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Abstract

The Natural Language Processing, Artificial Intelligence, and
Robotics fields have made significant progress towards de-
veloping robust component technologies (speech recogni-
tion/synthesis, machine translation, image recognition); ad-
vanced inference mechanisms that accommodate uncertainty
and noise; and autonomous driving systems that operate
seamlessly on our roads. In spite of this, we do not yet know
how to talk to the machines we build or have them speak to
us in natural language; how to make them smarter via simple,
natural language instructions; how to understand what they
are about to do; or how to work with them collaboratively
towards accomplishing some joint goal.
In this paper, we discuss our work towards building a dataset
that enables an empirical approach to studying the relation
between natural language, actions, and plans; and introduce a
problem formulation that allows us to take meaningful steps
towards addressing the open problems listed above.

Context for our work
Establishing a bidirectional connection between natural lan-
guage and actions & goals in the physical world requires
mechanisms that will enable the joint acquisition of lan-
guage and learning of planning policies; learning of map-
pings between natural language utterances and action se-
quences (understanding); and learning of mappings between
action sequences and natural language (generation). Several
research areas have addressed aspects of our requirements.

In natural language understanding and language ground-
ing, NLP researchers (Zettlemoyer and Collins 2005;
Kwiatkowski et al. 2013; Reddy, Lapata, and Steedman
2014; Berant et al. 2013; Roth et al. 2014) have produced
systems for extracting logical representations from text and
for linking concepts and entity mentions to relations and en-
tities in large scale knowledge bases or Wikipedia entries. In
this body of work, the main focus is on establishing a rela-
tion between language, objects, and properties of objects.

Within robotics, there is a long history of work on Human-
Robot Interaction (Klingspor, Demiris, and Kaiser 1997;
Goodrich and Schultz 2007; Mavridis 2015) which take
commands and generate responses from a fixed vocabulary
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and grammar. Planning advances that increase robot auton-
omy do not correlate to free-er form language or higher level
abstractions as should be the case when acquiring language.
Progress on language has largely focused on grounding vi-
sual attributes (Kollar, Krishnamurthy, and Strimel 2013;
Matuszek et al. 2014) and on learning spatial relations and
actions for small vocabularies with hard-coded abstract con-
cepts (Steels and Vogt 1997; Roy 2002; Guadarrama et al.
2013). Language is sometimes grounded into simple ac-
tions (Yu and Siskind 2013) but the data, while multimodal,
is formulaic, the vocabularies are small, and the grammar is
constrained. Recently the connection between less formulaic
language and simple actions has been explored successfully
in the context of simulated worlds (Branavan et al. 2009;
Goldwasser and Roth 2011; Branavan, Silver, and Barzilay
2011; Artzi and Zettlemoyer 2013) and videos (Malmaud et
al. 2015; Venugopalan et al. 2015).

To our knowledge, there is no body of work on under-
standing the relation between natural language and complex
actions and goals or from sequences of actions to natural lan-
guage. As observed by Klingspor (1997), there is a big gap
between the formulaic interactions that are typical of state-
of-the-art human-robot communications and human-human
interactions, which are more abstract.

Proposed Problem-Solution Sequences Data
An intuitive characterization
We have built a large corpus of Problem-Solution Sequences
(PSS) (see Figure 1 for an example). A PSS consists of a se-
quence of images/frames that encode what a robot sees as it
goes about accomplishing a goal. To instantiate our frame-
work, we focus first on PSSs specific to a simple world that
has blocks stacked on a table and a robot that can visually
inspect the table and manipulate the blocks on it.

In Figure 1, each image in the PSS corresponds to an in-
termediate block configuration that the robot goes through as
it modifies the initial state block configuration into the final
one. The PSS makes explicit the natural language instruc-
tions that a human may give to a robot in order to transform
the configuration in an Imagei into the configuration in an
Imagej - the two configurations may correspond to one robot
action (for adjacent states in the sequence) or to a sequence
of robot actions (for non-adjacent states). To account for lan-
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… …

Draw two parallel diagonal lines that start in 
the top right of the board

Draw a horizontal line to link the bottom of the two existing 
lines. Extend the right side with the four remaining blocks.

Draw a number four that is angled to the right.

Image0 Imaget Imaget+1 Imagen

Place BMW below Adidas

Move BMW south of Adidas and immediately abutting
Start a vertical line by adding BMW to Adidas

Figure 1: A PSS where descriptions have been provided at differing levels of abstraction (light, italic, bold) with the eventual
goal of using the blocks to build a structure that looks like the digit four.

guage variance, each simple action or sequence of actions is
associated with a set of alternative natural language instruc-
tions. For example, Figure 1 shows three alternative ways of
instructing a robot what to do to build Imaget+1 given the
configuration in Imaget. The natural language instructions
encode implicitly partial or full descriptions of the world
(“diagonal line” in Imaget or “number four” in Imagen).

