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Abstract 
Participants in recent discussions of AI-related issues rang-
ing from intelligence explosion to technological unemploy-
ment have made diverse claims about the nature, pace, and 
drivers of progress in AI. However, these theories are rarely 
specified in enough detail to enable systematic evaluation of 
their assumptions or to extrapolate progress quantitatively, 
as is often done with some success in other technological 
domains. After reviewing relevant literatures and justifying 
the need for more rigorous modeling of AI progress, this 
paper contributes to that research program by suggesting 
ways to account for the relationship between hardware 
speed increases and algorithmic improvements in AI, the 
role of human inputs in enabling AI capabilities, and the re-
lationships between different sub-fields of AI. It then out-
lines ways of tailoring AI progress models to generate in-
sights on the specific issue of technological unemployment, 
and outlines future directions for research on AI progress.  

 Introduction   
Recent discussions of AI and its social consequences have 
emphasized the progress made in AI research thus far, and 
the additional progress that can be anticipated in the future 
(Dietterich and Horvitz, 2015; Future of Life Institute, 
2015). Yet when it comes to characterizing what exactly 
progress in AI consists of, what has driven it, and how 
quickly it might proceed in the future, there is little formal 
analysis in the literature and apparently much disagree-
ment. For example, surveys of AI researchers on the future 
of the field have found a wide range of opinions about how 
long it may take for human-level AI to be achieved (Grace 
and Cristiano, 2015). Some respondents have also taken 
issue with the very concept of human-level AI (Kruel 
2011), variations of which are often used as a reference 
point in such surveys. Participants in debates on issues 
ranging from intelligence explosion to technological un-
employment have invoked differing implicit models of AI 
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progress to support their opinions (Brundage, 2015), e.g. in 
discussing the plausibility of an intelligence explosion or 
which jobs are most resistant to automation. In light of 
such diversity of opinions on policy-relevant questions, it 
seems prudent to methodically critique and improve such 
models. Well-developed and appropriately caveated mod-
els of AI progress could be used, as they already are in 
other technological domains (Roper et al., 2011), to sup-
port the development of plausible future scenarios, and 
thus to aid in long-term policy analysis and robust deci-
sion-making (Lempert et al., 2003). 
 This paper aims to help address these ambiguities in the 
literature as follows. First, in the section “Analysis of Rel-
evant Literatures,” we discuss several literatures that, while 
falling short of developing full models of AI progress, help 
orient such research in fruitful directions. Second, in “To-
ward Rigorous Modeling of AI Progress,” we take some 
steps toward a rigorous model of AI progress by analyzing 
issues such as the relationship between hardware and soft-
ware developments, the role of human inputs in enabling 
AI capabilities, and the relationships between different 
sub-fields of AI. Next, in “AI Progress and the Future of 
Work,” we analyze the differing accounts of AI capabili-
ties invoked in the literature on technological unemploy-
ment and suggest ways that rigorous AI progress modeling 
might advance such debates. Finally, “Future Directions” 
outlines areas for future research on AI progress, and 
“Conclusion” summarizes the contributions of the paper. 

