgium
samuel.kolb@cs.kuleuven.be

Abstract

While there exist several approaches in the constraint pro-
gramming community to learn a constraint theory, few of
them have considered the learning of constraint optimiza-
tion problems. To alleviate this situation, we introduce an
initial approach to learning first-order weighted MAX-SAT
theories. It employs inductive logic programming techniques
to learn a set of first-order clauses and then uses preference
learning techniques to learn the weights of the clauses. In or-
der to learn these weighted clauses, the clausal optimization
system uses examples of possible worlds and a set of pref-
erences that state which examples are preferred over other
ones. The technique is also empirically evaluated on a num-
ber of examples. These experiments show that the system is
capable of learning clauses and weights that accurately cap-
ture underlying models.

1 Introduction
An important class of declarative models is concerned with
(discrete) constrained optimization problems. These com-
bine constraint satisfaction problems with an optimization
function that specifies which solutions are optimal. While
these models are powerful and elegant, they are often also
hard to obtain, certainly for non-experts (Puget 2004). This
has motivated several researchers to investigate whether
such models can be learned.

Constraint learning is the task of discovering constraints
from data. This task has been addressed in constraint pro-
gramming (e.g. (Beldiceanu and Simonis 2012; Bessiere et
al. 2013)) and inductive logic programming (e.g. (De Raedt
and Dehaspe 1997)). Recent efforts (Lallouet et al. 2010)
have attempted to combine these two fields. Further-
more, (Campigotto, Passerini, and Battiti 2011) have learned
propositional weighted MAX-SAT theories from examples.

We use weighted first-order logical theories to represent
constrained optimization problems (as illustrated in exam-
ple 1). The weights capture the optimization function, and
(first-order) weighted MAX-SAT can be used to determine
the best solutions. Furthermore, we learn such models by
combining inductive logic programming (ILP) principles
(such as clausal discovery (De Raedt and Dehaspe 1997))
with preference learning. We use ILP to learn the clausal

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

theories from interpretations, and preference learning to de-
termine the weights. Therefore, users provide examples of
possible worlds and a set of preferences that specify which
examples are preferred over other ones. This setting extends
traditional constraint learning and ILP approaches with the
ability to learn soft constraints and integrates constraint sat-
isfaction and optimization. It also extends the proposi-
tional approach of (Campigotto, Passerini, and Battiti 2011)
as first-order theories are learned and preferences are used
rather than examples with target values. Preferences are use-
ful in situations where the score of an example is hard to
quantify (e.g. comparing songs or designs) and it is often
easier for humans to provide preferences over few examples
at a time than absolute scores.

Weighted first-order MAX-SAT problems relate to
Markov Logic networks (MLN), as MAP inference in MLNs
can be used to query for the most likely state. Therefore,
work in statistical relational learning (SRL) on learning the
structure of MLNs or other SRL models (Kok and Domin-
gos 2005) is also relevant. However, our work differs from
the SRL and MLN approaches in that one learns from pref-
erences rather than from examples.

This paper is organized as follows. Section 2 reviews
background and related work. We introduce the formalism
and the setting in Section 3, the algorithm and the clausal
optimization system in Section 4, and in Section 5 we re-
port on some experiments. Finally, Section 6 concludes this
paper.

2 Background
In this section we provide a brief overview of the important
concepts and relevant literature.

Clauses We use (function free) first-order clauses; which
we now introduce. An atom P (t1, t2, ..., tn) consists of a
predicate symbol P that is applied to n terms ti. Terms are
either constants or variables. In this paper predicates and
constants will be written in uppercase (John) and variables
in lowercase (x). A literal can be an atom a (positive lit-
eral) or a negated atom ¬a (negative literal). Clauses are
disjunctions of literals l1 ∨ l2 ∨ ... ∨ lk and are assumed to
be universally quantified. A clause can be expressed using a
body and a head head ← body . Hereby, positive literals are

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Declarative Learning Based Programming: Technical Report WS-16-07

403

grouped in the head and negative literals are grouped in the
body. Sometimes clauses are also written as sets of literals
{l1, l2, ..., lk}.