PSS acquisition
To support a research program aimed at addressing the open
questions enumerated in the Abstract, we created a virtual
environment that simulates closely the physical environment
of (Tamrakar 2015). We have complete control of our virtual
environment: what kind of blocks it contains (size, color,
shape); their locations; what actions are available to manip-
ulate the blocks (move, lift, drop, rotate, etc); what happens
when an action is taken (for example, dropping a block over
another may lead to rolling under a realistic physical model);
etc. We can initialize the environment with any block con-
figuration and track changes as the robot takes actions.

Most importantly, for each state in an action sequence that
we choose to sample, we have access not only to an im-
age/frame associated with that state (which we can manip-
ulate further via changes in perspective and angle of view)
but to the ground truth associated with that image as well.
For each image, we know the set of blocks in that image,
their unique IDs, their characteristics (color, size, etc.), their
position ((x, y, z) coordinates) and orientation (θ).

We generate PSSs in two steps: (i) we first generate coher-
ent sequences of actions using our simulated environment
(ii) subsequently, we decorate PSSs with meaning equivalent
natural language instructions that we collect for simple and
complex actions in the PSS via Amazon Mechanical Turk.

To date, we experimented with two approaches to generat-
ing coherent sequences of actions. (i) First, we generated an
initial state by randomly choosing and placing a block from
a predefined set. We then perform random actions while tak-
ing a snapshot of the current state after each action. (ii) In the
second approach, we start with meaningful block structures
- letters, digits, objects, etc. At each step, we move a random
block to an arbitrary location. Depending on the complexity
of the initial structure, within 10-20 steps, we end up with a
random looking configuration. By reversing the order of this
sequence, we obtain a sequence of actions that start from a

random configuration and end up in a meaningful structure.
For the second approach to PSS generation, we experi-

mented with block configurations that resemble digits (zero
through nine). We took the MNIST corpus of hand-written
digits (LeCun et al. 1998) and used 10 examples of each digit
to serve as goal configurations. We sharpened and downsam-
pled each image until it had at most 20 active pixels which
we replaced with numbered blocks that were uploaded into
our virtual world. For each goal configuration, we took up to
20 random actions, to unrecognizably scramble the blocks.
Via this process, we obtained 100 initial PSS sequences (10
digits x 10 examples/digit). Figure 1 shows the initial, final,
and two other states in one of our PSS sequences.

Our initial release of the ISI Language Grounding Data
Set is available at http://nlg.isi.edu/language-grounding/.
The 50 MNIST sequences drawn with logo decorated blocks
yield 8,514 annotations of individual actions (and 996 corre-
sponding scenes). The complete dataset also contains blocks
decorated with digits, completely random sequences, and
abstract commands over sequences.

We believe our approach to creating PSS representa-
tions is highly scalable both in terms of the types of ob-
jects/structures and the task complexity. For example, one
can imagine replicating the same approach we advocate here
when modeling a prototypical office or home environment
with robotic actions and objects that are typical of those en-
vironments.

PSS – a formal characterization

A PSS state St at time t is a tuple of an image/frame IMi

(what the robot sees) and a list of objects with their charac-
teristics, positions, and orientations associated with that im-
age [ IDi, ~ci, ~xi, ~θi ]i:1...nt . A direct action arc between two
adjacent states St and St+1 is labeled with an action at from
a set of actions, A, the robot may perform. A valid PSS con-
nects all states from the initial state S0 to the final state SN

via action arcs. Two states Si and Sj , where i < j, can also
be connected via a text instruction arc ui,j , which stores a
set of context-dependent natural language instructions ~Ui,j .
Given a state Si, if the robot correctly executes the instruc-
tions expressed in ~Ui,j , it should end up in state Sj .
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(a) Move the Adidas block
to the left of the BMW
block.

(b) Move Adidas adjacent to
the BMW block.

Figure 2: Two move commands with inexact goal locations.

Utility of the PSS representations
Once we generate tens of thousands of PSSs, we believe that
we can use machine learning techniques, automatic evalua-
tion metrics, and a fast generate-test idea development cycle
to make rapid progress on a wide range of problems.

Context-dependent language understanding and
grounding of simple actions
We first introduce a simple representation that mitigates the
gap between natural language instructions, PSS states, PSS
actions, and the continuous nature of the physical environ-
ment. We assume a simple semantic representation with only
one predicate move that takes three arguments: the ID of the
block to move, the target location, and the target orienta-
tion: move(ID,Ψk(~x), ρk(~θ)). Because physical environ-
ments are continuous, the target location and orientation are
not exact, but density functions defined over the space of
the table and space of 360 degree possible orientations re-
spectively. Figure 2, visualizes density functions (meanings)
of the phrases (a) ”to the left of the BMW block” and (b)
”adjacent to the BMW block”. These are not “precise” or
exact locations, rather they define a region around the BMW
block.