Analysis of Relevant Literatures 
While there is not yet a robust literature theorizing or em-
pirically evaluating the state of the art in AI (Hernandez-
Orallo, 2014), let alone extrapolating it, many literatures 
are relevant to the AI progress modeling research program 
proposed in this paper. In this section, we detail some of 
the findings of such literatures, how they help us to think 
about AI progress, and what their limitations are. 
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AI Evaluation Literature 
 First, as summarized by Hernandez-Orallo (2014), many 
different methods have been proposed to evaluate the intel-
ligence of AI-based artifacts—what we can call the “evalu-
ation” literature. Hernandez-Orallo distinguishes between 
“task” evaluations and “ability” evaluations, with the for-
mer evaluating agent performance on a relatively specific 
task (e.g. a specific vision benchmark) and the latter meas-
uring agent performance across a wider range of tasks (e.g. 
vision or perception in general), although he notes that 
there is in fact continuity between these levels of analysis. 
Of particular relevance for the present discussion, Hernan-
dez-Orallo notes an important analogy that we will take up 
in the next section, namely between the “factors” used to 
disaggregate intelligence in the human psychometrics liter-
ature (e.g. in Carroll, 1993) such as reading and writing 
ability and visual processing, and the distinctions between 
sub-fields of AI, such as natural language processing and 
computer vision. While there is not likely to be a perfect 
mapping between human intelligence factors and the to-
pology of the AI field, and human psychometrics has dif-
ferent motivations than does AI progress modeling, Her-
nandez-Orallo’s insight usefully suggests the potential util-
ity of a hierarchical model of AI progress. Such a model, 
further elements of which will be proposed in the next sec-
tion, would situate general intelligence evaluation at the 
top of the model, intermediate abilities/fields in the middle, 
and task level evaluation of agents (or of the achievements 
of the field as a whole) at the bottom. 
 In recent years, there has been much discussion of mov-
ing “beyond the Turing Test” (You, 2015), and new 
benchmarks for AI evaluation have been put forward such 
as the “Visual Turing test” (Geman et al., 2014). There are 
also discussions of related issues in the context of specific 
sub-fields of AI, such as the challenges associated with 
evaluating integrated cognitive systems (Jones et al., 2012; 
Gomila and Müller, 2012). Beyond these various pro-
posals, there is also methodological literature on the empir-
ical analysis of AI systems (Cohen 1995), and AI text-
books (e.g. Russell and Norvig, 2009; Poole and Mack-
worth, 2010) have specified dimensions of complexity for 
agents and environments such as partial versus full observ-
ability, single versus multi-agent, etc. that could be incor-
porated into a model of AI progress. 
 While these literatures are valuable and point to various 
insights and pitfalls that AI progress modelers should be 
aware of, they generally do not constitute full-blown ef-
forts at modeling AI progress (in the sense used here) for 
two reasons. First, they are static, seeking to benchmark AI 
progress in the light of a particular agent or capability, 
without explicitly seeking to represent the dynamics of AI 
progress (i.e. how we got to the present point, and extrapo-
lating how progress might continue in the future). A dy-

namic model, taking into account time or some measure of 
effort applied toward making progress in AI, as has been 
developed in other domains (Nagy et al., 2013), would be 
necessary to extrapolate future scenarios in a principled 
way. Second, the evaluation literature is generally oriented 
toward developing specific benchmarks of progress and 
driving additional progress in that area, rather than theoriz-
ing the relationships between different benchmarks and the 
societal drivers of progress on them. Instead of seeking a 
single benchmark for AI progress, the approach suggested 
here is aimed at explaining how different benchmarks, at 
different levels of analysis, fit together, as well as causally 
explaining progress dynamics, rather than merely acceler-
ating progress. 

Technology Forecasting Literature 
Beyond the subject of evaluation, there is also a literature 
on AI progress prediction in particular and on technologi-
cal forecasting in general (referred to collectively here as 
the “forecasting” literature). Grace and Cristiano (2015) 
find at least 9 surveys about future AI progress. Armstrong 
and Sotala (2012), Armstrong et al. (2014), and Bostrom 
(2014) analyze prior predictions of future AI progress. No-
tably, such efforts at prediction typically focus on a partic-
ular benchmark, “human-level AI” (or variations thereof). 
The problems associated with such a focus (e.g. that AI 
already vastly exceeds humans in some areas), are dis-
cussed by, among others, some of the respondents to 
Kruel’s (2011) survey. For purposes such as anticipating 
technological unemployment, it is important to anticipate 
AI progress that falls short of, exceeds, or is orthogonal to 
“human-level” AI. This suggests the need for a richer ac-
count of AI progress than the “time until human-level AI” 
prediction paradigm. Additionally, prediction is not the 
only reason to develop models of technological progress—
others include encouraging clarity about and scrutiny of 
underlying assumptions, stimulating creative thinking 
about the future, and making better decisions in the present 
(Roper et al., 2011). A model outlining a plausible se-
quence in which tasks may become easy to automate, for 
example, might be beneficial for the public and policy-
makers, even if there are not specific temporal predictions 
associated with it.  
 Several findings from the forecasting literature are par-
ticularly relevant in thinking about how to model AI pro-
gress. First, short-term technology forecasts generally fare 
better than long-term ones (Mullins, 2012). Second, quanti-
tative technology forecasts generally fare better than quali-
tative ones (Mullins, 2012). Third, model-based predic-
tions in the domain of AI in particular generally fare better 
than intuition-based ones (Armstrong et al., 2014). Fourth, 
there is a significant amount of commonality in the rates of 
progress across a wide range of technologies, which can 
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often be surprisingly well captured by a simple exponential 
trend (Nagy et al., 2013); however, determining the right 
metrics for progress and the independent variables driving 
that progress is not always easy, and the appropriate pa-
rameters for such models need to be investigated empiri-
cally—a subject to be revisited in the following section. 

