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Abstract
The focus of this work is to investigate how children’s percep-
tion of the robot changes with age and gender, and to enable
the robot to adapt to these differences for improving human-
robot interaction (HRI). We propose a neural network-based
learning architecture to estimate children’s age and gender
based on the body motion performing a set of actions. To eval-
uate our system, we collected a fully annotated depth dataset
of 28 children (aged between 7 and 16 years old) and ap-
plied it to a learning-based method for age and gender esti-
mation by modeling children’s 3D skeleton motion data. We
discuss our results that show an average accuracy of 95.2%
and 90.3% for age and gender respectively in the context of a
real-world scenario.

Introduction
Socially interactive technologies are no longer reserved for
adults. In particular, research and commercial robots have
infiltrated homes, hospitals and schools, becoming attractive
and proving impactful for children’s healthcare (Belpaeme
et al. 2012), therapy (Dautenhahn et al. 2009), education
(Kanda et al. 2004), and other applications.

In order to establish social and bonding relationships with
children in public populated environments such as hospitals
or educational institutions, robots need to be able to adapt
to child’s developmental differences, so that child-robot in-
teraction (cHRI) is the most effective: robot is liked and ac-
cepted, provides comfort and companionship, perceived to
be a friend or a peer.

However, social robots of public environments are chal-
lenged with interactions involving previously unseen users:
people of different age and gender groups that have vari-
ous preferences and needs toward the social robot. The ap-
proach presented in this paper is to create such a system
which is able to dynamically adapt to its users by charac-
terizing them using some of the same cues that people use.
People tend to take cognizance of the age and gender of
the interlocutor to tailor the content they communicate to-
gether with their behaviors, in terms of non-verbal social
cues such as body language, gestures, and gaze. Moreover,
prior work on cHRI has identified the significance of inter-
active robots supporting child-centered adaption: children’s
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reaction to social robots varies with their age and gender
(Scheeff et al. 2002) (Kanda et al. 2004), (Fink et al. 2014),
and similarly, children demonstrate varying preferences for
human-like robots, their age and gender (Tung 2011). In the
work described in this paper, we propose a novel methodol-
ogy for child-centered gender and age estimation based on
the motion data as the basis for the adaptation of robot’s so-
cial and verbal behaviors.

Related work (Sandygulova, Dragone, and O’Hare 2014)
utilized a set of 3D body metrics to effectively and robustly
estimate age and gender of children resulting in 73% correct
success rate when estimating gender and mean absolute er-
ror was 0.94 years with a standard deviation of 1.27 years
for children when determining children’s age. And com-
pared with a state-of-the-art software based on face analysis
namely SHORE (Ernst, Ruf, and Kueblbeck 2009) devel-
oped mainly for adults, our novel methodology based on the
motion of the 3D skeleton data outperforms previous work
by achieving outstanding age and gender estimation results.

In summary, the contributions of this paper are three-fold:
• It provides a fully annotated depth dataset of 28 individ-

uals: 16 boys and 12 girls aged between 7 and 16 years
old;

• It addresses a little explored issue of child-centered adap-
tation and user profile building.

• It provides a novel method for age and gender estimation
by modeling motion 3D skeleton data, to which we sub-
sequently apply a neural network-based classification al-
gorithm.
Section 2 introduces the related systems deployed in pub-

lic environments focused on the child-robot interaction. Sec-
tion 3 details the data collection procedure we carried out
to validate our method. The methodology used for age and
gender estimation is discussed in Section 4, followed by the
experimental results in Section 5 and the conclusion in Sec-
tion 6.

Related Work
An increasing number of systems is developed with the mis-
sion to enable the design, implementation, and evaluation
of robots that encourage social, emotional, and cognitive
growth in children, including those with social or cognitive
deficits.
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Human-Robot Interaction

The selected work includes large-scale projects that span
across a number of research and development partners
across countries that aim to combine expertise from different
domains in order to form interdisciplinary teams.

