
Evaluating the Performance of Presumed Payoff Perfect Information
Monte Carlo Sampling Against Optimal Strategies

Florian Wisser
Vienna University of Technology

Vienna, Austria
wisser@dbai.tuwien.ac.at

Abstract

Despite some success of Perfect Information Monte
Carlo Sampling (PIMC) in imperfect information
games in the past, it has been eclipsed by other ap-
proaches in recent years. Standard PIMC has well-
known shortcomings in the accuracy of its decisions,
but has the advantage of being simple, fast, and scalable,
making it well-suited for imperfect information games
with large state-spaces. Presumed Payoff PIMC is a
variant of PIMC lessening the effect of implicit over-
estimation of opponent’s knowledge of hidden informa-
tion in future game states, while adding only very little
complexity. We give a detailed description of Presumed
Payoff PIMC and analyze its performance against Nash-
equilibrium approximation algorithms and other PIMC
variants in the game of Phantom Tic-Tac-Toe.

Introduction
Perfect Information Monte Carlo Sampling (PIMC) in tree
search of games of imperfect information has been around
for many years. The approach is appealing, for a number of
reasons: it allows the usage of well-known methods from
perfect information games, its complexity is magnitudes
lower than the problem of weakly solving a game in the
sense of game theory, it can be used in a just-in-time man-
ner (no precalculation phase needed) even for games with
large state-space, and it has proven to produce competitive
AI agents in some games. Let us mention Bridge (Ginsberg
2001), Skat (Buro et al. 2009) and Schnapsen (Wisser 2010).

In recent years research in AI in games of imperfect in-
formation was heavily centered around equilibrium approx-
imation algorithms (EAA). Clearly in games small enough
for EAAs to work within reasonable time and space lim-
its, EAAs are the method of choice. However, games more
complex than e.g. heads-up limit Texas Hold’em with much
larger state-spaces will probably never be manageable with
EAAs. Maybe only because of the lack of an effective stor-
age for the immense sizes of the resulting strategies. To
date, we are not even able so solve large perfect informa-
tion games like chess or Go. Using state-space abstraction
(Johanson et al. 2013) EAAs may still be able to find good
strategies for larger games, but they depend on finding an

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

appropriate simplification of manageable size. On the other
hand, just-in-time heuristics like PIMC do not need a precal-
culation phase and hence also do not need to store a strategy.
So, we think it is still a worthwhile task to investigate just-
in-time heuristics like PIMC that are able to tackle larger
problems. In games where EAAs are available the quality
of such heuristics can be measured by comparing them to
near–Nash strategies, which we will do in the following.

On the other hand, in the 2nd edition (and only there)
of their textbook, Russell and Norvig (Russell and Norvig
2003, p179) quite accurately use the term “averaging over
clairvoyancy” for PIMC. A more formal critique of PIMC
was given in a series of publications by Frank, Basin, et
al. (Frank and Basin 1998b; Frank, Basin, and Matsubara
1998; Frank and Basin 1998a; 2001), where the authors
show that the heuristic of PIMC suffers from strategy-fusion
and non-locality producing erroneous move selection due to
an overestimation of MAX’s knowledge of hidden informa-
tion in future game states. A very recent algorithm shows
how both theoretical problems can be fixed (Lisý, Lanctot,
and Bowling 2015), but has yet to be applied to large games
typically used for search. More recently overestimation of
MAX’s knowledge is also dealt with in the field of general
game play (Schofield, Cerexhe, and Thielscher 2013). To the
best of our knowledge, all literature on the deficiencies of
PIMC concentrates on the overestimation of MAX’s knowl-
edge. Frank et al. (Frank and Basin 1998a) explicitly for-
malize the “best defense model”, which basically assumes a
clairvoyant opponent, and state that this would be the typi-
cal assumption in game analysis in expert texts. This may be
true for some games, but clearly not for all.

Think, for example, of a game of heads-up no-limit Texas
Hold’em poker playing an opponent with perfect informa-
tion, knowing your hand as well as all community cards
before they even appear on the table. The only reasonable
strategy left against such an opponent would be to imme-
diately concede the game, since one will not achieve much
more than stealing a few blinds. And in fact expert texts in
poker do never assume playing a clairvoyant opponent when
analyzing the correctness of the actions of a player.

In the following — and in contrast to the references
above — we start off with an investigation of the problem
of overestimation of MIN’s knowledge, from which PIMC
and its known variants suffer. We set this in context to the

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence 
Computer Poker and Imperfect Information Games: Technical Report WS-16-06

387



A

B ep = 1

♥A :

♦A :

♣A :

1

1

1



fold

Cap

1

1

2

 = 4
3

ep = 0

D−1−1
2



m
at

ch

E 1

1

−2



diff

call

Figure 1: PIMC Tree for XX

best defense model and show why the very assumption of
it is doomed to produce sub-optimal play in many situa-
tions. For the purpose of demonstration we use the sim-
plest possible synthetic games we could think of. We go
on describing a heuristic algorithm termed Presumed Payoff
PIMC (Wisser 2015), targeting imperfect information games
decided within a single round of play, dealing with the prob-
lem of MIN overestimation.

Finally we do an experimental analysis in the game of
Phantom Tic-Tac-Toe, where we compare the traditional
PIMC algorithm and its enhancement Presumed Payoff
PIMC with Counterfactual Regret Minimization in game
play as well as with respect to the exploitability of the re-
sulting strategies.

