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Abstract

We present a robust and scalable KR-centered founda-
tion for modularly supporting general declarative spa-
tial representation and reasoning within diverse declar-
ative programming AI frameworks. Based on Construc-
tive Geometric Constraint Solving, our approach pro-
vides the foundations for mixed qualitative-quantitative
reasoning about space —mereotopology, relative orien-
tation, size, proximity— encompassing key application-
driven capabilities such as qualification, spatial con-
sistency solving, quantification, and dynamic geome-
try. The paper also demonstrates: (a) the framework
with benchmark problems (e.g., contact and orientation
problems) and applications in spatial Q/A; (b) integra-
tion with constraint logic programming, and (c) empiri-
cal results illustrating how the proposed encodings out-
perform existing methods by orders of magnitude on the
selected problems.

A range of application areas within the purview of
knowledge representation and reasoning (e.g., question-
answering, computer-aided learning) require the ability
to perform mixed qualitative-quantitative reasoning about
space: mereotopology, direction, size, proximity. However,
what is critically lacking is a general, robust, and scalable
KR-centered foundation for modularly supporting spatial
reasoning within diverse KR frameworks —e.g., (constraint)
logic programming, answer-set programming, description
logics, and so on.

Although this gap between KR frameworks and spatial
reasoning exists, qualitative spatial representation and rea-
soning has received considerable attention from the artifi-
cial intelligence community, especially from the viewpoint
of spatial information theory, and knowledge representa-
tion and reasoning. Knowledge representation and reason-
ing about space may be formally interpreted within diverse
frameworks such as: (a) geometric reasoning & constructive
(solid) geometry (Kapur and Mundy, 1988); (b) relational
algebraic semantics of ‘qualitative spatial calculi’ (Ligozat,
2011); and (c) by axiomatically constructed formal sys-
tems of mereotopology and mereogeometry (Aiello, Pratt-
Hartmann, and Benthem, 2007). Thus, there is a growing
need to bring these theoretical advances in spatial reasoning
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into more mainstream use in AI through a seamless inte-
gration with wider KR systems to facilitate e.g. rule-based
spatial reasoning, spatially valid action planning, combined
ontological-spatial reasoning, and so on. Recent initiatives
in this direction include constraint logic programming over
qualitative spaces, CLP(QS) (Bhatt, Lee, and Schultz, 2011),
and Answer Set Programming modulo theories over qual-
itative spaces, ASPMT(QS) (Walega, Bhatt, and Schultz,
2015), both of which are based on polynomial constraint
solving via satisfiability modulo theories (SMT) for spatial
reasoning.

We investigate the utilisation of constructive geometric
constraint solving as a mechanism for modularly equipping
KR-based frameworks with commonsense spatial reason-
ing over a range of spatial domains. The tasks we focus on
specifically include: (1) consistency: determining whether
a concrete configuration of objects exists that satisfies the
given qualitative relations; (2) instantiation: producing a
consistent concrete configuration of objects that satisfies the
qualitatively described scenario; (3) dynamic geometry: al-
lowing a user to modify a consistent configuration, and in
real-time have the solver update the other objects so that the
given qualitative relations are maintained.

Axiomatic methods The state of the art in qualitative spa-
tial reasoning using relational algebraic methods (e.g. the
left-right calculus LR (Ligozat, 1993)) (Ligozat, 2011) has
resulted in prototypical algorithms and black-box systems
that do not integrate with KR languages, such as those deal-
ing with semantics and conceptual knowledge necessary
for handling background knowledge, action & change, re-
lational learning, rule-based systems etc. Moreover, while
efficient, these methods are incomplete in general (Ligozat,
2011; Ladkin and Maddux, 1994; Lee, 2014)1, cannot deal
with problems where partial numerical information is avail-
able (although some research exists in this direction, see

1Incompleteness refers to the inability of a spatial reasoning
method to determine, in general, whether a given set of qualitative
spatial constraints is consistent or inconsistent. Relation-algebraic
spatial reasoning (i.e. using algebraic closure based on weak com-
position) has been shown to be incomplete for a number of spatial
languages and cannot guarantee consistency in general, e.g. relative
directions (Lee, 2014) and containment relations between linearly
ordered intervals (Ladkin and Maddux, 1994), Theorem 5.9.
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(Liu et al., 2011)), and cannot be used for the instantiation
task in general nor dynamic geometry.