AI Risk Literature 
Next, there is a growing literature on long-term risks asso-
ciated with AI (Bostrom, 2014). In the service of estimat-
ing the nature and magnitude of future risks from advanced 
AI systems, various researchers (e.g. Bostrom, 2014; 
Yudkowsky, 2013; Yampolskiy, 2015) have analyzed the 
potential for AI systems to rapidly grow in intelligence. 
The concepts and tools used by such researchers are rele-
vant to at least some types of AI progress modeling—for 
example, Bostrom (2014) develops formulas relating the 
recalcitrance of intelligence improvements and the optimi-
zation power applied to improving intelligence to AI pro-
gress, which could be extended in future work. However, 
these ideas are generally more applicable for the purposes 
for which they were developed (analyzing future cata-
strophic risks) than uses such as anticipating the economic 
consequences of AI, because they often begin from the 
premise that an agent has human-level (or beyond) capabil-
ities in certain domains. The ideas for progress modeling 
discussed in this paper don’t necessarily presuppose that 
level of capability.  

Natural Intelligence Literature 
In addition to the literatures on AI evaluation, forecasting, 
and risk, there is a rich literature on natural intelligence 
that may be fruitful in developing models of AI progress. 
For example, work in evolutionary and comparative psy-
chology (Wynne and Udell, 2013) differentiates between 
types and levels of intelligence possessed on average by 
different species, possibly suggesting relevant metrics for 
AI progress modeling. Developmental psychology (Miller, 
2009) addresses the development of (among other human 
characteristics) intelligence across the lifespan, and its the-
ories of intellectual development may suggest insights re-
garding the recalcitrance of different problems in AI. Fi-
nally, cognitive psychology (Anderson, 2009) analyzes the 
decision-making dimensions of human psychology, and the 
narrower field of psychometrics provides tools such as IQ 
tests (and analyses thereof), which have sometimes been 
applied to evaluating AI systems (Ohlsson et al., 2015).  

Technology Roadmapping Literature 
Finally, there is a literature on technological roadmapping 
methodologies (Roper et al., 2011) that may assist in the 
development of AI progress models, and there are devel-
oped roadmaps for the future of related fields such as ro-

botics (e.g. Robotics VO, 2013). Such roadmaps are often 
created by militaries (e.g. US Department of Defense, 
2013) to aid in long-term analysis. However, such 
roadmaps rarely feature detailed methodological infor-
mation, and often seem to depend on intuition as the basis 
for assigning, e.g. 5, 10, and 15 year-out milestones for 
technical progress (these milestones are also typically qual-
itative). Additionally, different roadmaps use different met-
rics for progress, and divide up fields like robotics into 
different sub-fields, without using the sort of principled 
approach suggested in this paper and discussed in more 
detail in the next section. Also relevant for our analysis 
here is the fact that, to the author’s knowledge, there is no 
detailed, explicit roadmap available yet for AI (as opposed 
to robotics) progress, although the two are related.  

Toward Rigorous Modeling of AI Progress 
 
In light of the limitations of prior work, this section sug-
gests ways to build on the aforementioned literatures and 
more rigorously model AI progress. In particular, it begins 
with an exploration of the different levels and units of 
analysis that might be considered in such modeling; ex-
plores the relationship between hardware and software 
progress; analyzes the human contribution to AI perfor-
mance from the perspective of AI progress modeling; and 
suggests ways to account for the diversity of sub-fields of 
AI and the problem of developing integrated AI systems. 