Background Considerations
In a 2-player game of imperfect information there are gen-
erally 4 types of information: information publicly available
(ιP ), information private to MAX (ιX ), information private
to MIN (ιI ) and information hidden to both (ιH ). To exem-
plify the effect of “averaging over clairvoyancy” we intro-
duce two very simple 2-player games: XX with only two
successive decisions by MAX, and XI with two decisions,
first one by MAX followed by one of MIN. The reader is
free to omit the rules we give and view the game trees as ab-
stract ones. Both games are played with a deck of four aces,
♠A,♥A,♦A and♣A. The deck is shuffled and each player
is dealt 1 card, with the remaining 2 cards lying face down
on the table. ιP consists of the actions taken by the players,
ιH are the 2 cards face down on the table, ιX the card held
by MAX and ιI the card held by MIN.

In XX, MAX has to decide whether to fold or call first.
In case MAX calls, the second decision to make is to bet,
whether the card MIN holds matches color with its own card
(match, both red or both black) or differs in color (diff).
Fig. 1 shows the game tree of XX with payoffs, assuming
without loss of generality that MAX holds ♠A. Modeling
MAX’s decision in two steps is entirely artificial in this ex-
ample, but it helps to keep it as simple as possible. The
reader may insert a single branched MIN node between A
and C to get an identically rated, non-degenerate example.
Node C is in fact a collapsed information set containing 3
nodes, which is represented by vectors of payoffs in termi-

A

B ep = −1

♥A :

♦A :

♣A :

−1−1
−1



fold

Cap

−1−1
−2

 = − 4
3

ep = 0

D−1−1
2



m
at

ch

E 1

1

−2



diff

call

Figure 2: PIMC Tree for XI

nal nodes, representing worlds possible from MAX’s point
of view. To the right of the child nodes B and C of the root
node the expected payoff (ep) is given. It is easy to see that
the only Nash equilibrium strategy (i.e. the optimal strategy)
is to simply fold and cash 1.

To the left of node C, the evaluation of straight PIMC (for
better distinction abbreviated by SP in the following) of this
node is given, averaging over the payoffs in different worlds
after building the point-wise maximum of the payoff vectors
in D and E. By construction SP assumes perfect information
for both players right after the decision it reasons about. This
is, both MAX and MIN are assumed to know all of ιP , ιX , ιI
and ιH after the decision currently rated, i.e. the root node.
We see that SP is willing to turn down an ensured payoff of 1
by folding, to go for an expected payoff of 0, by calling and
going for either bet then. The reason is the well-known over-
estimation of hidden knowledge, i.e.: it assumes to know ιI

when deciding whether to bet on matching or differing col-
ors in node C, and thereby evaluates it to an average payoff
(ap) of 4

3 . Frank et al. (Frank and Basin 1998b) analyzed this
behavior in detail and termed it strategy-fusion. We will call
it MAX-strategy-fusion in the following, since it is strategy-
fusion happening in MAX nodes.

The basic solution given for this problem is vector mini-
max. Instead of evaluating each world independently (as SP
does), vector minimax operates on the payoff vectors of each
node. In MIN nodes vector minimax resembles SP, build-
ing the point-wise minimum of the payoff vectors of all
child nodes. However, a MAX nodes evaluates to the pay-
off vector with the highest mean over all components. The
payoff vectors of nodes D and E, vD = (−1,−1, 2) and
vE = (1, 1,−2) both have a mean of 0. So vector mini-
max evaluates node C to either of vD and vE , and not to
(1, 1, 2) as SP does. This leads to the correct decision to fold.
Note, that by choosing the vector with the best unweighted
mean, vector minimax implicitly assumes, that MAX has no
knowledge at all about ιI at any stage of the game. In our
toy example XX, this assumption is entirely correct, but it
does not hold in many situations in real-world games.

We list the average payoffs for various agents playing
XX on the left-hand side of Table 1. Looking at the re-
sults we see that a uniformly random agent (RAND) plays
worse than a Nash equilibrium strategy (NASH), and SP

388



XX — XI ANY
PPP 0 VM −1
SP 0 SP −1
RAND 1

2 RAND − 1
2

NASH 1 NASH 0
VM 1 PPP 0

Table 1: Average Payoffs for XX and XI

plays even worse than RAND. VM stands for vector mini-
max, but includes all variants proposed by Frank et al.,
most notably payoff-reduction-minimax, vector-minimax-β
and payoff-reduction-minimax-β. Any of these algorithms
solves the deficiency of MAX-strategy-fusion in this exam-
ple and plays optimally.

Let us now turn to the game XI, its game tree given in
Fig. 2. The two differences to XX are that MAX’s payoff at
node B is−1, not 1, and C is a MIN (not a MAX) node. The
only Nash equilibrium strategy of the game is MAX calling,
followed by an arbitrary action of MIN. This leaves MAX
with an expected payoff of 0. Conversely, an SP player eval-
uates node C to the mean of the point-wise minimum of the
payoff vectors in D and E, leading to an evaluation of − 4

3 .
So SP always folds, since it assumes perfect knowledge of
MIN over ιX , which is just as wrong as the assumption on
the distribution of information in XX. Put in another way, in
such a situation SP suffers from MIN-strategy-fusion. VM
acts identically to SP in this game and, looking at the right-
hand side of Table 1, we see that both score an average of
−1, playing worse than NASH and even worse than a ran-
dom player.

