
Clauses Versus Gates in CEGAR-Based 2QBF Solving

Valeriy Balabanov,1,2 Jie-Hong R. Jiang,2
Alan Mishchenko,3 and Christoph Scholl4

1CSD, Mentor Graphics, Fremont, USA
2GIEE, National Taiwan University, Taipei, Taiwan
3EECS, University of California, Berkeley, USA

4IIF, University of Freiburg, Freiburg i. Br., Germany

Abstract
2QBF is a special case of general quantified Boolean
formulae (QBF). It is limited to just two quantification
levels, i.e., to a form ∀X∃Y.φ. Despite this limitation
it applies to a wide range of applications, e.g., to ar-
tificial intelligence, graph theorysynthesis, etc.. Recent
research showed that CEGAR-based methodsgive a per-
formance boost to QBF solving (e.g, compared to QD-
PLL). Conjunctive normal form (CNF) is a commonly
accepted representation for both SAT and QBF prob-
lems; however, it does not reflect the circuit structure
that might be present in the problem. Existing attempts
of extracting this structure from CNF and using it in
2QBF context do not show advantages over CNF based
2QBF solvers. In this work we introduce a new work-
flow for 2QBF, containing a new semantic circuit ex-
traction algorithm and a CEGAR-based 2QBF solver
that uses circuit structure and is improved by a so-called
“cofactor sharing” heuristics. We evaluate the proposed
methodology on a range of benchmarks and show the
practicality of the new approach.

1 Introduction
Satisfiability solving (SAT) recently attracted a lot of at-
tention due to its numerous applications in computer sci-
ence (Silva and Sakallah 2000). Some problems (e.g., in
the domains of artificial intelligence and games), however,
are beyond the reach of SAT solving alone but are natu-
rally expressible in terms of quantified Boolean formulas
(QBFs) (Remshagen and Truemper 2005). 2QBF is a re-
striction of general QBF problems to only two quantifica-
tion levels, i.e., to the form ∀X∃Y.φ or ∃Y ∀X.φ, where φ is
a quantifier-free propositional formula. Despite this restric-
tion many applications can be naturally expressed in 2QBF
language (Remshagen and Truemper 2005; Mneimneh and
Sakallah 2003; Mishchenko et al. 2015). 2QBF is a an old
problem, and many methods were proposed for solving it.
Recent research showed benefits of using counter-example
guided abstraction refinement (CEGAR) approaches in QBF
solving (Janota et al. 2012), and particularly for 2QBF (Jan-
ota and Marques-Silva 2015).

Conjunctive normal form (CNF) is a commonly accepted
format for propositional satisfiability problems. It is as

Copyright c© 2016, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

well extended to QCNF and used to represent QBF prob-
lems (QBFLIB 2005). It is not an uncommon case, however,
that originally QBF is specified on a circuit, rather on a CNF.
E.g., in (Mishchenko et al. 2015) FPGA synthesis bench-
marks are formulated on And-Inverter graphs (AIGs), which
is an efficient way to represent general Boolean networks. It
is known that any Boolean circuit can be transformed into an
equisatisfiable CNF formula, by the various CNFization pro-
cedures, e.g., by Tseitin transform (Tseitin 1970). The same
procedure extends to the QBF context. As QCNF became a
unifying platform for QBF problems from various domains,
most of the time QBF solving engines do not have access to
the original circuit structure of the problem. Previously there
were attempts at extracting circuit information from CNF
formulas, and use it in SAT and QBF solving (Ostrowski et
al. 2002; Eén and Biere 2005; Pigorsch and Scholl 2009;
Goultiaeva and Bacchus 2013). Most of them use the same
“template matching” algorithms for gate definition detec-
tion. Extracted circuit information, however, previously did
not show benefits over specialized CNF 2QBF solvers (Jan-
ota and Marques-Silva 2015).

In this work we introduce three contributions. First, we
explicitly show that circuit information is crucial for robust
CEGAR-based 2QBF solving (Section 3). Second, we show
how the ideas from efficient CNF 2QBF solvers can be ex-
tended to the circuit context (Section 4). And last but not
least, we propose a semantic gate extraction algorithm, and
use it to convert 2QBF problems from QCNF to circuit for-
mat (Section 5). This step completes our new 2QBF solv-
ing workflow. In Section 6 we show that our 2QBF solver,
based on all the three contributions, outperforms existing al-
gorithms on benchmarks from QBF competitions as well as
on the crafted benchmarks from a synthesis application.