Research efforts towards the development of Robot As-
sisted Therapy (RAT) systems have produced a promising
outcome for the therapy of children with autism spectrum
disorders. The minimally expressive robot KASPAR (Ki-
nesics and Synchronization in Personal Assistant Robotics)
(Dautenhahn et al. 2009) and the huggable robot Probo
(Vanderborght et al. 2012) are derived from such efforts. The
European project ALIZ-E (Adaptive Strategies for Sustain-
able Long-term Social Interaction) (Belpaeme et al. 2012)
focused on children with diabetes, aided by the humanoid
NAO robot that provided help by offering training and en-
tertainment in real hospital settings. During the European
project LIREC (Living with Robots and Interactive Com-
panions) numerous studies were conducted in schools to
address the challenges of maintaining children’s interest in
social robots and self-validation with the aim to improve
child’s learning during long-term interactions in school set-
tings (Shahid et al. 2010). The aforementioned systems de-
veloped for public environments need to account for the age
and gender differences of children and attitudes towards the
robot. Therefore, this type of systems need to support dy-
namic adaptation and estimation of children’s age and gen-
der groups. The following background work motivates our
research on the importance of creating a perception mod-
ule for the dynamic adaptability to children’s gender and
developmental differences. This work investigates whether
children’s gender may impact the way children perceive
and interact with the robot. Scheeff et al. (2002) found that
children aged 4-7 years tended to be very energetic around
Sparky and kind to it regardless of their gender. Older chil-
dren (from 7 years old to early teens) behaved differently ac-
cording to gender: boys of that age were usually aggressive
and girls were generally gentle with the robot. The study by
Tung (2011) examined whether gender or age influences the
social and physical attraction children feel toward humanoid
robots with the results suggesting that girls are more ac-
cepting of human-like robots, especially female robots, than
boys are. Whether younger and older children could share
a secret with the robot, Bethel, Stevenson, and Scassellati
(2011) found that children aged 4 and 5 were as likely to
share a secret with a NAO robot as with an adult in contrast
to older children. A recent study by Ozogul et al. (2013)
investigated the choice in animated pedagogical agents of
middle-school learners (11-13 years old). The findings sup-
port the similarity attraction hypothesis with significant pref-
erence (p <0.001) in children’s choice for the computer-
based animated agent that matched their same age and gen-
der.

This literature review on cHRI demonstrates that there is
a need for an effective and robust method to dynamically
estimate age and gender of children in public real-world en-
vironments to be able to accommodate to children’s devel-
opmental and gender differences.

Work Exploring Age or Gender through Motion

A new anatomically-based protocol was obtained for gait
analysis in children in the research conducted by Leardini et
al. (2007). The proposed protocol was based on the analysis
of pelvis and lower limb motion that obtained as a compro-
mise between two aforementioned requirements. The exper-
iment involved the attachment of 22 skin markers, 6 anatom-
ical landmarks calibration by a pointer and hip joint centre
identification by the prediction approach. Ten healthy chil-
dren with a mean age of 9.7 years old participated in the
research. Each child was assessed several times by differ-
ent examiners. Three main results were obtained: an intra-
subject variability was very small, inter-examiner variabil-
ity was moderately small, and joint rotations and moments
(that had been calculated from each subject) were very close
to the corresponding data obtained by similar anatomical
definitions (in spite of using different marker sets in the re-
search). The protocol allows 3D anatomical-based measure-
ment of segment and joint motion and data sharing which
potentially can resolve many issues related to limitations in
clinical gait analysis. This model is particularly well-suited
for children, but can be used for adults.

The research conducted by Ferrari et al. (2007) also shows
the importance of data collection and reduction procedures
in gait analysis to make kinematic and kinetic measurements
more comprehensible in clinical usage. The five worldwide
protocols were chosen to compare analysis of kinematics
and kinetics of the trunk, pelvis and lower limbs. It resulted
in overall 60 markers that set up on a skin or hands with
16 anatomical landmark calibrations performed. One pa-
tient with knee prosthesis implanted and two healthy sub-
jects were analyzed by five experts. Results in the research
showed very small variability for kinematic and kinetic re-
sults observed for each subject. For each protocol, there have
been found a similarity with the high rates of intra-protocol
repeatability. Moreover, a general uniformity was found in
all three subjects among the five protocols. A good consis-
tency was observed for all joint flexion/extensions, for pelvic
rotations, hip-out-of-sagittal plane rotations. And an accept-
able consistency was observed for all joint moments.