Levels and Units of Analysis 
AI progress could be modeled at various levels – e.g. at the 
level of a particular exemplar agent’s performance on a 
wide range of tasks, the conceptual progress demonstrated 
in the literature, the performance of human-machine sys-
tems, or the performance of a range of different agents on 
different tasks to which they’re specialized.  
 The purpose of a particular exercise in progress model-
ing is critical in determining the appropriate level of analy-
sis. For example, if one is trying to determine whether a 
customer service worker’s job can be plausibly automated 
or not, it’s important to consider whether certain 
tasks/abilities can be integrated easily in a single agent—
the fact that, e.g. one system demonstrates impressive natu-
ral language processing and another demonstrates impres-
sive perception does not imply that these capabilities can 
be integrated in order to automate the perceptual and lin-
guistic aspects of the worker’s job that involves both per-
ception and language. Thus, in such a context (considered 
in more detail in the section on the future of work below), 
the ease of integration of cognitive abilities must itself be 
modeled in some fashion. 
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 In addition to discerning an appropriate level of analysis 
for AI progress modeling, there is also the question of the 
appropriate unit of analysis at that level. For example, if 
we are interested in the state of the art in machine vision, it 
makes a difference whether our unit of analysis is the per-
formance of a given algorithm using an average consumer 
computer’s hardware, or its performance on the world’s 
largest computer cluster. The former unit of analysis may 
be more relevant for certain purposes even if the perfor-
mance of the latter is higher. Additionally, considerations 
like the availability of data for machine learning in a cer-
tain domain, or the extent of human input provided to fine-
tune an algorithm’s performance, may influence one’s ap-
praisal of the state of the art for a given task or ability. 
Therefore, in developing a general framework for AI pro-
gress modeling, it may be more useful to think in terms of 
“states of the art” rather than a singular “state of the art,” 
and to explicitly state (and if possible, quantify) the various 
independent variables determining agent performance.  

Hardware and Software Progress 
Many observers have noted the relevance of computer 
hardware improvements to recent progress in AI, and in 
particular areas such as deep learning (LeCun et al., 2015; 
Schmidhuber, 2015). Indeed, exponential improvements in 
the computing power available for a given price, and the 
development of particular technologies such as graphics 
processing units (GPUs), have accelerated progress in mul-
tiple AI domains. But what exactly is the relationship be-
tween hardware and software progress, and can it be quan-
tified in a way that lends itself to rigorous modeling and 
extrapolation? This section qualitatively explains several 
ways in which hardware and software progress interact in 
order to pave the way for such modeling efforts. 
 First, improvements in hardware speed enable increases 
in the level of performance attainable for a given algorithm 
in many cases. For example, in the case of deep learning, 
faster CPUs and GPUs have enabled increases in the num-
ber of parameters of neural networks and in the size of data 
sets that those networks can be trained on in a reasonable 
amount of time, allowing more difficult tasks to be solved. 
Grace (2013) analyzed several domains and found that 
algorithmic progress contributed about 50-100% as much 
to improvement in performance as did hardware progress.   
 Second, software innovations can enable the efficient 
use of larger amounts of hardware through parallelization 
(which, in turn, can also increase the performance of AI 
systems). For example, DistBelief (Dean et al., 2012) ena-
bles the use of large computing clusters for deep learning, 
and the Gorila architecture (Nair et al., 2015) does the 
same for deep reinforcement learning (Mnih et al., 2015).  
 Third, software improvements can enable an agent to 
perform a task with the same level of proficiency on the 