2 Preliminaries
In this work we shall use commonly accepted notations from
Boolean algebra and logic. A Boolean variable is interpreted
over the binary domain {0, 1}. A literal is either a variable or
its negation. A clause (resp. cube) is a disjunction (resp. con-
junction) of literals (sometimes we might use set operations
on clause/cube literals as well for convenience). A Boolean
formula in conjunctive normal form (CNF) is a conjunction
of clauses. A Boolean formula in disjunctive normal form
(DNF) is a disjunction of cubes. Both CNF and DNF might

The Workshops of the Thirtieth AAAI Conference on Artificial Intelligence
Beyond NP: Technical Report WS-16-05

280

Cegar2Qbf

input: a QBF Φ = ∀X∃Y.φ
output: True or False
begin
01 synMan[X] := 1; verMan[X,Y] := φ;
02 while True
03 αX := SatSolve(synMan);
04 if αX = ∅ then return True;
05 αY := SatSolve(verMan, αX);
06 if αY = ∅ then return False;
07 negCof := ¬φ|αY

;
08 synMan := synMan ∧ negCof;
end

Figure 1: CEGAR algorithm for generic 2QBF solving.

be subject to set operations for convenience. As a notational
convention, we may also sometimes omit the conjunction
symbol (∧), denote disjunction (∨) by the symbol “+,” and
represent negation (¬) by an overline.

For a Boolean formula φ(x1, .., xi, .., xn), we
say its positive (resp. negative) cofactor with re-
spect to variable xi, denoted φ|xi (resp. φ|xi),
is the formula φ(x1, .., xi−1, 1, xi+1, .., xn) (resp.
φ(x1, .., xi−1, 0, xi+1, .., xn)). The cofactor definition
also extends to a cube of literals α = l1 ∧ .. ∧ lm, with the
following recursive definition φ|α = (φ|α\lm)|lm , where
φ|lm is a positive (resp. negative) cofactor with respect
to variable var(lm) if lm is a positive (resp. negative)
literal. We say that formula φ is satisfiable if there is an
assignment to its variables that evaluates φ to true. We say φ
is unsatisfiable otherwise. We define an unsatisfiable core of
an unsatisfiable CNF formula φ as an arbitrary unsatisfiable
subset of clauses of φ.

A two-quantified Boolean formula (2QBF) Φ over uni-
versal variables X = {x1, . . . , xm} and existential vari-
ables Y = {y1, . . . , yn} in prenex form is of the form
Φ = ∀x1 · · ·xm∃y1 · · · yn.φ, where the quantification part
is called the prefix, denoted Φpfx, and φ, a quantifier-free
formula in terms of variables X and Y , is called the matrix,
denoted Φmtx. We say that 2QBF Φ is false if there exists
an assignment αX to a set X of variables (also referred to
as the winning strategy or winning move of the universal
player) such that Φmtx |αX

(which is a function of Y vari-
ables) is unsatisfiable. We say Φ is true otherwise (i.e., a
winning strategy for the universal player does not exist). In
this work we shall study efficient ways of determining the
values of 2QBF formulas represented in prenex form.

3 Prior work on CEGAR-based 2QBF
solving

In Figure 1 we outline the generic CEGAR-based algo-
rithm Cegar2Qbf for solving an arbitrary 2QBF formula
in prenex form, introduced in (Janota et al. 2012).

In line 1 of Figure 1 we initialize two SAT solving man-

agers: synthesis manager synMan (i.e., trying to guess the
winning strategy of the universal player) and verification
manager verMan (i.e., trying to verify if the guess was
correct or not). Initially synMan contains variables X and
verMan contains variables X and Y . In line 3 we search
for a candidate winning strategy. If all candidates have been
blocked, the 2QBF is determined to be true in line 4. In
line 5 we search for a counterexample to the candidate win-
ning strategy, which renders φ true (i.e., it disproves the
candidate winning move αX). Note that if CNF is used as
an underlying data structure for verMan, then αX can be
easily passed to the SAT solver via its assumptions inter-
face (which is commonly available in modern SAT solvers,
e.g., in MINISAT (Eén and Sörensson 2003)). If no coun-
terexample is found, then we conclude in line 6 that 2QBF
is false. Otherwise we compute a cofactor φ|αY

in line 7,
and block all the knowingly wrong candidates X ′, such that
φ|αY

(X ′) = 1, in line 8. Please note that the major dif-
ference of this algorithm compared to QDPLL-based algo-
rithms (Giunchiglia, Narizzano, and Tacchella 2006; Lons-
ing and Biere 2010) is that in QDPLL negCof is simply
substituted with ¬αX , i.e., with intention to block the failed
candidate within synMan. The strength of Cegar2Qbf is
in that besides αX it potentially blocks several other assign-
ments.

Algorithm Cegar2Qbf may be applied to an arbitrary
2QBF in prenex form regardless of the representation of its
matrix. Some QBF solvers use And-Inverter graphs (AIGs)
as an underlying matrix structure (Pigorsch and Scholl 2009;
Mishchenko et al. 2015). On the other hand, as CNF has
proven to be an efficient data structure for SAT solving (e.g.,
due to an efficient representation of learnt information in the
form of learnt clauses (Eén and Sörensson 2003)), (Q)CNF
is also the most commonly accepted QBF matrix represen-
tation format (QBFLIB 2005). We therefore distinguish be-
tween CNF and circuit 2QBF solvers, depending on the ma-
trix input format that they accept.

Up to the authors knowledge there is no much research
done on the circuit CEGAR-based 2QBF solving besides
that in (Mishchenko et al. 2015). On the other hand CNF
CEGAR-based 2QBF solving was studied in (Janota et al.
2012) and (Janota and Marques-Silva 2015). Below we ex-
plain the efficient implementation idea of CNF CEGAR-
based 2QBF solver, introduced in (Janota and Marques-
Silva 2015) (we shall call it QESTO, by the name of the tool).