Atoms are grounded if they contain no variables. A Her-
brand interpretation is a set of ground atoms. All atoms in
the interpretation are assumed to be true and all other possi-
ble ground atoms are assumed to be false. I |= c is used to
denote that interpretation I satisfies the clause c.

Optimization The Boolean Satisfiability problem (SAT)
is the problem of determining whether a propositional for-
mula can be satisfied. Formulas can be rewritten into Con-
junctive Normal Form (CNF), which consists of a conjunc-
tion of clauses (disjunctions). An extension of this problem
is the Maximum Satisfiability Problem (MAX-SAT), which
is an optimization problem and attempts to maximize the
number of satisfied clauses. By assigning positive integer
weights to clauses and maximizing the sum of the weights of
satisfied clauses, one obtains the weighted MAX-SAT prob-
lem.

In related work (Campigotto, Passerini, and Battiti 2011)
weighted MAX-SAT problems are induced by learning
propositional clauses and weights using examples and ab-
solute scores. The representation we use is an extension
of weighted MAX-SAT to first-order logic. We also learn
this model using preferences over sets of examples (possible
worlds), rather than assigning target values to examples.

Constraint Learning The goal of constraint learning is to
automatically identify constraints in one or multiple exam-
ples. This task is difficult because the search space of con-
straints is typically very large and, unlike in typical machine
learning problems, there are usually only few examples to
learn from.

There are different approaches to accomplishing this task.
The problem of having little examples can be alleviated by
interactively generating data. Both the systems Conacq2
(Bessiere et al. 2007) en QuAcq (Bessiere et al. 2013) gener-
ate (partial) examples and query the user about their validity.

ModelSeeker (Beldiceanu and Simonis 2012) structures
the problem variables in different ways. A large catalog of
global constraints is used to find constraints that hold within
this structure. This approach allows for constraint learning
from a few examples.

As mentioned earlier, the research of (Lallouet et al. 2010)
uses ILP techniques to learn constraints. They explore the
search space of constraints in a bidirectional manner, pri-
marily using negative examples.

3 Problem Statement
We want to learn constraints and optimization criteria based
on positive examples and user preferences. Since our aim is
to simplify the process of generating formal representations,
any input should be reasonably easy for a user to provide.

In order to apply ILP techniques for constraint learning,
we will use first-order logical clauses as constraints.

Clause Learning Given a set of examples and a threshold
t, find maximally specific clauses that are satisfied by at
least t of the given examples.

Examples are Herbrand interpretations. They consist
of a set of constants, the domain, and all ground atoms
over these constants that are true. The learned clauses are
domain-independent hard or soft constraints and contain
only variables.

Our goal is to learn optimization criteria, weighted
soft constraints, based on examples (interpretations) and
user preferences. A (pairwise) preference e1 � e2 describes
a relative order over examples e1 and e2, stating that e1 is
preferred over e2. Preferences only consider two examples
at a time and are usually easier to provide than absolute
scores. The soft constraints consist of clauses (C) that are
satisfied by some but not all of the examples. They can be
identified using a system that implements the constraint
learning task. Weighted clauses (WC) are tuples R × C that
can be used to calculate a score for any example e:

scoreWC (e) =
∑

(w ,c)∈WC

w · 1e|=c (1)

An interpretation eopt is an optimal solution with respect
toWC if scoreWC (eopt) is maximal.
Example 1 (Moving city). Consider the scenario of mov-
ing to a new city and choosing areas for housing, work and
school. The choices are captured by the predicates LiveIn ,
WorkIn and SchoolIn . Additionally, the predicates Cheap
and LowCrime are used to designate cheap and low crime
areas, respectively.