In this context, understanding and grounding a natural
language instruction amounts to mapping it to an appropriate
triple: move(ID,Ψk(~x), ρk(~θ)). Table 1 lists a set of simple
instructions with segments marked that should lead to the
identification of the predicate move, the ID of the object to
be moved, and its target location Ψk(~x); in these examples,
we assume a default orientation ρk(~0).

Given large PSS datasets, one can develop a wide range
of techniques for interpreting natural language instructions
in context. The performance of these understanding and
grounding algorithms can be tested automatically by mea-
suring the degree to which the action inferred matches the
action stored in the PSS representation.

Learning unknown language primitives from PSS
Initial approaches, as is common, may assume that the map-
pings between words and semantic primitives are known.
Our goal is to enable the learning of unknown mappings
from scratch by exploiting the size of the data we collect.
For example, one may not know how to interpret “next to
the corner of X”; but after many examples, the density func-
tion Ψnext to the corner of : ~x → P could be learned from
data. This may lead to a set of Ψk such that Ψ1 corresponds

{move} {block 3} {adjacent to the green block}
{place} {the block closest to the front} {at the back of the table}
{push} {the block to the left of block 1} {to the right of block 2}
{slide} {it} {more}

Table 1: Utterances split into predicate, ID and location.

to “left”, Ψ2 to “right”, and so forth. Given this density func-
tion, we can sample a location (~y) to learn new meanings.

Understanding and grounding of complex actions
PSS datasets also make explicit textual descriptions of action
sequences (“build a line of four blocks” or “build a tower
in the left corner of the table”) that are consistent with se-
quences of actions that lead from a state Si to a state Sj . To
understand and ground such complex instructions, the agent
must be able to infer in state Si a sequence of move oper-
ations in the service of an abstract goal that subsumes the
image in state Sj . Fortunately, PSSs contain complete action
sequences that correspond to complex instructions. PSSs en-
able the study of language understanding and grounding in
the context of increasingly difficult problem scenarios.

In these scenarios, grounding is more ambiguous because
the use of the blocks (and perhaps which blocks) is assumed
and therefore not referenced in the instruction. Also, any
block might serve as the first piece of the tower/line/... that
provides the initial ~x to which Ψk is applied recursively. We
can see this by thinking about the set of instructions/layout
necessary for drawing a simple object (Figure 3).

Here, we might have a function for drawing circles or fig-
ure eights which is simply conditioned on the current state of
the table and can make predictions for the next action which
when taken define a new state to be fed back into Ψfig8 un-
til the figure is complete. PSSs allow us to investigate how
complex meanings relate to simple ones in the context of
action sequences; and to evaluate the quality of our under-
standing and groundings objectively by comparing the states
our algorithms predict with the states observed in the data.

Grounded grammar induction
Grammar induction is the task of discovering the latent
grammar G for a given language. Traditionally, only utter-
ances (~w) are available as input. In our framework, we can
investigate grammar induction algorithms that have access
not only to utterances (~w), but to the contexts in which they
can be uttered (the states Si) and their intent (the resulting
states Si+1). The initial and resulting context associated with
utterances should reduce the number of nonsensical interpre-
tations that make grammar induction so difficult.

Planning and plan understanding
Planning and plan understanding is fundamental to the task
as policies must be properly learned for any particular action
or abstract instruction provided. PSSs force joint learning of
plan operators and natural language interpretations to deter-
mine and achieve an uncertain goal.

731



(a) First block (b) Second block (c) Third block

	
(d) Final Configuration

Figure 3: Possible placements of blocks when hearing “Attach a second circle below the first one” or “Complete the Figure 8”

Context-dependent language generation
Language generation is another research area that is enabled
by a large PSS dataset. Our discussion has primarily focused
on the use of language to learn a plan or grounded semantic
representation. Of equal importance is the ability to produce
natural language utterances (~w) given either a sequence of
scenes or a list of actions that were performed. Until robots
can respond to us using abstract language, we will not be
fully able to treat them as collaboration partners.

PSSs and vision
By construction, all research problems above can be tack-
led in the PSS context with perfect image interpretations
(the characteristics, locations, and orientations of all objects
in a scene). However, PSSs also provide the opportunity
to assess the degree to which the performance of current
vision algorithms impacts the performance of systems de-
signed to solve the problems discussed herein. For example,
PSSs allow one to work from noisy outputs produced by im-
age understanding software, and study how the performance
changes as images are made noisy, include occlusion, or as
the camera offers a different perspective/angle on the scene.
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