Please note that verMan is initialized to φ itself in line 1
of Figure 1 and is never changed, while synMan is con-
stantly changed by conjunctions with negCof in line 8.
If the matrix is already represented in CNF, then the main
complication of the algorithm is the CNFization of negCof
prior to conjunction with synMan. The approach of (Jan-
ota et al. 2012) suggested to use a Tseitin transform, i.e., to
perform a syntactic negation at the cost of introducing fresh
variables, independently for each cofactor. This approach,
however, suffers from variable blow up within synMan after
a large number of iterations. On the other hand the QESTO
approach shall allow us to efficiently represent larger num-
bers of cofactors within synMan without suffering from the
variables blow up. The idea is as follows: Consider a matrix

281

φ = C1∧C2∧ ..∧Cn, where each Ci is split into existential
literals Cei and universal literals Cui. Notice that regardless
of the specifics of the assignment αY , negCof always takes
the form ¬Cuj1 ∨¬Cuj2 ∨ ..∨¬Cujk . This observation sug-
gests to introduce definitions di ≡ ¬Cui for each i ∈ [1..n],
which allows to represent negCof now conveniently as a
clause (dj1 + dj2 + ..+ djk). This means that we introduce
at most n fresh variables, independently from the number of
iterations of the while loop (line 2 in Figure 1). Under this
scenario, the algorithm in Figure 1 is modified to initialize
the synthesis manager by

synMan[X,D] :=
∧

i∈[1..n]

(di ≡ ¬Cui).1

The QESTO approach was experimentally shown to be
superior to others (Janota and Marques-Silva 2015). In the
next section we will examine the advantages and disadvan-
tages of CNF CEGAR-based 2QBF solving, and introduce
a heuristics, inspired by QESTO, to improve existing circuit
CEGAR-based 2QBF algorithms.

4 Circuit versus CNF 2QBF solving
Given a non CNF formula φ (e.g., represented as an AIG)
one could CNFize it (i.e., transform it to an equisatisfiable
CNF form, for example by using Tseitin transform (Tseitin
1970)) to get φCNF , and then run the QESTO algorithm in-
troduced in Section 3. We, however, speculate that this is
an inefficient approach. The following example shows that
solving a 2QBF formula with its original matrix φ could be
more effective compared to CNF-based solving.
Example 1. Consider the following simple true 2QBF for-
mula Φ = ∀x∃ab.φ, where φ is given as a circuit

(g1 = AND(x, a)) (g2 = AND(x, b)) (f = OR(g1, g2)),

with a single output f and two internal gates g1 and
g2. Assume now that the synthesis solver in algorithm
Cegar2Qbf depicted in Figure 1 comes up with a candi-
date αX = x (i.e., assigns x = 0), and the verification
solver returns a counterexample αY = ab (i.e., assigns
a = 1 and b = 1). Note that in this case negCof = 0,
i.e., it blocks all the universal candidate assignments, and
we immediately conclude that Φ is true.

Now let us look at the same 2QBF, but CNFized by Tseitin
transform prior to solving, i.e., at

Φ′ = ∀x∃abg1g2.φCNF , where
φCNF = (g1 + x+ a)(g1 + x)(g1 + a)

∧ (g2 + x+ b)(g2 + x)(g2 + b)(g1 + g2).

Similarly, assume that the synthesis solver in algorithm
Cegar2Qbf guesses candidate αX = x. The verification

1di ≡ ¬Cui can be viewed as a conjunction of two implica-
tions. Since (apart from this definition) variables di only occur as
positive literals in the formula synMan, di ≡ ¬Cui can be re-
placed by one of the two implications, namely by di ⇒ ¬Cui. This
modification corresponds to using the Plaisted/Greenbaum encod-
ing (Plaisted and Greenbaum 1986) instead of Tseitin transforma-
tion (Tseitin 1970) and is also used in (Janota and Marques-Silva
2015).

solver now replies with a counterexample αY = abg1g2.
negCof in this case is computed to be negCof = x, i.e., it
only blocks the candidate x = 0, and one more iteration is
needed to conclude that Φ′ is true.

The intuition behind Example 1 is as follows. Whenever
the counterexample (line 5 in Figure 1) is computed on CNF
level, it fixes a value assignment to the auxiliary variables
(i.e., intermediate variables introduced during CNFization)
as well. The negated cofactor (line 7 in Figure 1) in this case
shall only block X assignments which respect those values.
This phenomenon is summarized in Proposition 1.
Proposition 1. Given a 2QBF Φ = ∀X∃Y.φ, with φ repre-
sented as a circuit, and an assignment αY to Y variables.
Further given two assignments αX1

and αX2
to X vari-

ables, such that

φ|αY αX1
∧ φ|αY αX2

∧ ∃G ∈ φ : G|αY αX1
⊕G|αY αX2

(i.e., the output of φ evaluates to the same value under two
input assignments, but there is an internal gate disagree-
ment). Then αX1

and αX2
shall be blocked within the same

iteration computing counterexample αY in line 5 of Fig-
ure 1, if algorithm Cegar2Qbf is applied to Φ. On the
other hand αX1

and αX2
shall not be blocked within the

same iteration, if Cegar2Qbf is applied to a (by Tseitin
transform) CNFized version of Φ.