The best defense model (Frank and Basin 1998a) is de-
fined by 3 assumptions: MIN has perfect information (A1)
(it knows ιX as well as ιH ), MIN chooses its strategy after
MAX (A2) and MAX plays a pure strategy (A3). Both, SP
and VM (including all subsumed algorithms), implicitly as-
sume at least (A1). And it is this very assumption, that makes
them fail to pick the correct strategy for XI, in fact they pick
the worst possible strategy. So it is the model itself that is
not applicable here. While XI itself is a highly artificial en-
vironment, similar situations do occur in basically every rea-
sonable game of imperfect information. Unlike single-suit
problems in Bridge, which were used as the real-world case
study by Frank et al., even in the full game of Bridge there
are situations where the opponent can be forced to make an
uninformed guess. This is exactly the situation created in XI,
and in doing so, one will get a better average payoff than the
best defense assumption suggests.

Going back to the game XI itself, let us for the moment
assume that MIN picks its moves uniformly at random (i.e.
C is in fact a random node). An algorithm evaluating this
situation should join the vectors in D and E with a prob-
ability of 1

2 each, leading to a correct evaluation of the
overall situation. And since no knowledge is revealed until
MIN has to take its decision, this is a reasonable assump-
tion in this particular case. The idea behind Presumed Pay-
off PIMC, described in the following, is to drop assumption
(A1) of facing a perfectly informed MIN, and model MIN

World ιP ιX ιIj ιHj
w1 — ♠A ♥A ♦A,♣A
w2 — ♠A ♦A ♥A,♣A
w3 — ♠A ♣A ♥A,♦A

Table 2: Worlds Evaluated by PIMC in XX and XI

instead somewhere between a random agent and a perfectly
informed agent.

Presumed Payoff PIMC (PPP)
The approach of PIMC is to create possible perfect in-
formation sub-games in accordance with the information
available to MAX, this is given a situation S = (ιP , ιX)
possible states of (ιIj , ι

H
j ) give a world state wj(S) =

(ιP , ιX , ιIj , ι
H
j ). So, there is no hope for a method analogous

to vector minimax in MIN nodes, since the perfect informa-
tion sub-games we construct are in accordance with ιP and
ιX and one can hardly assume that MIN forgets about its
own private information, while perfectly knowing ιX when
reasoning over its choices.

Recently, Error Allowing Minimax (EAM), an extension
of the classic minimax algorithm, was introduced (Wisser
2013). While EAM is an algorithm suited for perfect infor-
mation games it was created for the use in imperfect infor-
mation games following a PIMC approach. It defines a cus-
tom operator for MIN node evaluation to provide a generic
tie-breaker for equally rated actions in games of perfect in-
formation. The basic idea of EAM is to give MIN the biggest
possible opportunity to make a decisive error. By a decisive
error we mean an error leading to a game-theoretically un-
expected increase in the games payoff for MAX. To be more
specific, the EAM value for MAX in a node H is a triple
(mH , pH , aH). mH is the standard minimax value. pH is
the probability for an error by MIN, if MIN was picking its
actions uniformly at random. Finally aH is the guaranteed
advancement in payoff (leading to a payoff ofmH+aH with
aH ≥ 0 by definition of EAM) in case of any decisive error
by MIN. The value pH is only meant as a generic estimate to
compare different branches of the game tree. pH — seen as
an absolute value — does not reflect the true probability for
an error of a realistic MIN player in a perfect information
situation. What it does reflect is the probability for a deci-
sive error by a random player. One of the nice features of
EAM is that it calculates its values entirely out of informa-
tion encoded in the game tree. Therefore, it is applicable to
anyN -ary tree with MAX and MIN nodes and does not need
any specific knowledge of the game or problem it is applied
to. We will use EAAB (Wisser 2013), an EAM variant with
very effective pruning capabilities. The respective function
eaab returns an EAM value given a node of a perfect infor-
mation game tree.

To define Presumed Payoff Perfect Information Monte
Carlo Sampling (PPP) we start off with a 2-player, zero-sum
game G of imperfect information between MAX and MIN.
As usual we take the position of MAX and want to evaluate
the possible actions in an imperfect information situation S

389



observed by MAX. We take the standard approach to PIMC.
We create perfect information sub-games

wj(S) = (ιP , ιX , ιIj , ι
H
j ), j ∈ {1, . . . , n}

in accordance with S. In our implementationwj are not cho-
sen beforehand, but created on-the-fly using a Sims table
based algorithm (Wisser 2010), allowing seamless transition
from random sampling to full explorations of all perfect in-
formation sub-games, if time to think permits. Let N be the
set of nodes of all perfect information sub-games of G. For
all legal actions Ai, i ∈ {1, . . . , l} of MAX in S let S(Ai)
be the situation derived by taking action Ai. For all wj we
get nodes of perfect information sub-gameswj(S(Ai)) ∈ N
and applying EAAB we get EAM values

eij := eaab(wj(S(Ai))).