Geometric Constraint Solving Alternatively, the field of
geometric constraint solving adopts an analytic geometry
approach where classes of objects are parameterised, and
spatial relations are encoded as systems of polynomial equa-
tion and inequality constraints (Chou, 1988). For exam-
ple, we can define a sphere as having a 3D centroid point
(x, y, z) and a radius r, where x, y, z, r are reals. Two
spheres s1, s2 externally connect or touch if

(xs1−xs2)2+(ys1−ys2)2+(zs1−zs2)2 = (rs1+rs2)
2 (1)

If the system of polynomial constraints is satisfiable then
the spatial constraints are consistent. The system of poly-
nomial (in)equalities over variables X is satisfiable if there
exists a real number assignment for each x ∈ X such that
the (in)equalities are true. Partial numerical information is
utilised by assigning the given real numerical values to the
corresponding object parameters.

A range of algorithms have been developed for geometric
constraint solving via solving systems of polynomial con-
straints, and can be broadly categorised as: numerical opti-
misation (e.g. (Ge, Chou, and Gao, 1999)), symbolic meth-
ods (e.g. (Chou, 1988; Gao and Chou, 1998b)), and con-
structive methods (e.g. (Owen, 1991; Bouma et al., 1995;
Gao and Chou, 1998a)).

Constructive Geometric Constraint Solving In a semi-
nal paper, Owen (1991) presents a method now termed Con-
structive Geometric Constraint Solving (CGCS) or the graph
reduction approach. Owen identifies a particular set of spa-
tial relations that, on one hand, are useful for a wide range
of applications, particularly engineering and computer aided
manufacturing, and on the other hand, can be reasoned about
efficiently enough to address real-world scale problems. The
particular set of relations correspond to distance, incidence,
and angle constraints that can be encoded as quadratic equa-
tions over 2D points, lines, and circles. Geometrically, these
correspond to relations that can be constructed using the fa-
miliar idealised ruler and compass from Euclid’s Elements
(Heath, 1956). We refer to this restricted set of spatial re-
lations as the standard geometric constraint language. This
set of relations is now standard within the geometric con-
straint solving community (see (Lee and Kim, 1998; Bouma
et al., 1995)), and all prominent, industry-standard con-
straint solvers adopt precisely this set of relations, partic-
ularly within Computer Aided Design and Manufacturing
(e.g. Autodesk Inventor,2 LEDAS LGS2D,3 FreeCAD4). We
emphasise that CGCS is capable of solving our required con-
sistency, instantiation, and dynamic geometry tasks.

An Integrated Spatial-KR Framework
Figure 1 illustrates a system diagram of the interaction of
the spatial solver with KR frameworks. The solver is em-
bedded natively within each KR framework; the basic me-

2www.autodesk.com/products/inventor/overview
3ledas.com/products/lgs2d/
4www.freecadweb.org/

spatial language
library

CLP(QS) ASPMT(QS)

solving
planner

geometric
solver

Spatial Solver

Figure 1: System diagram of the modular spatial solver com-
ponent integrated into various KR frameworks.

chanics of the spatial solver are independent of the particu-
lar KR framework, and are accessed by a standard interface.
In the case of constraint logic programming we have built
on top of CLP(QS) (Bhatt, Lee, and Schultz, 2011) through
Prolog’s foreign language interface. In the case of ASPMT
we are building on top of ASPMT(QS) (Walega, Bhatt, and
Schultz, 2015) so that spatially inconsistent stable models
are rejected.

Conceptually, the KR framework handles control of the
overall reasoning procedure. When a select set of spatial
predicates are encountered, as specified in the solver’s spa-
tial language library, they are sent to the spatial solver by
the controlling KR framework. The spatial language is read-
ily extensible, in this paper we present a sample of relations
that are currently supported. The solver accepts conjunctions
of spatial predicates with variables ranging over spatial do-
mains (i.e. the objects in a configuration) and determines
consistency. The solver provides consistent configurations,
and additionally the solving history of configurations is ac-
cessible (particularly to support diagnosing inconsistencies).
A configuration can be modified and updated to maintain the
qualitative constraints (i.e. dynamic geometry). Objects and
relations can be removed to facilitate backtracking.