Example 1 and Proposition 1 show that flattening the cir-
cuit structure into CNF affects the 2QBF solving process
more than it does for propositional SAT. SAT solvers use
CNF structure for efficiency reasons, e.g., for clause learn-
ing. In CEGAR based QBF solvers, however, the situation is
different. As experiments shall confirm later, one may effi-
ciently use CNF for underlying SAT queries, but cofactoring
on circuit level instead of CNF decreases the number of it-
erations needed for completion of algorithm Cegar2Qbf a
lot. We shall see that this decrease in the number of iterations
even overcomes the benefits of efficient cofactor representa-
tion in QESTO algorithm applied after circuit CNFization.

Please note that, even in circuit 2QBF solvers, the SAT
queries in line 3 of algorithm Cegar2Qqbf (Figure 1) are
made to a CNF-based SAT solver. This choice is caused by
a specific “incremental” nature of the underlying SAT calls:
Please recall that synthesis manager synMan is updated by
iterative conjunction with negCof in line 8 of Figure 1,
i.e., in each iteration clauses from the CNFized negCof are
added to manager synMan. Following the ideas of struc-
tural hashing of nodes in And-Inverter graphs (AIGs) we
propose algorithm AigShare2Qbf depicted in Figure 2
for circuit 2QBF solving.

The core CEGAR procedure of algorithm
AigShare2Qbf is the same as that of Cegar2Qbf.
Furthermore Cegar2Qbf may use AIGs as an underlying
structure of its verification manager and negated cofac-
tors as well. The only difference is the cofactor hashing
heuristics (lines 8 and 9 in Figure 2). More specifically in
line 8 we extract a subset newAnd of AND gates from
negCof that have not been hashed previously. Then in
line 9 we hash them and add them to the AIG manager
aigMan. In line 10 we add CNFized newAnd gates to

282

AigShare2Qbf

input: a QBF Φ = ∀X∃Y.φ
output: True or False
begin
01 synMan[X]:=1; verMan[X,Y]:=φ; aigMan:=∅;
02 while True
03 αX := SatSolve(synMan);
04 if αX = ∅ then return True;
05 αY := SatSolve(verMan, αX);
06 if αY = ∅ then return False;
07 negCof := AIG(¬φ|αY

);
08 newAnd := NotHashed(negCof,aigMan);
09 Hash(aigMan,newAnd);
10 synMan := synMan ∧ CNF(newAnd);
end

Figure 2: CEGAR algorithm for AIG based 2QBF solving
with cofactor sharing heuristics.

synMan. For AND gates in line 8 which have been hashed
previously, synMan already contains clauses for the cor-
responding definitions. As shall be seen from experiments,
cofactor sharing heuristic gives a significant improvement
on the benchmarks where a lot of iterations are needed for
algorithm Cegar2Qbf to converge.

5 Semantic gate extraction and circuit
reconstruction

Given the extra-strength of circuit-based 2QBF solvers, in
this section we introduce a procedure (referred to as de-
CNFization) of converting a plain CNF formula into an equi-
satisfiable single-output circuit. De-CNFization was already
partially used in SAT and QBF solving, by extracting gate
definitions from CNF (Ostrowski et al. 2002; Eén and Biere
2005; Pigorsch and Scholl 2009; Goultiaeva and Bacchus
2013). Earlier approaches relied on a syntactic extraction of
gate definitions, i.e., they looked for subsets of a CNF corre-
sponding to gate definitions in a certain form. This approach
has two basic disadvantages: First, the approach is only able
to detect gate definitions for pre-defined gate types (typically
“AND-like” and “XOR-like” gates), other gate definitions
can not be found. Secondly, the CNF for the definition of a
non-trivial gate does not need to be unique. In such a case,
syntactic approaches looking for certain patterns will have
difficulties. In this section we propose an efficient gate ex-
traction algorithm relying on semantic rather than syntactic
gate detection. Semantic gate extraction was also indirectly
studied in (Grégoire et al. 2004; Lang and Marquis 2008;
Lagniez and Marquis 2014), but never applied in the QBF
context. Independent performance comparison of our de-
CNFization approach to existing ones is out of the scope of
this paper, and is left for future work.

An overview of our de-CNFization algorithm is given in
Figure 3. We use standard “template-matching” ways to find
AND-like gates (line 1 in Figure 3, function FindAnd) and

CnfToCircuit

input: a CNF φCNF = {C1, . . . , Cn}
output: circuit φ
begin
01 andGates := FindAnd(φCNF);
02 restCls := φCNF \ Cls(andGates) ;
03 xorGates := FindXor(restCls);
04 restCls := restCls \ Cls(xorGates) ;
05 semGates := FindSem(restCls);
06 restCls := restCls \ Cls(semGates) ;
07 allGates := andGates ∪ xorGates ∪

∪ semGates ;
08 PIs := UndefinedVars(allGates);
09 foreach Ci in restCls
10 allGates := allGates ∪ (gi = Ci);
11 allGates := allGates ∪ (PO =

∧
(gi));

12 φ := BuildCircuit(PIs,PO,allGates);
end

Figure 3: De-CNFization procedure.