The last ingredient we need is a function k : N → [0, 1],
which is meant to represent an estimate of MIN’s knowledge
over ιX , the information private to MAX. For all wj(S(Ai))
we get a value kij := k(wj(S(Ai))). While all definitions
we make throughout this article would remain well-defined,
we still demand 0 ≤ kij ≤ 1, with 0 meaning no knowledge
at all and 1 meaning perfect information of MIN. Contrary
to the EAM values eij , which are generically calculated out
of the game tree itself, kij have to be chosen ad hoc in a
game-specific manner, estimating the distribution of infor-
mation. At first glance this seems a difficult task to do, but
a coarse estimate suffices. We allow different kij for differ-
ent EAM values, since different actions of MAX may leak
different amounts of information. This implicitly leads to a
preference for actions leaking less information to MIN. For
any pair eij = (mij , pij , aij) and kij we define the extended
EAM value xij := (mij , pij , aij , kij). After this evaluation
step we get a vector xi := (xi1, . . . , xin) of extended EAM
values for each action Ai.

To pick the best action we need a total order on the set of
vectors of extended EAM values. So, let x be a vector of n
extended EAM values:

x =

(
x1
· · ·
xn

)
=

(
(m1, p1, a1, k1)

· · ·
(mn, pn, an, kn)

)
(1)

We define three operators pp, ap and tp on x as follows:

pp(xj) := kj ·mj+

+(1− kj) ·
(
(1− pj) ·mj + pj · (mj + aj)

)
= mj + (1− kj) · pj · aj

pp(x) :=

∑n
j=1 pp(xj)

n

ap(x) :=

∑n
j=1mj

n

tp(x) :=

∑n
j=1

(
(1− pj) ·mj + pj · (mj + aj)

)
n

(2)

The presumed payoff (pp), the average payoff (ap) and the
tie-breaking payoff (tp) are real numbers estimating the ter-
minal payoff of MAX after taking the respective action. For

any actionA with associated vector x of extended EAM val-
ues the following propositions hold:

ap(x) ≤ pp(x) ≤ tp(x)

kj = 1, ∀j ∈ {1, . . . , n} ⇒ ap(x) = pp(x)

kj = 0, ∀j ∈ {1, . . . , n} ⇒ pp(x) = tp(x)

(3)

The average payoff is derived from the payoffs as they
come from standard minimax, assuming to play a clairvoy-
ant MIN, while the tie-breaking payoff implicitly assumes
no knowledge of MIN over MAX’s private information. The
presumed payoff lies somewhere in between depending on
the choice of all kj , j ∈ {1, . . . , n}.

By the heuristic nature of the algorithm, none of these
values is meant to be an exact predictor for the expected
payoff (ep) playing a Nash equilibrium strategy, which is
reflected by their names. Nonetheless, what one can hope
to get is that pp is a better relative predictor than ap in
game trees where MIN-strategy-fusion happens. To be more
specific, pp is a better relative predictor if for two actions
A1 and A2 with ep(A1) > ep(A2) and associated vectors
x1 and x2, pp(x1) > pp(x2) holds in more situations than
ap(x1) > ap(x2) does.

Finally, for two actions A1, A2 with associated vectors
x1, x2 of extended EAM values we define

A1 ≤ A2 :⇔
(
pp(x1) < pp(x2)

)
∨(

pp(x1) = pp(x2) ∧ ap(x1) < ap(x2)
)
∨(

pp(x1) = pp(x2) ∧ ap(x1) = ap(x2)∧
tp(x1) ≤ tp(x2)

) (4)

to get a total order on all actions, the lexicographical order
by pp, ap and tp. tp only breaks ties of pp and ap if there
are different values of k for different actions. In our case
study we will not have this situation, but we still want to
mention the possibility for completeness.

Going back to XI (Fig. 2), the extended EAM-vectors of
child nodes B and C of the root node are

xB =

(
(−1, 0, 0, 0)
(−1, 0, 0, 0)
(−1, 0, 0, 0)

)
, xC =

(
(−1, 0.5, 2, 0)
(−1, 0.5, 2, 0)
(−2, 0.5, 4, 0)

)
The values in the second and third slot of the EAM entries
in xC are picked by the min operator of EAM, combin-
ing the payoff vectors in D and E. E.g. (−1, 0.5, 2, 0): If
MIN picks D MAX loses by −1, but with probability 0.5
it picks E leading to a score of −1 + 2 for MAX. Since
the game does not allow MIN to gather any information
on the card MAX holds, we set all knowledge values to
0. For both nodes, B and C we calculate their pp value
and get pp(xB) = −1 < 0 = pp(xC). So contrary to
SP and VM, PPP correctly picks to call instead of fold-
ing and plays the NASH strategy (see Table 1). Note that
in this case pp(xC) = 0 even reproduces the correct ex-
pected payoff, which is not a coincidence, since all param-
eter in the heuristic are exact. In more complex game sit-
uations with other knowledge estimates this will generally
not hold. But PPP picks the correct strategy in this exam-
ple as long as kC1 = kC2 = kC3 and 0 ≤ kC1 < 3

4

390



holds, since pp(xB) = −1 for any choices of kBj and
pp(xC) = − 4

3kC1. As stated before, the estimate on MIN’s
knowledge can be quite coarse in many situations. To close
the discussion of the games XX and XI, we once more look
at the table of average payoffs (Table 1). While SP suffers
from both, MAX-strategy-fusion and MIN-strategy-fusion,
VM resolves MAX-strategy-fusion, while PPP resolves the
errors from MIN-strategy-fusion.