The Standard Geometric Constraint Language The
spatial domains of objects in the standard geometric con-
straint language are points P, lines L, and circles C:

• a point p ∈ P is a pair of reals, (xp, yp) ∈ R2;

• a line lab ∈ L is a pair of distinct points, a, b ∈ P, a 6= b;

• a circle Ci ∈ C is a circle with centre point pi ∈ P and
radius ri ∈ R, 0 < ri.

We use lower case letters to refer to points. We use lp1p2 to
refer to lines between points in the subscript. We use upper
case Ci with a subscript number (if needed) to refer to cir-
cles. For brevity, if two points a, b have been declared, then
we can refer to the line lab without explicitly quantifying l,
e.g. let ϕ be a predicate, then:
∃a, b ∈ P,∃lab ∈ L

(
ϕ(lab)

)
≡ ∃a, b ∈ P

(
ϕ(lab)

)
.

Table 1 presents polynomial encodings for the standard
set of geometric constraints between points, lines, circles.
They correspond to:

• incidence between points-lines, and points-circles
(collinear, coincident);
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Relation Polynomial Encoding
collinear (COLL) (xb − xa)(yp − ya) = (xb − ya)(xp − xa)

(point p, line lab)
coincident (COIN) (xpi

− xa)
2 + (ypi − ya)

2 = r2i
(point a, circle Ci)
perpendicular (PERP) (yb − ya)(yd − yc) = −(xb − xa)(xd − xc)

(lines lab, lcd)
parallel (PARA) (yb − ya)(xd − xc) = (yd − yc)(xb − xa)

(lines lab, lcd)
angle (ANG) θ = atan2((yb − yp), (xb − xp))

(points a, b, p, constant θ) − atan2((ya − yp), (xa − xp))

Table 1: Polynomial encodings of geometric constraint relations.

• orientation between lines (parallel, perpendicular);
• constant distance and angles for lines and circles (dis-

tance between points, radii of circles, angle between
points a, b about a reference point p).

Expressing Qualitative Spatial Relations using
Geometric Constraint Languages
In this section we present a range of novel encodings that en-
able us to reason about qualitative spatial relations over ex-
tended regions (in particular, relative orientation, size, prox-
imity, and mereotopology over regions) using traditional ge-
ometric constraint solving methods that are restricted to the
standard geometric constraint language.

Point-segment coincidence While the collinear con-
straint between points and lines is common in geometric
constraint systems (i.e. a point lies anywhere on an infinite
line), the ability to constrain a point to lie coincident on a
line segment (i.e. between two points) is typically not sup-
ported. The following encoding realises a coincidence con-
straint between a point p and a segment lab.

Firstly we define a useful BRACE relation between a line
segment and a circle that ensures the diameter of the circle is
equal to the length of the segment (Figure 2(a)). That is, the
endpoints of the line lab are constrained to lie on the circle
Ci, and the centroid of Ci is constrained to be collinear with
lab.

BRACE(lab, C) ≡
COIN(a,Ci) ∧ COIN(b, Ci) ∧ COLL(pi, lab)

As illustrated in Figure 2(b), the point-segment coinci-
dence encoding adds a circle C1 and a brace relation with
line lab, so that the diameter of C1 equals the length of lab.
Next, the encoding adds a line lpc perpendicular to lab with
endpoint c coincident to C1. The perpendicular constraint
ensures that the two lines always intersect within the inte-
rior of C1. Finally, the given point p is constrained to be
collinear to lab, and is thus always constrained to lie on the
segment lab.

COIN(p, lab) ≡ ∃C1 ∈ C,∃c ∈ P
(
BRACE(lab, C1)

∧ COIN(c, C1) ∧ PERP(lab, lpc) COLL(p, lab)
)

For convenience and brevity we also define the relation
that segment lab is coincident with segment lcd as: the end-
points a, b are coincident with the segment lcd.

a
b

Ci

pi

(a)

a

b

C1

p
p1

c

(b)

Figure 2: (a) Brace relation between circle Ci and line lab;
(b) point p is constrained to lie on the segment between
points a, b.