Another research conducted by Manca et al. (2010) shows
the importance of reliability of kinematic measurements in
gait analysis. The aim of the study was in assessment of
the inter-trial, inter-session and inter-examiner variability of
an anatomical-based protocol. The subjects of the research
were two young adult volunteers. Four examiners with dif-
ferent degrees analyzed these subjects. The data from dif-
ferent walking trials were collected. Rotations in the three
anatomical planes of the ankle, hip, knee and pelvis were
calculated. The results were the following: the standard de-
viations for the inter-trial, inter-session, and inter-examiner
variability were consistent. Joint rotations in the traverse
were significantly larger than in other planes in all three
forms of variability. Only the small differences were ob-
served between the examiners.
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Figure 1: Example of skeleton model with body joints and
limps for a correct jump movement.

Data Collection
The depth data was collected on a regular school day. Vol-
unteers were brought to the specially allocated classroom
to stand in front of the Kinect sensor in order to capture
3D body information. Upon arriving to the room, children
were asked for their age and gender and had their height and
weight measured. Each session involved one participant at a
time.

Microsoft Kinect
A motion capture device such as Microsoft Kinect was used
for human detection, tracking and for retrieving 3D body
metrics that are particularly indicative of various demo-
graphics groups, i.e. age and gender. One of the core ca-
pabilities of the Kinect is the possibility to capture a depth
image. An infrared (IR) emitter emits the light beams and
the depth sensor reads the beams reflected back to the sen-
sor. The reflected beams are converted into depth informa-
tion measuring the distance between an object and the sen-
sor, thus capturing the depth image. The Kinect for Win-
dows SDK includes a number of useful features, which can
be used to sense human users including skeletal and facial
tracking, and voice and gesture recognition. Using the IR
camera, the Kinect can detect up to six people in the field of
view of the sensor. Of these, up to two people can be tracked
in detail. The Kinect application can locate the joints of the
tracked users in space and track their movements over time.
Our implementation of the skeletal tracking enables to rec-
ognize people and save the x, y and z coordinates of every
joint at each motion frame during the performance of the
actions.

Experimental Setup
The Kinect was used to track and estimate 3D skeleton mod-
els from raw motion. The sensor was located in front of the
subjects that had to walk and run from point A to point B
five times, covering a distance of 3.20 meters 2. Weight and
height of the subject were measured by scales and meters
respectively. A stopwatch was used to identify the time for
walking and running from point A to point B, in order to
find gait velocity of the subject. The data were obtained by

Figure 2: Experimental Setup

Table 1: Participants’ Information.

the method of defining coordinates of each movement of the
subject, precisely the x, y, and z coordinates of each body
joint.

Participants
A 3D Body Model dataset was collected for 28 children, 16
boys and 12 girls aged between 7 and 16 years old. Chil-
dren were divided into two groups by age category. The first
group was in the age range of 7-10 years and the second
group is in the age range of 11-16 years. Healthy subjects
and without physical disabilities participated in the both
groups. All subjects performed the same four actions: move-
ment of the arms, walking, running and jumping. Each sub-
ject repeated each action 5 times. Moreover, parameters such
as weight, height and gait velocity were measured for each
child (Table 1).

First group included 5 females and 4 males. According to
the measurements, the gait velocities of subjects were sig-
nificantly different. It depended on their physical parameters
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and gender. Second group had 7 females and 13 males. The
gait velocities of this group were also significantly different
according to their physical parameters and gender.

Learning Architecture
Our learning architecture consists of 2 hierarchically ar-
ranged self-organizing neural networks (Figure 3). The use
of hierarchical self-organization has been shown to be an ef-
ficient and effective method for recognizing human motion
(Parisi, Weber, and Wermter 2015). This method is consis-
tent with neurophysiological findings that have identified a
specialized area for the visual processing of complex mo-
tion in the brain in a hierarchical fashion (Rolls and Caan
1982). More specifically, the visual system is composed of
topographically arranged structures that organize according
to external visual stimuli (von der Malsburg 1973). Input-
driven self-organization has been shown to govern the de-
velopment the connections in the visual cortex according to
the distribution of the inputs. From a computational perspec-
tive, self-organization is an unsupervised learning mecha-
nism that allows to learn representations of the input by iter-
atively obtaining a non-linear projection of the feature space
(Kohonen 1989). Furthermore, it has been found that learn-
ing plays a crucial role in complex motion discrimination.
Numerous studies have shown that the recognition speed and
accuracy of humans have improved after a number of train-
ing sessions (Jastorff, Kourtzi, and Giese 2006).