In the influential article “Overconfidence or Paranoia?
Search in Imperfect-Information Games” (Parker, Nau, and
Subrahmanian 2006) the authors discuss search techniques
assuming either a random opponent or a perfect one. It is
fair to say, that PPP is a PIMC approach on the “overconfi-
dent” side, deriving its decisions partly from the assumption
of a random opponent, while VM represents the “paranoia”
side of the approach. However, the algorithms discussed by
Parker et al. choose an opponent model in the absence of the
knowledge of the actual opponent’s strategy, and calculate a
best response to this modeled strategy. The resulting algo-
rithms need to traverse the entire game tree, without any op-
tion for pruning. This renders their computation intractable
for most non-trivial games. On the other hand, PPP retains
the scalability of SP keeping the algorithm open for games
with larger state spaces.

We close this section with a few remarks. First, while
VM (meaning all subsumed algorithms, including the β-
variants) increases the computational costs in relation to SP
by roughly one magnitude, PPP only does so by a fraction.
Second, we checked all operators needed for VM as well as
for EAM and it is perfectly possible to redefine these op-
erators in a way that both methods can be blended in one
algorithm. Third, while reasoning over the history of a game
may expose definite or probabilistic knowledge of parts of
ιI , we still assume all worlds wj to be equally likely, i.e. we
do not model the opponent. If one decides to use such mod-
eling by associating a probability to each world, the opera-
tors defined in equation (2) can be modified easily to reflect
these probabilities. Forth, there is a variant of PPP termed
Presumed Value PIMC (PVP) aiming at games of imperfect
information that are not decided within a single round of
play (Wisser 2015).

Phantom Tic-Tac-Toe — a Case Study
PPP was designed with the Central–European tricktaking
card game Schnapsen in mind. In this particular game it
has produced an AI agent playing above human expert
level (Wisser 2015). Since the game has an estimated 1020

information sets this game is too large to be open to an
EAA approach, at least without abstraction. Searching for a
game in which we could comparatively evaluate PPP against
EAAs we ran into Phantom Tic-Tac-Toe.

Phantom Tic-Tac-Toe (PTTT) is similar to the classic
game of Tic-Tac-Toe played on a 3x3 board where the goal
of one player is to make a straight horizontal, vertical, or
diagonal line. However there is one critical difference: each
players does not get to see the moves made by the opponent,
so they do not know the true state of the board. Each player
submits a move to a referee who knows the true state of

(0.124,−0.625, (−0.136,−0.875, (0.124,−0.625,
0.3, 0.19) 0.038, 0.19) 0.3, 0.19)

(−0.136,−0.875, (0.759, 0.0, (−0.136,−0.875,
0.038, 0.19) 0.938, 0.19 0.038, 0.19)

(0.124,−0.625, (−0.136,−0.875, (0.124,−0.625,
0.3, 0.19) 0.038, 0.19) 0.3, 0.19)

Figure 3: PPP Evaluation of First O Action in PTTT

the board, and only that player is told whether it succeeded
(there was no opponent piece on that square) or failed (there
was an opponent piece on the square). The turn only alter-
nates when a player plays a successful move, so it is possible
to try several actions that fail in a row before one succeeds.
We will in the following stick with the usual convention, that
the player taking the first action uses symbol X to mark its
actions (player X) and the other player uses O to mark its
actions (player O).

We choose Phantom Tic-Tac-Toe for several reasons.
First, phantom games have been a classical interest for appli-
cation of search algorithms to imperfect information, espe-
cially Monte Carlo techniques (Ciancarini and Favini 2010;
Cazenave 2006). Simply hiding players’ actions makes the
game significantly harder, larger, and amenable to new
search techniques (Auger 2011; Lisy 2014). PTTT has ap-
proximately 1010 unique full game histories and 5.6 · 106
information sets (Lanctot 2013b, Section 3.1.7). Second, it
has been used as a benchmark domain in several analyses
in computational game theory (Teytaud and Teytaud 2011;
Lanctot et al. 2012; Bosansky et al. 2014).

The AI agents we compare are CFR, PPP, SP, VM, PRM,
and RAND. Counterfactual Regret Minimization (Zinkevich
et al. 2008) (CFR) is a popular algorithm that has been
widely successful in computer poker, culminating in the
solving of heads-up limit Texas Hold’em poker (Bowling et
al. 2015). We base our implementation on the pseudo-code
provided in (Lanctot 2013b, Algorithm 1) and Marc Lanc-
tot’s public implementation (Lanctot 2013a). In this domain,
since the same information set can be reached by many
different combinations of opponent actions, to avoid strat-
egy update interactions during an iteration we store regret
changes and then only apply them (and rebuild the strate-
gies) on the following iteration. The CFR strategy we use
was trained in 64k iterations.

Straight Perfect Information Monte Carlo sampling (SP)
goes through all possible configurations of hidden informa-
tion (unknown opponents moves) leading to a set of perfect
information sub-games. These sub-games are evaluated with
standard minimax, so each game state reached by a legal ac-
tion is associated with a vector of minimax values. To decide
on which action to take, the mean values over the compo-
nents of these vectors are compared, and one vector with the
highest mean value is picked (breaking ties randomly). This
is the standard approach to PIMC and this agent is meant as
a reference to compare PPP. Comparing the numbers SP and
PPP produce in the evaluation, one can check the improve-
ment the small change in the otherwise unaltered method
achieves.