Assume the following set of weighted clauses M de-
scribes the optimization problem to solve:

(w1, c1) = (0.50,LowCrime(a)← LiveIn(a))

(w2, c2) = (0.25,SchoolIn(a)←WorkIn(a))

(w3, c3) = (1.00,LowCrime(a)← SchoolIn(a))

(w4, c4) = (−1.00, false ← LiveIn(a) ∧ Cheap(a))

Let examples e1, e2 and e3 be Herbrand interpretations
that reason over the same city, using the same constants
(areas) A1, A2 and A3. Consider the set S of shared
ground atoms {Cheap(A1), Cheap(A3), LowCrime(A1),
LowCrime(A2)} and define the examples as:

e1 = {LiveIn(A1),WorkIn(A2),SchoolIn(A2)} ∪ S
e2 = {LiveIn(A2),WorkIn(A2),SchoolIn(A3)} ∪ S
e3 = {LiveIn(A2),WorkIn(A2),SchoolIn(A1)} ∪ S.
The score of an example can be calculated using (1). Ex-

ample e1 is covered by clauses c1, c2 and c3, therefore,
scoreM(e1) = 0.5 + 0.25 + 1 + 0 = 1.75. Analogously
we can compute scoreM(e2) = −1 and scoreM(e3) = 0.
Using scoreM, the following preferences can be generated:
e1 � e2, e1 � e3 and e2 � e3.

The aim of our research is to learn weighted clauses such
that the order imposed by these optimization criteria maxi-
mally corresponds with the given preference information.

404

Clausal Optimization Given examples E , preferences P
and threshold t, learn clauses C that cover at least t exam-
ples and find weightsWC that maximize:∣∣{e1 � e2 ∈ P|scoreWC (e1) > scoreWC(e2,)}

∣∣ .
4 Approach

We use a two-step approach to learn weighted first-order
clauses. First, clause learning is used to find soft constraints
in the given examples. Then, user-provided preference in-
formation is used to learn weights for these constraints.

Algorithm 1 The clausal discovery algorithm
Given: Examples E and threshold t
Q ← {�}, T ← {}
while |Q| > 0 do

c← next(Q)
if |{e ∈ E|e |= c}| ≥ t then

if T 6|= c then
T = T ∪ c

else
Q ← Q∪ ρ(c)

T ← prune(T)
return T

Clause Learning
The clause learning system is based on clausal discovery
(De Raedt and Dehaspe 1997). Algorithm 1 illustrates how
clausal discovery works on a high level. To compute if
a clause c covers enough examples, the number of exam-
ples e is counted for which e |= c (i.e. c is true in the
example e or c covers e). In order to remove redundant
clauses a new clause c is only added to the result set T
if T 6|= c (i.e. c is not logically entailed by T). Both
e |= c and T 6|= c are computed by the IDP knowl-
edge base system (De Pooter, Wittocx, and Denecker 2013;
Wittocx, Mariën, and Denecker 2008). The algorithm can
find both soft constraints (t < |E|) or hard constraints
(t = |E|).

Starting with the empty clause (�), clauses are refined un-
til they cover enough examples. If a clause covers enough
examples it is added to the result set, unless it is entailed
by clauses already in the result set. In the refinement step,
a clause c = {l1, l2, ..., lk} is extended (refined) by adding
a new literal l. The new clause, c′ = c ∪ {l} is more gen-
eral than c (c′ |= c) and potentially covers more examples.
By adding just one literal the refinement operator ρ gener-
ates the set of clauses that are minimally more general. In
order to do this efficiently, our implementation uses a pre-
calculated list of atoms, given a maximal number of vari-
ables that can occur within a clause. Within the body and
head of a clause, atoms may only be added in a specific or-
der to avoid generating redundant clauses.

A few additional measures are used to make the imple-
mentation more efficient. Most importantly, there are two

Table 1: Clause coverage
Example Covered by Feature vector

e1 c1 ve1 = (1, 0, 0)
e2 c2 ve2 = (0, 1, 0)
e3 c1, c2, c3 ve3 = (1, 1, 1)

syntactic restrictions on the form of the clauses. Clauses
must be connected (i.e. new atoms must always contain
a variable that has already occurred) and range-restricted
(i.e. no new variables may be introduced in the head of
the clause). Moreover, Object Identity is used to spec-
ify that variables with different names must denote differ-
ent objects. Therefore, a clause c with variables V is ex-
tended to the clause cOI by adding literals xi 6= xj , for
xi, xj ∈ V, i 6= j. Finally, the implementation natively
supports typed constants and predicates, symmetric predi-
cates (i.e. predicates where the order of terms does not mat-
ter) and background knowledge. A predicate can be marked
as calculated in which case it is defined in the background
knowledge, rather than being provided in the examples.