Hierarchical Self-Organizing Learning
Our learning model consists of Growing When Required
(GWR) networks (Marsland, Shapiro, and Nehmzow 2002)
that iteratively obtain generalized representations of sensory
inputs and learn inherent spatio-temporal dependencies. The
GWR network is composed of a set of neurons and their as-
sociated weight vectors wj linked by a set of edges. The
activity of a neuron is computed as a function of the dis-
tance (usually the Euclidean distance) between the input and
its weight vector. During the training, the network dynami-
cally changes its topological structure to better match the
input space following competitive Hebbian learning (Mar-
tinetz 1993). Different from other models of incremental
self-organization, GWR-based learning takes into account
the number of times that a neuron has fired so that neu-
rons that have fired frequently are trained less. For this pur-
pose, the network implements a habituation counter to ex-
press how frequently a neuron has fired based on a simpli-
fied model of how the efficacy of an habituating synapse re-
duces over time. This mechanism allows to create new neu-
rons whenever it is required. The GWR algorithm will then
iterate over the training set until a given stop criterion is met,
in our case a maximum number of iterations. The standard
procedure for GWR learning is described by Algorithm 1
(except for Steps 6.c and 7.c that are discussed in the fol-
lowing Section). For GWR learning, we used the following
training parameters: insertion threshold aT = 0.70, learning
rates εb = 0.3, and εn = 0.006, κ = 0.5, maximum age
amax = 50, firing counter parameters η0 = 1, τb = 0.3,
τn = 0.1, firing threshold ηT = 0.01.

Body Posture 
Sequence

Hierarchical Learning

Figure 3: Hierarchical architecture with self-organizing neu-
ral learning (GWR networks). Learning is carried out by
training a higher-level network with neuron activation tra-
jectories from a lower level network trained on body posture
sequences .

The motivation for using hierarchical learning is to use
trajectories of neuron activations from one network as input
for the training for a subsequent network. This mechanism
allows to obtain specialized neurons coding spatio-temporal
dependencies of the input, consistent with the assumption
that the recognition must be selective for temporal order. Hi-
erarchical learning is carried out by training a higher-level
network with neuron activation trajectories from a lower
level network. These trajectories are obtained by computing
the best-matching neuron of the input sequence with respect
to the trained network with N neurons, so that a set of tra-
jectories of length q is given by

Ωq(xi) = {wb(xi),wb(xi−1), ...,wb(xi−q+1)} (1)

with b(xi) = arg mini∈N ‖xi − wj‖ and q being the size of
the temporal window.

We trained the low-level network of the hierarchy with
vectors containing the 3D body information. To attenuate
the effects of sensor noise, we estimated the median value
for each joint every 3 vectors, i.e. resulting in 10 frames per
second (instead of 30). The subsequent network was trained
with activation trajectories of five (q = 5) neurons from the
previous network using a sliding window scheme. Each net-
work was trained for 300 epochs. This maximum number
of epochs was empirically found based on the learning con-
vergence of both networks and the final classification per-
formance. After the training phase is completed, each high-
level neuron will encode a sequence-selective action seg-
ment of 5 consecutive posture frames, i.e. half a second of
motion captured at 10 frames per second.

Classification
At recognition time, our goal is to process and classify novel
action sequences in terms of age and gender. For this pur-
pose, we extended the unsupervised GWR-based learning of
the higher level network to attach labels to trained neurons
(Algorithm 1, steps 6.c and 7.c). In this case, the network
will be trained with the motion sequences in an unsupervised
fashion while using a labeling function to attach the labels
of the input λ(xt), i.e. age and gender, to best-matching neu-
rons during the training phase. As a result of this process,
each neuron in the higher level network encoding a motion
segment will be associated to an input label. Different from
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Algorithm 1 GWR Learning
1: Create two random neurons with weights w1 and w2

2: Initialize an empty set of connections E = ∅.
3: At each iteration t, generate an input sample xt

4: For each neuron n, select the-best matching node and
the second-best such that:
bt = arg minn∈A ‖xt − wn‖
st = arg minn∈A/{bt} ‖xt − wn‖

5: Create a connection if it does not exist
5a: E = E ∪ {(bt, st)} and set age of Ebt,st to 0.