same hardware system more quickly, and vice versa. For 
fixed hardware, a more efficient algorithm enables faster 
performance, and for fixed software, faster hardware ena-
bles faster performance. Borrowing Carroll’s (1993) termi-
nology for human intelligence differentiation, hardware 
and software can both contribute to increasing the level 
(discussed in the first point above) as well as the speed of 
AI performance.  
 Finally, beyond the level or speed of AI performance, 
hardware progress can accelerate algorithmic progress in 
AI indirectly by allowing researchers to run more (and a 
wider range of) experiments in a given amount of time. 
Thus, insofar as the AI community is conceived as engaged 
in a search for algorithms capable of faster, higher level 
performance for a given unit of hardware, hardware pro-
gress accelerates that search above and beyond its effect on 
individual system performances. 
 These four connections between hardware and software 
progress suggest some building blocks of a possible model 
of AI progress—namely, such a model should explicitly 
represent hardware progress as an independent variable, 
and future scenarios for AI progress should consider uncer-
tainty in hardware developments. The four linkages dis-
cussed indicate ways that this model could be structured, 
but more work (discussed in “Future Directions” below) is 
needed to empirically evaluate different structures and pa-
rameters for such a model. 

Human Input 
In addition to hardware, the role of humans in facilitating 
AI performance should be considered in a rigorous model 
of AI progress. Specifically, humans fit into the picture of 
AI progress in at least two ways that must be accounted 
for.  
 First, the type and extent of human input into an algo-
rithm’s performance is inversely proportional to the AI 
progress demonstrated by that algorithm’s performance. In 
other words, an AI demonstration is more impressive to the 
extent that there is little to no human fine-tuning of the AI 
system in order to achieve a given level of performance. 
This relationship comports well with common narratives 
related to AI progress– e.g. the impressiveness of the hu-
man-level control shown by DeepMind’s DQN algorithm 
on a wide range of Atari games without requiring human 
adjustment of the hyperparameters for each game, or any 
human assistance in identifying the games’ visual features 
in the input stream (Mnih et al., 2015). One could also ex-
plicitly consider the quality of human input in accounting 
for agent performance, in addition to the quantity, so as to 
model the progress involved in systems becoming usable 
by non-expert users. A given level of AI performance, in 
this formulation, represents more progress if it is attainable 
by a non-expert than if it required the labor of a graduate 
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student to apply the algorithm to a particular domain. Im-
portantly, this analysis is not intended to suggest that hu-
man interaction with an agent is a bad thing from the per-
spective of AI progress, all things considered—indeed, 
greater transparency, interactivity, and human-
comprehensibility of AI systems can be beneficial from a 
societal perspective, and enabling them requires algorith-
mic innovations. The point here is simply that, other things 
being equal, less or lower-quality human input for a given 
performance level or speed output from an AI system rep-
resents a certain form of (performance-oriented) progress. 
Additionally, greater human input can coincide with great-
er (performance-oriented) AI progress when it is used to 
enable the human-machine system to perform at a higher 
level or with greater speed, so the ceteris paribus assump-
tion is critical.  
 Second, humans are (for the foreseeable future, at least – 
cf. Bostrom, 2014) causally responsible for AI progress, as 
they design the algorithms in question. In the search for 
faster, higher level system performance, AI researchers 
advance the state(s) of the art, however defined. Anticipat-
ing AI progress, then, should involve some sort of assess-
ment of the scale and quality of this human effort at algo-
rithmic innovation, represented by a metric such as quality-
adjusted research years (Muehlhauser and Sinick, 2014). In 
technological progress modeling work for other domains, 
such as clean energy (Bettencourt et al., 2013), metrics like 
funding have been used to approximate the effort applied 
to technology improvement. As suggested in “Future Di-
rections” below, such measures could be compared with 
historical rates of progress in AI in order to discern causal 
dynamics. 

AI Sub-Fields and System Architecture 
A final area we will explore in order to help lay the foun-
dation for rigorous AI progress modeling is the relation-
ships between different AI sub-fields and integrated system 
architectures. The motivation for this section is the com-
mon claim that progress in the sub-fields of AI has been 
rapid, whereas progress on generally intelligent integrated 
systems has been more limited (Dietterich and Horvitz, 
2015). In recent years, some benchmarks have been put 
forward to evaluate the general intelligence of AI systems 
(e.g. Bellemare et al., 2012). However, even with such 
benchmarks available, it is not obvious how to model the 
relationship of progress in AI sub-fields to progress on 
general intelligence, or how to model progress in develop-
ing integrated agent architectures. This sub-section sug-
gests some possible ways to conceptualize these relation-
ships. 
  As previously noted, Hernandez-Orallo (2014) suggests 
a possible mapping between “abilities” in a commonly 
used hierarchical model of intelligence (Carroll, 1993) and 