Clausal Optimization
In order to find weighted soft constraints, the clause learning
system is used with a low threshold to learn (soft) clauses C.
The examples are then translated to Boolean feature vectors
of length |C| by introducing a feature for every clause ci ∈ C.
For an example e, the value of its feature vector ve for
clause ci is calculated as ve(i) = 1e|=ci . Next, a linear func-
tion f(v) =

∑
i wi · v(i) is learned that assigns weights wi

to clauses ci, based on the user-provided preferences. The
scoring function f agrees with a preference e1 � e2 if
f(ve1) > f(ve2) and corresponds to the scoring function
(1).

Example 2. Consider examples e1, e2, e3, preferences e1 �
e2, e2 � e3 and clauses c1, c2, c3, whereby clauses cover
examples according to Table 1. The function f(v) =
(1, 0,−2) · v assigns scores f(ve1) = 1, f(ve2) = 0 and
f(ve3) = −1 and perfectly models the given preferences
since f(ve1) > f(ve2) and f(ve2) > f(ve3). This score
has no value in the absolute sense, it can only be used to
compare between examples. In this example clause c1 rep-
resents a desirable property and clause c3 represents an un-
desirable property.

SVMrank (Joachims 2006) was chosen to find the scor-
ing function since it uses a linear model and offers a ro-
bust and efficient implementation. The weights that it as-
signs to the features can be used directly as weights for the
clauses. Other linear ranking systems such as Coordinate
Ascent (Metzler and Croft 2007) could also be used.

Optimal Solution
Typical MAX-SAT solvers use propositional clauses and
only allow for positive weights. However, the first-order
logic solver IDP can solve our optimization task as it sup-
ports inductive definitions, aggregates and minimization.
The only limitation is that the current version is restricted to

405

integer values and does not support rational numbers. There-
fore, the weights of the clauses are divided by the smallest
absolute weight, multiplied by a constant and rounded to the
closest integer.

In order to model the optimization problem in IDP, every
clause ci with variables v1, ..., vn is represented by a number
i. For every clause a predicate T (i) is added to capture the
truth value of the clause. A function Cost(i) specifies the
cost of not satisfying the clause, which is equal to the weight
of the clause.

T (i)⇔ ∀v1, ..., vn : ci.

Cost(i) = wi.

Using T and Tost , a function Actual(i) = 1¬T (i) ·
Cost(i) is then defined inductively. This function is used
in the optimization criterion

∑
iActual(i) which should be

minimized.

5 Evaluation
In our experiments we aim to measure the accuracy and effi-
ciency of the learning systems for constraints and optimiza-
tion criteria. Non-deterministic experiments (e.g. measuring
execution times or accuracy of clausal optimization) were
repeated eight times and their result were averaged. Some
problems and experiments are only described briefly or sum-
marized, for more details we refer to (Kolb 2015)1.

First, experiments concerning the accuracy and efficiency
of the constraint learning implementation are discussed.
Thereafter, we discuss the evaluation of the accuracy of the
clausal optimization system2.

Clause Learning
We used four problems to evaluate constraint learning:

Map Coloring Countries are assigned colors and neighbor-
ing countries may not have the same color. Two exam-
ples, each containing three correctly colored countries,
are given.

Sudoku A single, solved 4× 4 sudoku is given as an exam-
ple for this problem.

Elevator This problem uses three predicates Inside,
Crowded and Panic, with Crowded being a calculated
predicate. It is defined by background knowledge to be
true for all elevators with three or more people inside. Out
of the three examples provided for this problem, two sat-
isfy the target soft constraint:

Panic(p) ← Crowded(e) ∧ Inside(p, e).