391



X \ O CFR PPP SP VMM PRM RAND
CFR 0.6654 0.6653 0.6655 0.8124 0.7333 0.9348
PPP 0.6666 0.7503 0.7501 0.8593 0.7555 0.9532
SP 0.6321 0.4538 0.4533 0.7712 0.5574 0.9343
VMM 0.1333 -0.0207 -0.0195 0.1095 0.1718 0.7040
PRM 0.2109 -0.0876 -0.0873 0.1461 0.1006 0.7107
RAND -0.3789 -0.6192 -0.6172 -0.4849 -0.4542 0.2970

Table 3: Payoff Table for Player X in PTTT (2.5M games each match)

X \ O CFR PPP SP VMM PRM RAND
CFR 71.82% / 5.28% 74.69% / 8.16% 74.72% / 8.17% 85.32% / 4.09% 78.85% / 5.53% 94.54% / 1.06%
PPP 66.66% / 0.00% 75.03% / 0.00% 75.01% / 0.00% 85.93% / 0.00% 75.55% / 0.00% 95.32% / 0.00%
SP 65.69% / 2.48% 59.00% / 13.62% 58.98% / 13.65% 81.38% / 4.27% 66.93% / 11.19% 93.98% / 0.55%
VMM 42.88% / 29.55% 36.30% / 38.36% 36.45% / 38.40% 44.21% / 33.26% 48.16% / 30.97% 79.67% / 9.27%
PRM 51.61% / 30.53% 37.94% / 46.70% 37.98% / 46.71% 49.37% / 34.76% 47.94% / 37.88% 81.21% / 10.14%
RAND 20.69% / 58.58% 12.43% / 74.35% 12.57% / 74.30% 18.58% / 67.07% 20.89% / 66.31% 58.50% / 28.80%

Table 4: Wins / Losses of X in PTTT

Presumed Payoff Perfect Information Monte Carlo sam-
pling (PPP) works similar to SP, but evaluates perfect in-
formation sub-games using EAAB, resulting in a vector of
EAM–values associated to each legal action. Comparison of
these vectors is done following definition 4. Note that two
actions are only evaluated identically if each value pp, ap,
and tp of both actions are identical (we use a small indiffer-
ence threshold below which values are considered identical
to prevent an influence of rounding errors). As knowledge
value k we use the proportion of all our previous actions
the opponent will know on average if our opponent played
random actions. The calculation of this proportion is a bit
involved and it should not make a difference using a coarse
estimate instead, so we omit the equations used. Fig. 3 shows
the evaluation of the first move of PPP playing O placed in
the respective field of a Tic-Tac-Toe board. The values are
tuples (pp,ap, tp, k) and since the value pp of the central
field is greater than in all other fields, it always picks to play
this field.

We also implemented two algorithms of the family of
vector-based algorithms to compare this more defensive ap-
proach, based on the idea of best defense against clairvoyant
play. Prior to applying these algorithms, the game tree has
to be evaluated with standard minimax in perfect informa-
tion sub-games. After this step each leaf node carries a vec-
tor of minimax values. Vector-minimax (VMM) is the most
basic variant. To propagate the values at the leaf nodes up
the game tree, the entire tree is traversed. In MIN nodes the
pointwise minimum of the vectors of all child nodes is at-
tached to the node, in MAX nodes one of the vectors with the
highest mean value is attached. To decide on which action to
take, a child node of the root node is picked, with the highest
mean. Payoff Reduction Minimax (PRM) has an additional
step between minimaxing over sub-games and the vector
minimax step, where payoffs of leaf nodes get reduced de-
pending on the minimax evaluation of their ancestors. This
step is introduced to tackle the problem non-locality. For a
more detailed description, see (Frank and Basin 2001). Fi-

nally, the random agent RAND picks actions uniformly at
random.

Table 3 shows the average payoffs of the agents in 2.5 mil-
lion games for each match. Payoffs are given with respect to
the player taking the first action (X, players in the column)
with 1 for a win, 0 for a draw, and −1 for a loss. For each
value we calculated an approximation of the confidence in-
terval for the proportional value (Agresti–Coull interval) to
a confidence level of 98%. We do not give the intervals for
each value to prevent confusion. Let us just say that all val-
ues are accurate up to±0.0008 (or better), with a confidence
level of 98%.

With optimal play of both players, player X scores an av-
erage of 2

3 per game. The precalculated CFR strategies are
near equilibrium strategies, so not surprisingly CFR play-
ing both, X and O gives an average score near 0.6666 for
X. What is more surprising is that CFR playing X does not
score any better against neither, PPP nor SP playing O. PPP
playing X also scores 0.6666 against CFR, so in game play
PPP is absolutely on par with CFR. Looking at PPP vs. PPP
and PPP vs. SP we see that both show a weakness in being
unable to defend the optimal average playing O. Interest-
ingly PPP playing X is better at exploiting itself than CFR
is, and SP playing X is even playing below optimal against
PPP. Finally, while the values scored against RAND playing
O are nearly equal, RAND playing X gets exploited more
heavily by PPP as well as SP than by CFR. Neither VMM,
nor PRM are anywhere near a reasonable performance in
PTTT match play. PPP, playing X as well as O, is better at
exploiting weaknesses of VMM and PRM than CFR.