sub-fields of AI. However, there is not a perfect mapping 
between these, since the contours of human and machine 
intelligence are currently distinct in various ways, and the 
sub-field topology of AI also represents the cumulative 
effects of myriad idiosyncratic human decisions over sev-
eral decades. One possible approach, then, is to develop, 
drawing on the literatures outlined above, an empirically 
and theoretically informed list of abilities, which may or 
may not map directly to AI sub-fields, which can be used 
to extrapolate future capabilities for different agent com-
ponents. For example, sub-field/ability clusters could in-
clude natural language processing, machine learning, social 
interaction, perception, high level cognition, and other are-
as, which in turn could be broken into smaller components, 
with different metrics and models for evaluating each. 
Since these sub-fields/abilities are not independent (ma-
chine learning, for example, can assist natural language 
processing), more work would need to be done to develop 
principled groupings of abilities and connections between 
them. A further question that would then arise is: how 
could such a model be used to anticipate the ease of devel-
oping integrated systems that draw upon those abilities?  
 One way to address this could come from the study of 
human intelligence (van der Maas et al., 2006), where re-
searchers have modeled positive interactions between cog-
nitive abilities in order to explain the phenomenon of gen-
eral intelligence and the correlation between highly intelli-
gent humans’ abilities. In this approach, the integration of 
capabilities would be represented by positive (signifying 
the synergistic effects of combining multiple abilities) 
and/or negative interactions (signifying the difficulty of 
integration without loss to capability) between cognitive 
abilities in a single system. One could then extrapolate 
progress in specific abilities as well as the future ease of 
developing agents with a particular combination of cogni-
tive abilities. Further theoretical and empirical analysis is 
needed to develop a rigorous approach to such issues, and 
as previously noted, different approaches are suitable for 
different research questions. In the next section, we exam-
ine what sorts of modeling approaches may be appropriate 
to studying the economic implications of AI in particular. 

AI Progress and the Future of Work 
Prior work has explored the potentially enormous impact 
of AI on the economy (Brynjolfsson and McAfee, 2014; 
Vardi, 2015). Yet considerable uncertainty remains about 
the precise nature and timing of that impact, considering 
the many technical and social uncertainties. Different theo-
ries of how it is to automate different tasks (and, relatedly, 
different models of AI progress) imply different conclu-
sions about the type and magnitude of those impacts. Thus, 
in this section, we survey these divergent theories of auto-
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mation difficulty and suggest approaches to AI progress 
modeling that could yield novel insights into the future of 
work. 

Theories of Automation Difficulty 
Several theories relating the susceptibility of jobs to auto-
mation and the state of the art in AI have been put forward. 
Murnane and Levy (2004) distinguish between routine and 
non-routine tasks, with the former being more susceptible 
to automation. Frey and Osborne (2013) find social intelli-
gence, creative intelligence, and perception and manipula-
tion to be “bottlenecks” to automation of particular tasks 
over the next two decades. Autor (2013) notes that novel 
tasks in the workplace are less susceptible to automation 
than long-established ones. Brynjolfsson and McAfee 
(2014) focus on creativity as a distinguishing factor be-
tween future jobs’ degrees of vulnerability, while noting 
the considerable uncertainty in any such assessment. Rus 
(2015) suggests that different types of perception and ma-
nipulation tasks are suitable for humans versus machines, 
contra Frey and Osborne’s (2013) more categorical distinc-
tion, and she also adds abstraction and creativity to the list 
of hard-to-automate abilities. Finally, Deming (2015) finds 
empirically that jobs drawing more on social intelligence 
have been safer in recent decades.   
 These different theories of automation difficulty have 
different implications for which jobs are likely to be auto-
mated (and, relatedly, which jobs are likely to be created as 
a result of complementarities between human and machine 
capabilities—Brynjolfsson and McAfee, 2014). Further 
development of AI progress models will be needed to dif-
ferentiate between these theories and to derive strong con-
clusions about future scenarios. Notably, each of the above 
models is static—it posits a particular state of the art, and 
doesn’t allow for change over the coming decades. Addi-
tionally, none takes into account issues such as architecture 
and integration, hardware progress, or many of the other 
issues raised in earlier sections. Thus, there is a need for 
improved analysis of automation scenarios using robust AI 
progress models. However, different modeling approaches 
are appropriate to analyzing the issue of technological un-
employment versus, say, intelligence explosion. Thus, in 
the next sub-section, we consider which modeling ap-
proaches are suitable for anticipating the future of work.  