Co-housing The co-housing problem also uses background
knowledge to specify one of its predicates (Cheap) and
to impose some additional constraints. Five examples
are provided, which all adhere to the following four con-
straints on the housing choices of two friends:

1Available online at https://github.com/samuelkolb/thesis
2The system (v1.0) used to perform all experiments is available

online at https://github.com/samuelkolb/clausal-discovery/releases

Table 2: Execution times for learning constraints
Problem Average time (s)

Map Coloring 1.581 (± 0.117)
Sudoku 4.787 (± 0.062)

Elevator 3.182 (± 0.073)
Co-housing 25.903 (± 0.446)

1. If the two friends do not live in the same area, they work
in the same area.

2. If a person does not work and live in the same area, that
person needs a car.

3. A person who lives in a cheap area has a car.
4. If the two friends live together, they live in an expensive

area.

The clausal discovery implementation is used to learn soft
constraints for the elevator problem (t = 1) and hard con-
straints for the other problems.

Question 1 (Accuracy). Are the essential constraints dis-
covered and what influence do different parameters have on
the accuracy?

For all problems the essential constraints are found. Often
additional constraints were found that describe some struc-
ture in the problems. For example, for the map coloring
problem one of the learned constraints states that countries
are never their own neighbor. These kind of constraints may
help a constraint solver to work more efficiently.

The learning process is parameterized by the maximal
number of variables and literals allowed per clause. If these
limits are too large, constraints are found that over-fit the
training data. These constraints are too specific and will ex-
clude valid solutions that are not in the training set. Over-
fitting can be addressed by removing invalid constraints
(manually or automatically) and providing more (or larger)
training examples. On the other hand, if the chosen limits
are too small, the necessary constraints will not be found.
Under-fitting can be detected using negative examples.

Question 2 (Efficiency). How fast is the clause learning
system and what is the effect of various design decisions and
input on the execution time?

Table 2 shows the execution times for the different prob-
lems3. It shows that the evaluated problems can be solved
efficiently.

For a discussion of the experiments evaluating the influ-
ence design decisions and input we refer to (Kolb 2015) and
only state the most important conclusions. Removing syn-
tactical restrictions is shown to exponentially increase the
execution time. Moreover, the other efficiency measures
(e.g. symmetric predicates) are shown to be effective, in-
dividually achieving speedups of up to 50%.

Increasing the number of variables or literals per clause
negatively impacts the efficiency. Especially increasing both

3All experiments were run on a MacBook Pro with an i7 quad-
core processor

406

parameters can steeply increase the execution time. The cur-
rent implementation may still need significant time to solve
large problems that include many predicates. However, in-
cluding additional or larger examples usually only increases
the execution time by a constant factor.
Question 3 (Compared to humans). How do learned con-
straints compare to human programmed constraints?

Human programmed theories for map coloring and su-
doku are available on the website of the IDP solver4. These
theories usually focus on being compact and contain only
the essential constraints. Table 3 shows the results of two
experiments that measure the time to find a solution (model)
for a problem. This time is measured for the learned theories
as well as for hand made theories. The learned theories are
slightly adapted to be able to solve the same problems and
remove unfair advantages such as preprocessed input data.

Table 3: CPU times human vs. learned theory
Problem Type Average CPU time (s)
Map coloring Human 0.968 (±0.023)

Learned 0.403 (±0.015)

Sudoku Human 1.453 (±0.018)
Learned 0.310 (±0.012)

Especially for non-experts, a learning system can be use-
ful to assist them during the modeling process. Addition-
ally, the learning system can function in an automatic set-
ting. These experiments show that learned constraints can
be used to solve problems efficiently and even faster than
hand programmed constraints for the examined cases.

Clausal Optimization
The efficiency of the learning system for optimization cri-
teria depends mainly on the efficiency of learning soft con-
straints. Therefore, the experiments in this section are fo-
cused on the accuracy of the optimization criteria and the
influence of different factors.

Example 1 introduced the moving city scenario which is
used to evaluate the learning of optimization criteria. 18 pos-
sible configurations are used as available examples (E), dif-
fering in their values for LiveIn , WorkIn and SchoolIn .
The four weighted soft constraints are used to represent
the underlying model (M) for the users preferences. Two
approaches are used for evaluation and vary in the way
they construct the training (Etrain) and test sets (Etest). In
the first approach, given a parameter ptrain, the examples
are randomly partitioned into disjoint training and test sets
(Etest), such that |Etrain| = ptrain · |E|. The second ap-
proach uses Etrain = Etest = E .