XOR-like gates (line 3 in Figure 3, function FindXor). Af-
ter that we make use of the more general “semantic-based”
definition detection (line 5 in Figure 3, function FindSem).

To see how the CnfToCircuit algorithm works con-
sider the following CNF:
Example 2.

φCNF = (x+ a+ c)(x+ c)(a+ c)

∧ (b+ d+ x)(b+ d+ x)(b+ d+ y)(b+ d+ y)

∧ (f + c+ d)(f + c)(f + d)f

Note that it encodes the satisfiability problem of the combi-
national circuit

φ = [c = AND(a, x)]∧ [d = ITE(b, y, x)]∧ [f = OR(c, d)],

where a, b, x, y are the primary inputs of the circuit, c and d
are internal gates, and f is its single primary output. There-
fore the satisfiability of φCNF could be determined by the
satisfiability of φ.

Note that FindAnd routine of algorithm CnfToCircuit
shall detect gate definitions for variables c and f , but will fail
to detect a gate definition for the variable d. The definition
for variable d will be found using semantic extraction rou-
tine FindSem, as is explained below.

Intuition suggests the following informal condition for the
presence of a gate definition: The gate definition for variable
x is encoded in CNF, if under any assignment to other vari-
ables a unique assignment to x satisfies the formula. If we
relax the unique condition to at most one, then we say that
x is a dependent variable (the difference shall be seen later).
In both cases x could be re-expressed as a function of other
variables, without changing the satisfiability of the formula.

We first start with a general method for semantic gate ex-
traction which is then followed by an efficient heuristics.

283

Let us consider a CNF φCNF which is partitioned into two
disjoint sets φdef and φrem. The subset φdef contributes a
gate definition for a variable x, if φdef |x ⊕ φdef |x is valid
(or equivalently if φdef |x ≡ φdef |x is unsatisfiable). Then
x = φdef |x (or equivalently x = φdef |x) is a suitable defi-
nition for variable x as the following theorem states.
Theorem 1. Consider a CNF φ1 = φdef ∧ φrem and the
(non CNF) formula φ2 = (x ≡ φdef |x) ∧ φrem, Then φ1
and φ2 are equivalent, if φdef |x ≡ φdef |x is unsatisfiable.

Proof. It is easy to see that using the precondition of the
theorem, φ1 can be rewritten into φ2. It holds
φ1 = φdef ∧ φrem

= (x+ φdef |x) ∧ (x+ φdef |x) ∧ φrem
= (x+ φdef |x) ∧ (x+ φdef |x) ∧ φrem

(since φdef |x ≡ φdef |x due to precondition)

= (x ≡ φdef |x) ∧ φrem = φ2.

The semantic gate detection according to Theorem 1 has
the disadvantage that the partition of the CNF φ1 into φdef
and φrem has to be guessed. This problem can be solved in
principle by introducing a set D of new de-activation vari-
ables di into the problem. From φ1(Y) we compute a CNF
φ′1(D,Y) by replacing each clause Ci in φ1 by Ci + di, i.e.,
the clause may be de-activated by setting di = 1. Now each
assignment to the de-activation variables in some satisfying
solution to the 2QBF ∃D∀Y φ′1|x ⊕ φ′1|x defines an appro-
priate subset φdef of φ1 according to Theorem 1.

To improve the performance of the introduced approach
we propose to use two heuristics. First, we limit the search
for the gate definitions of variable x only to clauses that con-
tain x or x. Note that for the commonly used Tseitin trans-
form we can guarantee that all the definition clauses for vari-
able x shall indeed contain either x or x, therefore by using
our heuristics we will not overlook any gate. On the other
hand, in general it is possible that under this restriction we
may miss some gate definitions.

As a further step, we relax our search from the “gate def-
initions” to the “dependent variables”. To explain the ap-
proach we consider a general CNF
φ1 = (A1+x) . . . (Am+x)(B1+x) . . . (Bn+x)C1 . . . Ck,

where Ai and Bj (i ∈ [1 . . .m] and j ∈ [1 . . . n]) are
subclauses, and Ci (i ∈ [1 . . . k]) are clauses. Now, in-
stead of the unsatisfiability check for the formula in The-
orem 1, we propose to detect the unsatisfiability of the CNF
A1 . . . AmB1 . . . Bn. The consequences of this are summa-
rized by Theorem 2. Please note that the notations intro-
duced in this paragraph are re-used in Theorem 2.
Theorem 2. Assume that A1 . . . AmB1 . . . Bn is unsatisfi-
able, and we are given its unsatisfiable core (not necessarily
minimal) to be Ai1 . . . AipBj1 . . . Bjq . Further let
φdef = (Ai1 + x) . . . (Aip + x)(Bj1 + x) . . . (Bjq + x)

φrem = C1 . . . Ck ∧ (B1 + x) . . . (Bn + x) ∧

∧
∧

t∈[1...m]\{i1,...,ip}
(At + x)

φ2 = (x ≡ φdef |x) ∧ φrem.