Tailored Progress Modeling Approaches 
Discerning trends in AI progress that are relevant to the 
future of work raises challenges that are different than 
those found in evaluating AI from certain scientific per-
spectives. For example, Legg and Hutter (2007) propose a 
universal intelligence measure that is rigorously defined, 
mathematically elegant, and well-justified, but is not nec-
essarily ideal for thinking about economic implications of 

AI. Specifically, it favors generality of agents across the 
space of possible environments, even if those environments 
aren’t economically (or even humanly) relevant. An agent 
may be economically profitable and widely applicable 
even if it is only adapted to a narrow slice of the space of 
possible environments. Additionally, modeling progress in 
AI in order to inform economic analysis requires consider-
ing the different levels of performance that may be called 
for in the economy, which may differ from the levels of 
performance (e.g. asymptotic optimality) demanded by AI 
researchers. Thus, economically-relevant AI progress 
modeling requires considering the demand for, and not just 
the supply of, intelligence—i.e. what sorts of agents con-
sumers are willing to be served by in an economic context, 
at what price, with what levels of robustness in terms of the 
agent’s skills, etc. This may call for developing new met-
rics of progress, as well as empirically evaluating (through, 
e.g. surveys or experiments) consumer demand for differ-
ent levels of human/agent capabilities in the marketplace.  
 In addition to considering demand, researchers examin-
ing the susceptibility of tasks to automation should serious-
ly consider the human input required for a given level of 
AI performance, as discussed earlier. Even if it is possible 
in principle to build a system with human-level or beyond 
performance in arbitrary domains, this may not be particu-
larly economically significant if doing so requires ad-
vanced expertise and significant expenditures of time by 
humans in order to adapt the system to a new domain each 
time. Additionally, factors like robustness and worst-case 
performance may be especially important in economic con-
texts, to an extent that exceeds the requirements of scien-
tific research oriented toward benchmarks such as those of 
Legg and Hutter (2007). An AI system may exceed human 
performance in almost all cases, but fail catastrophically in 
the remaining cases in a way that humans never would, 
making it economically undesirable for self-interested 
companies seeking to avoid lawsuits. This suggests that a 
rich array of metrics might be needed to evaluate economic 
feasibility of automating certain tasks. 
 Next, modeling AI progress for the purpose of economic 
foresight demands the use of metrics that can capture de-
grees of progress toward certain goals, rather than simply 
assessing in a binary fashion a goal’s achievement or not, 
as with, e.g. the Turing Test. In the case of creativity, for 
example, a test like Riedl’s (2014) Lovelace Test 2.0, 
which admits degrees of achievement, would be more use-
ful than the original Lovelace Test (Bringsjord et al., 
2001). Additionally, concepts like the Turing Ratio (Ma-
sum et al., 2003), which measures degrees of progress to-
ward and beyond human-level performance, would assist 
in discerning trends toward minimal levels of performance 
that humans might accept in the marketplace, or toward 
superhuman levels of speed, performance, or robustness 
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that might result in a strong consumer preference for being 
served by AIs over humans. 
 Another factor of particular relevance in economically-
relevant analysis of AI is the cost of non-computing pow-
er-related hardware, such as robot sensor and effectors. 
Trends in the cost of robotic hardware may be especially 
relevant in determining the potential variation in the con-
sequences of AI across space (due, e.g., to varying human 
wages). Such trends are, to some extent, already addressed 
in robotics roadmaps, but further research could explore 
the possible connections between AI performance levels 
and hardware platform availability. 
 Another potentially critical variable to consider in mod-
eling automation difficulty is the availability of training 
data. As with increased hardware performance, more 
abundant training data can improve AI performance, and 
may be unevenly available across different economically 
relevant task domains. 
 Finally, as discussed in the sub-section “AI Sub-Fields 
and System Architecture,” it is important to consider the 
architectural issues involved in developing complete AI 
systems, and this is especially true in the case of economic 
analysis. In analyzing the possibility of technological un-
employment, Autor (2013) emphasizes the significance of 
“bundling” in labor markets—that is, cases where a human 
provides multiple services simultaneously (e.g. delivering 
food as well as socially engaging a customer). The fre-
quency of such bundling suggests that analysts of techno-
logical unemployment should be particularly attuned to the 
issues of integration and system architecture discussed 
above.  