6: If (exp(−‖xt − wbt‖) < aT ) and (η(bt) < fT ) then:
6a: Add a new neuron rt between bt and st with
wrt = κ · (wst + xt)
6b: Create edges and remove old edge:
E = E ∪ {(rt, bt), (rt, st)} and E = E/{(bt, st)}
6c: Initialize label: λ(rt) = λ(xt)

7: Else, i.e. no new neuron is added, update wbt and its
neighbours i:
7a: ∆wbt = εb · η(bt) · (xt−wbt) and ∆wi = εn · η(i) ·
(xt − wi),
with 0 < εn < εb < 1
7c: Update label: λ(bt) = λ(xt)
7d: Increment the age of all edges connected to bt.

8: Reduce the firing counters according.
9: Remove all edges with ages larger than amax and re-

move neurons without edges.
10: If the stop criterion is not met, go to step 3.

previous approaches using GWR-based associative learning
(Parisi, Weber, and Wermter 2015), in our approach each la-
bel consists of two values, age and gender, so that new sam-
ples can be processed through the hierarchy and return the
label values of the best-matching sequence.

Experimental Results
The classification accuracy for each action is shown in
Fig. 4. Our system achieved an average classification ac-
curacy of 95.2% for age and for 90.3% gender estimation
using 3-fold cross-validation on the training dataset. In the
case of age, the standard deviation is of 2.5 years. These re-
sults suggest that although the exact age is harder to estimate
than the gender, we successfully estimate the age range with
high accuracy.

As reported in previous experiments, 3D body data ex-
tracted from depth information with a Kinect generally con-
tains noisy samples that may have a negative influence on
neural network learning (Parisi, Weber, and Wermter 2015).
On the other hand, although the accuracy of Kinect tech-
nology is not so precise, this approach is computationally
efficient and allows to extract 3D body information in real
time, thereby enabling us to estimate age and gender with
very low latency in a live scenario. This is in fact a very
desirable property, since delays in HRI systems may have a
strong negative impact in terms of the user experience and
acceptability.

The learning-based approach with a self-organizing hi-
erarchy has been shown to attenuate the negative effect of

Figure 4: Experimental results: Classification accuracy for
age and gender for each action.

noisy samples, since for each novel observation the system
will find a best-matching neuron in the trained low-level net-
work that represents the input. This low-level network serves
also as a dictionary of primitives that can be reused when
learning sequences of posture samples, thereby reducing the
total number of neurons required to represent all the actions.
On the other hand, a limitation of this approach is that a
best-matching neuron will always be found for each novel
sample, even if the sample is pure sensor noise. A solution
to this issue may be to introduce an embedded mechanism
in the low-level network to filter out observations that are
likely to be noise, e.g. values highly detached from domi-
nating point clouds in the feature space.

To be pointed out is that these results indicate that neural
network classification with hierarchical self-organization is
an effective and efficient approach to process and learn from
body attributes and action sequences. Since our experiments
were conducted on a dataset of 28 subjects and 6 actions,
we are unable to establish whether the recognition accuracy
would be as high as our results for a higher number of chil-
dren participants and a different set of actions.

Conclusion
In this work, we proposed a novel method to estimate age
and gender of children based on 3D body motion informa-
tion. The contribution of this work consists in a fully anno-
tated depth dataset of 28 individuals and a learning-based
method for age and gender estimation by modeling the chil-
dren’s motion based on 3D skeleton data. For this purpose,
we extracted relevant metrics from body gait. Our reported
results show that this methodology based on the learning
of body metrics outperforms previous approaches on age-
gender estimation in perceptually challenging environments.
While this work focuses on adapting the applications of
a humanoid robot to suit the preferences of children, this
methodology could be applied to the design of any adaptive
system to be tailored for the users.
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