COIN(lab, lcd) ≡ COIN(a, lcd) ∧ COIN(b, lcd)

Point p can not be equal to either endpoint a, b as the line
lcd can not have zero length. If we drop this line constraint
for lcd so that c, d can also be equal, then p can also equal the
endpoints. These are useful predicates for defining topolog-
ical relations, and thus we refer to them as: COIN⊆(p, lab)

and COIN⊆(lab, lcd).

Relative Orientation As illustrated in Figure 3, the en-
coding for the left of relation adds a new point c collinear
to the given line lab, and adds a line lcp, between the given
point p and the new point c. The encoding then adds the
constraint that the angle between lab and lcp is 90o counter-
clockwise. The length of the line lcp is unbounded, and thus
p can be moved an arbitrary distance away from lab. The key
is that, if p is moved to the right side of lab, then the angle
constraint is violated, and thus p is forced to remain on the
left side.

LEFT(p, lab) ≡ ∃c ∈ P
(
ANG(b, p, c, π2 )∧COLL(c, lab)

)
RIGHT(p, lab) ≡

∃c ∈ P
(
ANG(b, p, c,−π2 ) ∧ COLL(c, lab)

)
We extend this definition to relative orientation relations

between lines and circles (Figure 3(b)).

LEFT(C1, lab) ≡ ∃c, d ∈ P
(
ANG(b, p1, c,

π
2 )

∧ COLL(c, lab) ∧ COIN(d,C1) ∧ COIN(d, lcp1)
)

RIGHT(C1, lab) ≡ ∃c, d ∈ P
(
ANG(b, p1, c,−π2 )

∧ COLL(c, lab) ∧ COIN(d,C1) ∧ COIN(d, lcp1)
)

Topological relations between circles In standard geo-
metric constraint solvers there is no way of directly specify-
ing mereotopological constraints between higher-level ob-
jects and regions such as circles, squares, triangles, poly-
gons, and so on. In this section we present encodings for
topological relations between circles, and then use these en-
codings as a basis for defining relations between more gen-
eral regions.

We adopt the terminology of the prominent topological
spatial logic, the Region Connection Calculus (RCC) Ran-
dell, Cui, and Cohn (1992): disconnects (DC), externally
connects (EC), partial overlap (PO), tangential proper part
(TPP), non-tangential proper part (NTPP), proper part
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a

b

p

a

bpc

c
(a)

a

b

C1

p1

c

d

(b)

Figure 3: (a) Point p is constrained to lie anywhere to the
left of line (a, b). The angle from point b to p about c is
fixed at π

2 counter-clockwise. The distance between c, p is
not constrained. (b) Circle C1 is constrained to lie anywhere
to the left of line (a, b).

(PP), part of (P), discrete from (DR), equal (EQ). Note that
EQ between two circles is trivially satisfied by constraining
the centroids and radii to be equal.

The topological relation encodings are illustrated in Fig-
ure 4. To ensure circle intersection (e.g. TPP, NTPP, PO),
the encodings constrain one or both endpoints of the brace
segments of one circle to be coincident to the brace segment
of the other circle; a pair of brace endpoints are made equal
for boundary contact (e.g. TPP). EC is encoded with a point
of boundary contact a that is coincident to a segment lp1p2
between the circle centroids. DC is encoded by introducing
a third circle C3 so that one endpoint of each of the braces of
C1 and C2 lie on different sides of the centroid of C3, along
the brace of C3.

Observe that the brace segment within a circle can be ro-
tated about the circle’s centroid. Thus, considering NTPP
for example, C1 can occupy any circular region within C2

by moving C1 along the brace of C2, and rotating the brace
of C2.