The available input preferences are obtained by gener-
ating all preferences P over Etrain using scoreM. If the
fraction of preferences to be used is ppref , then a random
subset Ptrain ⊂ P of size ppref · |P| is used for learn-
ing. Errors in the input preferences are simulated by flip-
ping preferences (e.g. e1 � e2 becomes e1 ≺ e2). Given

4https://dtai.cs.kuleuven.be/software/idp

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

ppre f

p t r ain = 0.2

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p pre f

p t r ain = 0.4

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

ppre f

p t r ain = 0.6

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p pre f

p t r ain = 0.8

Figure 1: Influence of input size (ptrain and ppref)

the fraction perror of errors to introduce, a random sub-
set Perror ⊂ Ptrain of the preferences are flipped, where
|Perror| = perror · |Ptrain|.

To evaluate a learned model L, all possible preferences
over Etest are generated using both scoreM and scoreL,
yielding PM and PL, respectively. The accuracy of the
learned model is then calculated as the fraction of correctly
predicted preferences (|PM∩PL|

|PM|).

Question 4 (Accuracy). How accurately can learned opti-
mization criteria approximate underlying models?

Figure 1 shows how the accuracy improve as the fractions
of examples (ptrain) and preferences (ppref) that are used
for learning increase. In all cases, more than half the pairs
of examples are correctly predicted and the high accuracy
values can be obtained even for small datasets. Additional
experiments have shown that even for lower accuracy values
the learned optimization criteria are often capable of identi-
fying the correct optimal solution (Kolb 2015).

The standard underlying model can be directly expressed
using the soft constraints that can be learned. Even though
clausal theories can be very expressive, important restric-
tions have been placed on the learned clauses in this paper.
In order to test the accuracy for models which cannot be
directly expressed, a model consisting of two disconnected
clauses has been tested as well. While there are limits to the
expressibility, the learned optimization criteria were able to
obtain similar levels of accuracy and seem to be robust with
respect to the exact formulation.

Question 5 (Errors). What is the influence of errors in pref-
erences on the accuracy?

The influence of errors is shown in Figure 2. For this
experiment, the second approach of testing has been applied,
using overlapping training and test sets (Etrain = Etest =
E). High accuracy values are obtained, despite significant
numbers of errors. The figure also shows that increasing the
number of preferences used for learning (ppref) improves

407

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p e rro r

ppr ef = 0.1

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p e rro r

ppr ef = 0.4

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p e rro r

ppr ef = 0.7

0 0.2 0.4 0.6 0.8 1
0.5

0.6

0.7

0.8

0.9

1

A
c
c
u
r
a
c
y

p e rro r

ppr ef = 1.0

Figure 2: Influence of preference errors (perror)

the robustness of the algorithm, even if the relative amount
of errors (perror) remains unchanged.

Table 4: Accuracy for different thresholds (t)
t = 1 t = 2 t = 3 t = 4

0.823 0.740 0.788 0.735
(± 0.073) (± 0.078) (± 0.074) (± 0.063)

Question 6 (Threshold). What is the effect of the soft con-
straint threshold on the accuracy?

Table 4 demonstrates that increasing the threshold used
for finding soft constraints does not improve the accuracy
(ptrain = ppref = 0.4). However, if the number of exam-
ples is increased, a higher threshold will likely be appropri-
ate.

6 Conclusion
We presented an approach to automatically acquire con-
straints and optimization criteria from examples and pref-
erences. Implementations for both clause discovery and
clausal optimization have been provided that accomplish
these tasks using first-order logic clauses.

The constraint learning implementation has been able to
learn the relevant hard and soft constraints in all experi-
ments. For each problem, the relevant constraints could
be learned from only a few examples. Although the sys-
tem requires only examples and preferences, users can pro-
vide more information through background knowledge. The
constraints learned by clausal discovery are independent of
the constants of specific problem instantiations (examples),
which facilitates the construction of positive examples.