Then we say that x = φdef |x is a pseudo definition for x,
and the formulas φ1 and φ2 are equivalent.

Note that in Theorem 2 φdef and φrem are not disjoint,
but both contain the clauses (Bj1 + x) . . . (Bjq + x). The
assumption of the theorem requires that φdef |x ∧ φdef |x is
unsatisfiable instead of φdef |x ≡ φdef |x as in Theorem 1.

Proof. First observe that

(x ≡ φdef |x)↔ ((Ai1 +x) . . . (Aip +x)(x∨(Ai1 . . . Aip)))

Therefore φ2 = φ1 ∧ (x∨ (Ai1 . . . Aip)). Clearly, under any
assignment to the variables φ2 → φ1. Now assume that un-
der a given assignment to its variables φ1 is true. We prove
that (x ∨ (Ai1 . . . Aip)) must be true by splitting on the as-
signment to x:

• If x = 0 then clearly (x ∨ (Ai1 . . . Aip)) is true.
• If x = 1 then Bj1 ∧ . . . ∧ Bjq must be true (in or-

der to satisfy φ1). Taking in account unsatisfiability of
Ai1 . . . AipBj1 . . . Bjq we conclude that Ai1 ∧ . . . ∧ Aip
is false, and therefore (x ∨ (Ai1 . . . Aip)) is again true.

Now since (x∨ (Ai1 . . . Aip)) is true and φ1 is true, φ2 must
be true as well.

Intuitively gate definitions and pseudo definitions are very
similar. Both could be added into the structure of the de-
CNFized circuit. The only difference is that after detec-
tion of a gate we remove all its defining clauses from the
CNF, while for pseudo gates we only remove those defining
clauses containing positive literal x. Please also note that if
a CNF was obtained from a circuit through the Tseitin trans-
formation, then there is a big chance that Bj1 ∧ . . .∧Bjq =

Ai1 ∨ . . . ∨ Aip , given that Ai1 . . . AipBj1 . . . Bjq is a min-
imal unsatisfiable core (MUS). In this special case pseudo
definition becomes a gate definition, since φdef |x ≡ φdef |x
is unsatisfiable, and the clauses (Bj1 + x) . . . (Bjq + x) can
be removed from φrem. For instance, this situation occurs
for the definition of d in Example 2 as is shown below. After
simplifying φCNF in Example 2 by unit propagation on f ,
and collecting all the clauses containing d, we obtain

φd = (b+ d+ x)(b+ d+ x)(b+ d+ y)(b+ d+ y)(c+ d).

Further, φd|d ∧ φd|d = (b + x)(b + x)(b + y)(b + y)(c) is
unsatisfiable, with a minimal core (b+x)(b+x)(b+y)(b+y).
Following Theorem 2 we assign

φdef = (b+ d+ x)(b+ d+ x)(b+ d+ y)(b+ d+ y),

and notice that φdef |d ≡ φdef |d, therefore concluding that
d = (b + x)(b + y) is a gate definition. Consequently,
CnfToCircuit(φCNF) returns precisely the original cir-
cuit φ.

Note that the extraction of gate definitions as sketched in
this section is not yet tailored towards QBF solving. If gate
detection for a variable x is used for QBF solving, we need
the additional restriction that x is an existential variable and
does not depend on universal variables that follow x in the
quantifier prefix (Pigorsch and Scholl 2009).

284

The last thing to mention is function BuildCircuit in line
12 of the algorithm in Figure 3. This function builds the final
circuit from all the discovered gates. Careful cycle breaking
is applied in the places where circular dependencies between
variables occur (e.g., a = b and b = a). It is also more
desirable to use smaller unsatisfiable cores while searching
for semantic definitions in order to reduce the support sets
of the defined variables, which might decrease the chance
of creating a circular dependency. Moreover, by extracting
smaller (and more) definitions, we detect more structure in
the CNF compared to extracting large definitions at once.

6 Experimental Results
We implemented the de-CNFization algorithm from Section
5 (with both heuristics enabled) into a tool CNF2BLIF (on
top of the MINISAT SAT solver (Eén and Sörensson 2003)),
and patched the 2QBF solver embedded in the synthesis tool
ABC (Berkeley Logic Synthesis and Verification Group)
to support cofactor sharing heuristics, proposed in Section
42. We also used CEGAR QBF solvers RAREQS (Janota
et al. 2012) and QESTO (Janota and Marques-Silva 2015)
for comparison. All the experiments were performed on a
Linux machine with Xeon 2.3 GHz CPU and 32Gb of RAM.
All the tools were limited by 4Gb memory limit and 1200
seconds time limit.

For experiments we used two sets of benchmarks: 2QBF
track of QBFEVAL’10 (QBFEVAL 2010) and FPGA map-
ping benchmarks from (Mishchenko et al. 2015).