TPP(C1, C2) ≡ ∃lab, lac ∈ L
(
BRACE(lab, C2)

∧ BRACE(lac, C1) ∧ COIN(c, lab)
)

NTPP(C1, C2) ≡ ∃lab, lcd ∈ L
(
BRACE(lab, C2)

∧ BRACE(lcd, C1) ∧ COIN(lcd, lab)
)

PO(C1, C2) ≡ ∃lab, lcd ∈ L
(
BRACE(lab, C2)

∧ BRACE(lcd, C1) ∧ COIN(a, lcd) ∧ COIN(d, lab)
)

EC(C1, C2) ≡ ∃a ∈ P
(
COIN(a, lp1p2)

∧ COIN(a,C1) ∧ COIN(a,C2)
)

DC(C1, C2) ≡ ∃a, b ∈ P,∃C3 ∈ C
(
BRACE(lp1p2 , C3)

∧ COIN(a, lp1p3) ∧ COIN(a,C1)
)

∧ COIN(b, lp2p3) ∧ COIN(b, C2)
)

We can drop the distinction between boundaries (i.e. cor-
responding to RCC5 and other RCC relations) by employing
the modified coincident constraint between points and seg-
ments COIN⊆(p, lab), where a point p can also equal the
segment endpoints lab. Thus, we encode the definitions that:

• PP is a disjunction of NTPP and TPP;
• P is a disjunction of PP and EQ;

c

d

C2

p2

C1

a

b

p1

(a) PO(C1, C2)

a

b

C1
p1

p2

c

C2
d

e

a

b

C1p1
p2

c

C2

d

ef

g

h

a

b

C2
p2

p1

C1

c

a

b

C2p2
p1
C1

d

c

(b) TPP(C1, C2)

a

b

C1
p1

p2

c

C2
d

e
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b

C1p1
p2

c

C2

d

ef

g

h

a

b

C2
p2

p1

C1

c

a

b

C2p2
p1
C1

d

c

(c) NTPP(C1, C2)

a C2

p2

C1
p1

(d) EC(C1, C2)

a C2

p2

C1
p1

C3
p3

b

(e) DC(C1, C2)

Figure 4: Topological relations between circles.

• DR is a disjunction of DC and EC.

PP(C1, C2) ≡ ∃lab, lcd ∈ L
(
BRACE(lab, C2)

∧ BRACE(lcd, C1) ∧ COIN⊆(c, lab) ∧ COIN(d, lab)
)

P(C1, C2) ≡ ∃lab, lcd ∈ L
(
BRACE(lab, C2)

∧ BRACE(lcd, C1) ∧ COIN⊆(lcd, lab)
)

DR(C1, C2) ≡ ∃a, b ∈ P,∃C3 ∈ C
(
BRACE(lp1p2 , C3)

∧ COIN⊆(a, lp1p3) ∧ COIN(a,C1)
)

∧ COIN⊆(b, lp2p3) ∧ COIN(b, C2)
)

Qualitative Size and Proximity We can make C1 strictly
larger than C2 (Figure 5(a)) by introducing a point c
collinear with lp1p2 , making segment lac perpendicular to
lp1p2 , and adding a circle C3 centred on p1 (i.e. p3 = p1)
coincident with c. As the radius of C3 is necessarily greater
than 0, the length of lp1a is greater than lp2b by Pythagoras’
theorem. For the equi-sized relation, constraining two radii
to be equal is already supported as a primitive relation in the
standard geometric constraint language.

LARGER(C1, C2) ≡ ∃a, b, c ∈ P,∃C3 ∈ C
(

COIN(a,C1) ∧ COIN(b, C2) ∧ COLL(c, lp1p2)
∧ p3 = p1 ∧ PARA(lp1p2 , lab) ∧ PERP(lp2b, lab)

)
We can use this right triangle construction to order circles

in terms of proximity (Figure 5(b)). Segment lp1b is at least
as long as lp1a, and lp1c is at least as long as lp1b, and thus
C1 is nearer to C2 than C3. Additionally we can impose a
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C1

p1
p2

C2

a
b

c

C3

(a)

b

a

b

C1 p1
C2

C3

C4C5

c

(b)

Figure 5: (a) C1 larger than C2 (b) C1 nearer C2 than C3.

part of constraint between C2 and C5 to express that C1 is
nearer to all parts of C2 than C3.