To get a better insight we compiled a table showing the
percent of wins/losses for player X in these matches. Table 4
shows the results. What is immediately obvious is that PPP
does not lose a single of its 15M games playing X. While
both CFR and PPP playing X score an average of 2

3 against
CFR (O), the strategies leading to this result are clearly dif-
ferent. While CFR wins more of these games (71.82%) it
occasionally also loses a match (5.28%), while PPP only

392



(σ1, σ2) u1(σ
BR
1 , σ2) u2(σ1, σ

BR
2 )

CFR 0.0047 0.6676 -0.6629
PPP 0.3750 1.0000 -0.6250
SP 0.5648 1.0000 -0.4352

Table 5: Exploitability of Agents in PTTT

wins 66.66% of the games but gets a draw out of the remain-
ing games. However, the overall performance of PPP play-
ing X is equal to that of CFR. This is particularly interesting
since PPP’s X strategy is nearly as unexploitable as CFR’s,
as we shall see in the following. Let us look in contrary to
the results of PPP playing O, against CFR respectively PPP
playing X. While it allows both to win around 75%, it only
manages to win a few games against CFR (8.16%) while it
fails to win a single game against itself. It is the O–part of
the strategy produced by PPP that seems vulnerable.

Looking at the results of VMM and PRM playing X it is
obvious that both lose a lot of games. Even against a ran-
dom player they lose around 10% of their games playing X.
This is due to the assumption of an opponent that is perfectly
informed about the board situation, which makes them con-
cede a lot of games too early.

In summary, PPP is either on par or significantly better
than SP in each constellation and it is far ahead of VMM
and PRM. PPP is on par with CFR, being even better in
exploiting weaknesses with one exception: it gets exploited
by itself (PPP playing O) losing 0.7503, while CFR playing
O only loses 0.6666 against PPP. These results were very
surprising, since we did not expect PPP to work that well
compared to CFR. Clearly, the “overconfident” version of a
PIMC approach (PPP) outperforms the “paranoid” versions
(VMM, PRM).

Another measure for the quality of a strategy is its ex-
ploitability. As we have already seen in game play, PPP’s
O strategy is exploitable. We use exploitability to determine
how close each strategy is from a Nash equilibrium. If player
1 uses strategy σ1 and player 2 uses strategy σ2, then a
best response strategy for player 1 is σBR

1 ∈ BR(σ2), where
BR(·) denotes the set of strategies for which player 1’s util-
ity is maximized against the fixed σ2. Similarly for player 2
versus player 1’s strategy. Then, exploitability is defined by

(σ1, σ2) = u1(σ
BR
1 , σ2) + u2(σ1, σ

BR
2 ), (5)

and when this value is 0 it means neither player has incentive
to deviate and σ = (σ1, σ2) is a Nash equilibrium. Finally,
unlike Poker, in PTTT information sets contain histories of
different length; to compute these best response values our
implementation uses generalized expectimax best response
from (Lanctot 2013b, Appendix B). For the computation we
extracted the entire strategies of PPP and SP. Each informa-
tion set was evaluated with the respective algorithm and the
resulting strategy was recorded. The resulting strategy com-
pletely resembles the behavior of the respective agent.

Table 5 shows the exploitability, the average payoff of
a best response strategy against the O-part of the strategy,
and the average payoff of a best response against the X-part.
While CFR is quite close to a Nash equilibrium, PPP as well

as SP show exploitability. While SP is exploitable in its X
as well as its O strategy, PPP is mainly exploitable in its O
strategy, resolving the exploitability of the X strategy.

The strategies the PIMC based agents produce are mainly
pure strategies. Only in cases of equally rated best actions
the probabilities are equally distributed. Looking back at
Fig. 3 we see, that the first action of PPP playing O is al-
ways the central field. So the strategies are “pseudo–mixed”,
which contributes to their exploitability. While it is possible
to compile truly mixed strategies out of the evaluation of
PPP, we did not succeed until now in finding a method that
leads to a mixed strategy with a performance comparable to
the pseudo–mixed strategies.

This is clearly a downside of a PIMC approach. We still
think it is worth considering the method in larger games of
imperfect information mainly for two reasons. First, com-
pared to CFR it is extremely fast allowing just-in-time evalu-
ation of actions. Calculating the CFR strategy for PTTT took
several days of precalculation. SP as well as PPP evaluate all
actions within less than 0.05 seconds on a comparable ma-
chine. Second, especially in larger games in the absence of
knowledge over the entire strategy of the opponent, finding
a best response strategy (i.e. maximally exploiting an op-
ponent) may not be possible within a reasonable amount of
games played. We run an online platform1 for the tricktaking
card game Schnapsen backed by an AI agent using PVP (a
variant of PPP). No human player, even those who played a
few thousand games, is able to play superior to PVP in the
long run, with most humans playing significantly inferior.
This is clearly not a proof against theoretical exploitability,
still it shows that at least human experts in the field fail to
exploit it.

Conclusion and Future Work
Despite its known downsides PIMC still is an interesting
search techniques for imperfect information games. With
modifications of the standard approach it is able to produce
reasonable to very good AI agent in many games of im-
perfect information, without being restricted to games with
small state-spaces.

We implemented PPP for heads-up limit Texas Hold’em
total bankroll, to get a case study in another field. Unfortu-
nately this game will not be played in the annual computer
poker competition (ACPC) in 2016 and we were unable to
organize a match up with one of the top agents of ACPC
2014 so far. We are about to implement a PVP backed agent
for the no-limit Texas Hold’em competition.

We still are searching for a method to compile a truly
mixed strategy out of the evaluations of PPP, resolving or
lessening the exploitability of the resulting strategy.

Acknowledgments
We are very thankful for the support of Marc Lanctot, an-
swering questions, pointing us to the references on PTTT,
and sharing his implementation of CFR in PTTT. Without
his help this work would not have been possible.