2QBF track of QBFEVAL’10 (QBFEVAL 2010).
We used 200 CNF based QBFs in prenex form from 2QBF
track of QBFEVAL’10 QBF solving competitions. Prepro-
cessor BLOQQER was used to trim 135 benchmarks which
can be solved by pure preprocessing. Both RAREQS and
QESTO ran on the preprocessed benchmarks. On the other
hand we used CNF2BLIF to extract circuits from unprepro-
cessed CNF formulas, and then ran 2QBF solver embedded
into ABC under two settings: without cofactor sharing (fur-
ther referred to as ABC-) and with cofactor sharing (further
referred to as ABC+). A third version, called PREABC+ is
similar to ABC+, with the only difference that the QBF pre-
processor BLOQQER is used for preprocessing QBFs where
CNF2BLIF did not find any circuit structure. After prepro-
cessing the resulting CNFs are then just translated to prod-
ucts of sums circuits and then solved by ABC+. (In our ex-
periments, CNF2BLIF did not find any circuit structure in 17
out of 65 benchmarks (sortnetsort family).)

Results of this part of experiments are shown in Table 1.
A cactus plot of time performance is shown in Figure 4. Ex-
traction time of CNF2BLIF was negligible compared to solv-
ing therefore we omitted it.

From Table 1 and Figure 4 we see that the circuit based
2QBF solver PREABC+ well outperforms existing CNF
based solvers. More specific details are discussed below. On

2CNF2BLIF, ABC, and other tools can be found here:
https://www.dropbox.com/s/c29kj1a3w2kv0d0/tools_
benchmarks_results_aaai16.zip?dl=0

0

200

400

600

800

1000

1200

30 35 40 45 50 55 60 65

C
P

U
 t

im
e

 (
s)

Instances

RareQS

Qesto

ABC-

ABC+

Pre ABC+

Figure 4: Cactus plot of solvers performance on 2QBF
benchmark set from QBFEVAL’10.

Table 1: Statistics for 2QBF track from QBFEVAL’10.
RAREQS QESTO ABC- ABC+ PREABC+

Solved 50 55 48 61 62
Time, s 20658 17842 20677 7748 4124

Iterations NA 7.26M 46.0K 368K 153K

17 benchmarks where no circuit structure was found PRE-
ABC+ was on average 3 times slower compared to QESTO.
The remaining 48 benchmarks were found highly structural.
On these ABC+ was on average 28 times faster than QESTO.
ABC+ in comparison to ABC- was on average 30% faster,
however if we only consider problems solved within more
than 100 iterations (or alternatively solved in about more
than 1 second) cofactor sharing gives about an order of mag-
nitude speed up. This phenomenon is well explained by the
fact that within a few first iterations cofactor sharing occurs
rarely, while on the larger scale AIG nodes from the new co-
factors are found to be previously hashed practically all the
time.

FPGA mapping benchmarks from (Mishchenko et al.
2015).
In this part of experiments we used 100 (50 SAT and 50
UNSAT) 2QBF benchmarks from an FPGA mapping ap-
plication (Mishchenko et al. 2015). This experiment was
designed to test the reverse engineering ability of our tool
CNF2BLIF in reconstructing the circuits from CNF. Origi-
nal AIG circuits have 54 and 66 primary inputs, for UNSAT
and SAT cases respectively, of which precisely 6 are existen-
tially quantified (i.e., the remaining variables are outermost
universal variables). Each circuit consists of about 250 AIG
nodes. Circuits were transformed into QCNFs using ABC’s
internal engine. The resulting QCNFs on average have 93
variables and 240 clauses.

After applying CNF2BLIF only 2 extra (existentially
quantified) primary inputs were introduced to the recon-
structed circuits. This means that reconstruction was not
identical with respect to the original circuit, but very close.
This is due to the fact that our algorithm was not able to
properly choose the right definition in several cases where 2
or more definitions were available (which is possible, e.g.,
in presence of XOR gates). Statistically, reconstructed AIG

285

Table 2: Statistics for FPGA mapping benchmark set.
RAREQS QESTO ABC ABC ORIGINAL

Solved 22 44 100 100
Time, s 96.9K 75.0K 100.2 64.3

Iterations NA 6.46M 1403 1241

circuits have 56 and 68 primary inputs, for UNSAT and SAT
cases respectively, and about 300 AIG nodes. Most of the
found gates were found semantically (in contrast to QBFE-
VAL’10, where most of the found gates were either AND-
like or XOR-like). Most of those gates are ITE-like gates
which are hard to find by template matching. Our approach
on the other hand had no difficulties in retrieving those gate
definitions.

For the solving part we used ABC to solve original prob-
lems (denoted ABC ORIGINAL) and reconstructed circuits
(denoted ABC).

The BLOQQER preprocessor was found to degrade the
performance of CNF QBF solvers significantly on this
benchmark set (due to its eager variable elimination and
expansion settings), therefore we do not include it in this
set of experiments. Solving statistics are shown in Table 2.
As one can observe from Table 2, after reverse engineering
the circuit solving time increased slightly, but did not suffer
much. In contrast, CNF QBF solvers required several orders
of magnitude more iterations, and significantly larger solv-
ing time.