Future Directions 

The analysis above suggests the need for additional re-
search on a variety of different aspects of AI progress. Be-
low, we group some directions for future research by 
whether they are primarily conceptual, empirical, or nor-
mative in nature, though there is overlap between these. 

Conceptual 
The section above, “Toward Rigorous Modeling of AI 
Progress,” suggested some initial ways to conceptualize 
and, eventually, quantitatively model AI progress, but it 
did not integrate the full range of relevant literatures. Un-
answered questions include: what insights can be gained 
from the literature on natural intelligence in thinking about 
how (not) to evaluate AI progress, and in particular the 
recalcitrance (Bostrom, 2014) of various research prob-
lems? Are different models of AI progress needed for con-
ceptualizing AI in the near term versus in the longer term 
during a future intelligence explosion (or lack thereof)? 
And are there more useful ways of representing the rela-

tionships between sub-fields of AI and the challenge of 
building integrated AI systems than those discussed above?  

Empirical 
The analysis above raised a number of questions that re-
quire empirical investigation in order to answer. In each 
dimension of AI progress discussed, there is the empirical 
question of what the rate of progress has been historically 
and how it is linked to the posited independent variables 
(research effort, hardware acceleration, data availability, 
etc.). Fleshing out the models suggested here would require 
gathering additional data on such factors, and in many cas-
es, quantifying elements of progress that so far have only 
been stated qualitatively in the literature. Also, developing 
a rich map of current research efforts across AI in order to 
extrapolate rates of progress in various sub-fields would 
require additional data gathering and analysis, through e.g. 
bibliometric investigation and analysis of funding trends. 
Finally, with regard to the economic dimensions of AI, 
questions were raised about consumer demand for different 
human/agent capabilities that would need to be investigat-
ed empirically in order to inform appropriate metrics for 
progress modeling. 

Normative 
Anticipating plausible developments in AI and their impli-
cations, while difficult, is part of the ethical responsibility 
of the AI community (Brundage, forthcoming). The issues 
discussed in this paper raise various questions about such 
responsibilities—should, for example, progress in some 
areas be accelerated, decelerated, or modulated in some 
other way? Outside of the AI community, what responsi-
bilities are there for corporations, policy-makers, consum-
ers, and others to influence rates/types of AI progress? 
Should, as some suggest (Russell, 2014), the aims of the 
field of AI be redefined in a way that reflects the need for 
systems to be provably aligned with human values? If so, 
what metrics would be appropriate for capturing that di-
mension of AI progress?  

Conclusion 
This paper has defended a research program aimed at rig-
orously modeling progress in AI, and has made some pre-
liminary contributions to that program. Existing efforts to 
account for AI progress were found to be limited in im-
portant respects, and controversy in the literature was 
found with respect to the economic implications of AI, 
suggesting the need for further research. Approaches to 
thinking about and, ultimately, quantitatively modeling 
different aspects of AI progress were outlined in areas such 
as the software/hardware nexus, the role of human input, 
and the relationships between AI sub-fields. Finally, re-
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search directions were outlined that could shed further light 
on the nature, pace, and drivers of AI progress and their 
normative dimensions. Overall, AI progress modeling ap-
pears to be an area ripe for further investigation and one 
with significant social urgency.   
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