1http://www.doktorschnaps.at/

393



References
Auger, D. 2011. Multiple tree for Monte Carlo tree search.
In Applications of Evolutionary Computation, volume 6624
of LNCS. 53–62.
Bosansky, B.; Kiekintveld, C.; Lisy, V.; and Pechoucek,
M. 2014. An exact double-oracle algorithm for zero-sum
extensive-form games with imperfect information. Journal
of Artificial Intelligence 51:829–866.
Bowling, M.; Burch, N.; Johanson, M.; and Tammelin, O.
2015. Heads-up limit holdem poker is solved. Science
347(6218):145–149.
Buro, M.; Long, J. R.; Furtak, T.; and Sturtevant, N. R. 2009.
Improving state evaluation, inference, and search in trick-
based card games. In Boutilier, C., ed., IJCAI 2009, Pro-
ceedings of the 21st International Joint Conference on Ar-
tificial Intelligence, Pasadena, California, USA, July 11-17,
2009, 1407–1413.
Cazenave, T. 2006. A phantom-Go program. In Advances
in Computer Games, volume 4250 of LNCS. 120–125.
Ciancarini, P., and Favini, G. 2010. Monte Carlo tree search
in Kriegspiel. Artificial Intelligence 174(11):670–684.
Frank, I., and Basin, D. A. 1998a. Optimal play against best
defence: Complexity and heuristics. In van den Herik, H. J.,
and Iida, H., eds., Computers and Games, volume 1558 of
Lecture Notes in Computer Science, 50–73. Springer.
Frank, I., and Basin, D. A. 1998b. Search in games with
incomplete information: A case study using bridge card play.
Artif. Intell. 100(1-2):87–123.
Frank, I., and Basin, D. A. 2001. A theoretical and empir-
ical investigation of search in imperfect information games.
Theor. Comput. Sci. 252(1-2):217–256.
Frank, I.; Basin, D. A.; and Matsubara, H. 1998. Find-
ing optimal strategies for imperfect information games. In
AAAI/IAAI, 500–507.
Ginsberg, M. L. 2001. GIB: imperfect information in a com-
putationally challenging game. J. Artif. Intell. Res. (JAIR)
14:303–358.
Johanson, M.; Burch, N.; Valenzano, R.; and Bowling, M.
2013. Evaluating state-space abstractions in extensive-form
games. In Proceedings of the 2013 international conference
on Autonomous agents and multi-agent systems, 271–278.
International Foundation for Autonomous Agents and Mul-
tiagent Systems.
Lanctot, M.; Gibson, R.; Burch, N.; and Bowling, M. 2012.
No-regret learning in extensive-form games with imperfect
recall. In Proceedings of the Twenty-Ninth International
Conference on Machine Learning (ICML 2012).
Lanctot, M. 2013a. Counterfactual regret minimization code
for Liar’s Dice. http://mlanctot.info/.
Lanctot, M. 2013b. Monte Carlo Sampling and Regret
Minimization for Equilibrium Computation and Decision-
Making in Large Extensive Form Games. Ph.D. Disserta-
tion, University of Alberta, University of Alberta, Comput-
ing Science, 116 St. and 85 Ave., Edmonton, Alberta T6G
2R3.

Lisý, V.; Lanctot, M.; and Bowling, M. 2015. Online Monte
Carlo counterfactual regret minimization for search in im-
perfect information games. In Proceedings of the Fourteenth
International Conference on Autonomous Agents and Multi-
Agent Systems (AAMAS), 27–36.
Lisy, V. 2014. Alternative selection functions for informa-
tion set Monte Carlo tree search. Acta Polytechnica: Journal
of Advanced Engineering 54(5):333–340.
Parker, A.; Nau, D. S.; and Subrahmanian, V. S. 2006. Over-
confidence or paranoia? search in imperfect-information
games. In Proceedings, The Twenty-First National Confer-
ence on Artificial Intelligence and the Eighteenth Innovative
Applications of Artificial Intelligence Conference, July 16-
20, 2006, Boston, Massachusetts, USA, 1045–1050. AAAI
Press.
Russell, S., and Norvig, P. 2003. Artificial Intelligence: A
Modern Approach, Second Edition. Upper Saddle River, NJ:
Prentice Hall.
Schofield, M.; Cerexhe, T.; and Thielscher, M. 2013.
Lifting hyperplay for general game playing to incomplete-
information models. In Proc. GIGA 2013 Workshop, 39–45.
Teytaud, F., and Teytaud, O. 2011. Lemmas on partial obser-
vation, with application to phantom games. In IEEE Confer-
ence on Computational Intelligence and Games (CIG), 243–
249.
Wisser, F. 2010. Creating possible worlds using sims ta-
bles for the imperfect information card game schnapsen. In
ICTAI (2), 7–10. IEEE Computer Society.
Wisser, F. 2013. Error allowing minimax: Getting over in-
difference. In ICTAI, 79–86. IEEE Computer Society.
Wisser, F. 2015. An expert-level card playing agent based
on a variant of perfect information monte carlo sampling. In
Proceedings of the 24th International Conference on Artifi-
cial Intelligence, 125–131. AAAI Press.
Zinkevich, M.; Johanson, M.; Bowling, M.; and Piccione,
C. 2008. Regret minimization in games with incomplete
information. In Advances in Neural Information Processing
Systems 20 (NIPS 2007).

394