Both experiments, and specifically the cumulated number
of iterations shown in Tables 1 and 2 confirm our main con-
jecture: in CEGAR-based 2QBF solving CNF representation
is good for carrying out SAT queries, but cofactoring should
be done on circuit level instead.

7 Conclusions
In this work we presented several improvements to the
state of the art algorithms for 2QBF solving. Experiments
showed that the proposed methods outperform existing
2QBF solvers and therefore increase the value of QBF as
a framework for various problems in theoretical computer
science.

8 Acknowledgements
• Valeriy Balabanov in part was supported by IIS,

Academia Sinica, Taipei, Taiwan, and in part by EECS,
University of California, Berkeley, USA.

• Special thanks to Alexander Ivrii for valuable discussions
and suggestions.

References
Berkeley Logic Synthesis and Verification Group. ABC: A
system for sequential synthesis and verification. http://www.
eecs.berkeley.edu/\simalanmi/abc/.
Eén, N., and Biere, A. 2005. Effective Preprocessing in
SAT Through Variable and Clause Elimination. In Proc. of

the 8th Int. Conf. on Theory and Applications of Satisfiability
Testing (SAT 2005), 61–75.
Eén, N., and Sörensson, N. 2003. An extensible SAT-
solver. In International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT), volume 2919, 502–518.
Springer.
Giunchiglia, E.; Narizzano, M.; and Tacchella, A. 2006.
Clause/term resolution and learning in the evaluation of
quantified Boolean formulas. Journal on Artificial Intelli-
gence Research (JAIR) 26:371–416.
Goultiaeva, A., and Bacchus, F. 2013. Recovering and uti-
lizing partial duality in QBF. In Theory and Applications of
Satisfiability Testing - SAT 2013 - 16th International Confer-
ence, Helsinki, Finland, July 8-12, 2013. Proceedings, 83–
99.
Grégoire, É.; Ostrowski, R.; Mazure, B.; and Sais, L. 2004.
Automatic extraction of functional dependencies. In SAT
2004 - The Seventh International Conference on Theory and
Applications of Satisfiability Testing, 10-13 May 2004, Van-
couver, BC, Canada, Online Proceedings.
Janota, M., and Marques-Silva, J. 2015. Solving QBF by
clause selection. In Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI
2015, Buenos Aires, Argentina, July 25-31, 2015, 325–331.
Janota, M.; Klieber, W.; Marques-Silva, J.; and Clarke, E. M.
2012. Solving QBF with counterexample guided refinement.
In Theory and Applications of Satisfiability Testing - SAT
2012 - 15th International Conference, Trento, Italy, June 17-
20, 2012. Proceedings, 114–128.
Lagniez, J., and Marquis, P. 2014. Preprocessing for propo-
sitional model counting. In Proceedings of the Twenty-
Eighth AAAI Conference on Artificial Intelligence, July 27
-31, 2014, Québec City, Québec, Canada., 2688–2694.
Lang, J., and Marquis, P. 2008. On propositional definabil-
ity. Artif. Intell. 172(8-9):991–1017.
Lonsing, F., and Biere, A. 2010. DepQBF: A dependency-
aware QBF solver (system description). Journal on Satisfi-
ability, Boolean Modeling and Computation 7:71–76.
Mishchenko, A.; Brayton, R. K.; Feng, W.; and Greene,
J. W. 2015. Technology mapping into general programmable
cells. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, Monterey,
CA, USA, February 22-24, 2015, 70–73.
Mneimneh, M. N., and Sakallah, K. A. 2003. Computing
vertex eccentricity in exponentially large graphs: QBF for-
mulation and solution. In Theory and Applications of Sat-
isfiability Testing, 6th International Conference, SAT 2003.
Santa Margherita Ligure, Italy, May 5-8, 2003 Selected Re-
vised Papers, 411–425.

Ostrowski, R.; Grégoire, É.; Mazure, B.; and Sais, L. 2002.
Recovering and Exploiting Structural Knowledge from CNF
Formulas. In Proc. of the 8th Int. Conf. on Principles and
Practice of Constraint Programming (CP 2002), 185–199.
Pigorsch, F., and Scholl, C. 2009. Exploiting structure in an
AIG based QBF solver. In Design, Automation and Test in

286

Europe, DATE 2009, Nice, France, April 20-24, 2009, 1596–
1601.
Plaisted, D. A., and Greenbaum, S. 1986. A structure-
preserving clause form translation. J. Symb. Comput.
2(3):293–304.
QBFEVAL. 2010. QBF solver evaluation portal. http://
www.qbflib.org/qbfeval/.
QBFLIB. 2005. Qdimacs: standard QBF input format. http:
//www.qbflib.org/qdimacs.
Remshagen, A., and Truemper, K. 2005. An effective algo-
rithm for the futile questioning problem. J. Autom. Reason-
ing 34(1):31–47.
Silva, J. P. M., and Sakallah, K. A. 2000. Boolean satisfia-
bility in electronic design automation. In DAC, 675–680.
Tseitin, G. 1970. On the complexity of derivation in propo-
sitional calculus. Studies in Constructive Mathematics and
Mathematical Logic.

287