Using the constraint learning implementation, the goal of
learning a weighted first-order MAX-SAT model has been
accomplished. The learned models allow optimal solutions
to be found. Even for small datasets and erroneous prefer-
ences, optimization criteria are found that rank most exam-
ples correctly.

Aside from learning formal representations automatically
from examples, we have shown how these representations
can be used in practice. This also forms an important step to
enable the learning of optimization criteria in an interactive
setting.

Future work There are several opportunities for future
work. In the current approach weight learning is performed
using preferences and a learn-to-rank SVM. It would, how-
ever, be easy to use another type of input (e.g. absolute
scores) and a corresponding SVM.

It would be interesting to adapt the number of variables
and literals per clause dynamically, as they have a strong
influence on the efficiency and accuracy of the clause learn-
ing system. Additionally, interactivity could be added to the
learning system by actively generating examples or prefer-
ences and querying the user about their validity.

Finally, it would be desirable to improve the implementa-
tion in order to tackle larger sized problems. All the experi-
ments were conducted with problems of limited size and the
computation time increases rapidly if there are more predi-
cates, variables and literals to be used in clauses.

Acknowledgments
The author thanks his promoters Luc De Raedt and Anton
Dries. Furthermore, he is is thankful for the help provided
by Bart Bogaerts, Jesse Davis, Marc Denecker, Vladimir
Dzyuba, Angelika Kimmig and Jan Tobias Mühlberg.
Samuel Kolb is supported by the Research Foundation -
Flanders (FWO).

References
Beldiceanu, N., and Simonis, H. 2012. A model seeker: Ex-
tracting global constraint models from positive examples. In
Principles and Practice of Constraint Programming, 141–
157. Springer.
Bessiere, C.; Coletta, R.; O’Sullivan, B.; Paulin, M.; et al.
2007. Query-driven constraint acquisition. In Proceedings
of the Twentieth International Joint Conference on Artificial
Intelligence, 50–55.
Bessiere, C.; Coletta, R.; Hebrard, E.; Katsirelos, G.;
Lazaar, N.; Narodytska, N.; Quimper, C.-G.; and Walsh, T.
2013. Constraint acquisition via partial queries. In Proceed-
ings of the Twenty-Third International Joint Conference on
Artificial Intelligence, 475–481. AAAI Press.
Campigotto, P.; Passerini, A.; and Battiti, R. 2011. Active
learning of combinatorial features for interactive optimiza-
tion. In Learning and Intelligent Optimization. Springer.
336–350.
De Pooter, S.; Wittocx, J.; and Denecker, M. 2013. A pro-
totype of a knowledge-based programming environment. In
Applications of Declarative Programming and Knowledge
Management. Springer. 279–286.
De Raedt, L., and Dehaspe, L. 1997. Clausal discovery.
Machine Learning 26(2-3):99–146.

408

Joachims, T. 2006. Training linear svms in linear time. In
Proceedings of the 12th ACM SIGKDD international con-
ference on Knowledge discovery and data mining, 217–226.
ACM.
Kok, S., and Domingos, P. 2005. Learning the structure of
markov logic networks. In Proceedings of the 22nd interna-
tional conference on Machine learning, 441–448. ACM.
Kolb, S. 2015. Learning constraints and optimization crite-
ria. Master’s thesis, KULeuven.
Lallouet, A.; Lopez, M.; Martin, L.; and Vrain, C. 2010. On
learning constraint problems. In Tools with Artificial Intel-
ligence (ICTAI), 2010 22nd IEEE International Conference
on, volume 1, 45–52. IEEE.
Metzler, D., and Croft, W. B. 2007. Linear feature-based
models for information retrieval. Information Retrieval
10(3):257–274.
Puget, J.-F. 2004. Constraint programming next challenge:
Simplicity of use. In Wallace, M., ed., Principles and Prac-
tice of Constraint Programming - CP 2004, volume 3258 of
Lecture Notes in Computer Science. Springer Berlin Heidel-
berg. 5–8.
Wittocx, J.; Mariën, M.; and Denecker, M. 2008. The idp
system: a model expansion system for an extension of clas-
sical logic. In Proceedings of the 2nd Workshop on Logic
and Search, 153–165.

409