NEARER(C1, C2, C3) ≡ ∃a, b, c ∈ P,∃C4, C5 ∈ C
(

p4 = p1 ∧ p5 = p1 ∧ COIN(a,C1) ∧ COIN(b, C4)
∧COIN(c, C5)∧PERP(lp1a, lab)∧PERP(lp1b, lbc)
∧ EC(C2, C4) ∧ EC(C3, C5)

)
Egg-yolk approach for defining relations between re-
gions We employ the egg-yolk method of modelling re-
gions with indeterminante boundaries (Cohn and Gotts,
1996) to characterise a class of regions (including polygons)
that satisfies topological, relative direction, qualitative size
and proximity relations. Each egg-yolk region is an equiva-
lence class for all regions that are contained within the upper
approximation (the egg white), and completely contain the
lower approximation (the egg yolk). Let R be the domain of
egg-yolk regions, where egg-yolk region R ∈ R consists of
a circular upper and a lower approximation R+, R− ∈ C
such that NTPP(R−, R+) (see Figure 6(a)).

We can realise these regions through constructive geomet-
ric constraint encodings, giving us a method of generating
arbitrary regions that satisfy qualitative spatial constraints.
We declaratively define a (simple, non-self-intersecting)
polygon as a sequence of vertices such that:

1. all vertices are contained within the upper approximation

2. no segment between adjacent vertices intersects the lower
approximation

3. the (absolute) winding number about the centroid of the
lower approximation is 1

We can generate polygons by placing n vertices on the up-
per approximate circle, evenly distributed (satisfying Condi-
tion 3), such that each vertex and line segment is geometri-
cally constrained to satisfy Conditions 1 and 2 above. The
user can explore the space of consistent polygons directly
through dynamic geometry Winroth (1999), or polygons can
be randomly generated.

Relative orientation between egg-yolk regions and lines
(see Figure 3(b)) and qualitative size and proximity can now
be defined based on the approximations:

LEFT(R, lab) ≡ LEFT(R+, lab)
RIGHT(R, lab) ≡ RIGHT(R+, lab)

LARGER(R1, R2) ≡ LARGER(R−
1 , R

+
2 )

NEARER(R1, R2, R3) ≡ NEARER(R+
1 , R

−
2 , R

+
3 )

R
R -

R +

(a) Egg-yolk region.

R2

R1

(b) PP(R1, R2)

R2

R1

(c) PO(R1, R2)

Figure 6: Egg-yolk region R is defined by a lower circular
approximation R− and an upper circular approximation R+.

Solver CLP(QS) z3 Redlog GQR
n = 3 0.111 0.020 0.626 0.001
n = 4 0.903 21.294 0.629 0.001
n = 5 6.979 time out 173.852 fail

Table 2: Time (sec) to solve the circle contact problem.

The following topological relations between pairs of egg-
yolk regions are defined based on the relation between their
approximations (see Figure 6):

PP(R1, R2) ≡ P(R+
1 , R

−
2 )

DC(R1, R2) ≡ DC(R+
1 , R

+
2 )

DR(R1, R2) ≡ DR(R+
1 , R

+
2 )

PO(R1, R2) ≡ PO(R−
1 , R

−
2 )∧

PO(R+
1 , R

−
2 ) ∧ PO(R−

1 , R
+
2 )

The partial overlap definition requires some explanation:
the partial overlap condition between the lower approxima-
tions ensures that the regions share a common interior part,
but one region might completely contain the other. The par-
tial overlap condition between the upper and lower approx-
imations ensures that the regions each have interior parts
not shared by the other, but the regions could still be dis-
connected. Thus, together the conditions encode the partial
overlap relation between egg-yolk regions.

The egg-yolk relation encodings are sound, i.e. they cor-
rectly encode the intended relation between the true regions,
and are incomplete, i.e. they do not capture all possible ways
that the true regions can satisfy the intended relation.

Empirical Evaluation
In this section we empirically compare our spatial solver
(based on FreeCAD CGCS, integrated in CLP(QS)) with
other popular spatial reasoning approaches: z3 SMT solver
(De Moura and Bjørner, 2008), Cylindrical Algebraic De-
composition in Redlog (Dolzmann, Seidl, and Sturm, 2004),
and GQR qualitative spatial calculus solver (Gantner, West-
phal, and Wölfl, 2008). Experiments were run on a Mac-
BookPro, OS X 10.8.5, 2.6 GHz, Intel Core i7. In the exper-
iments, time out was issued after a runtime of 10 minutes.

Circle Contact Determine whether n circles can be mu-
tually externally connected; consistent for 2 ≤ n ≤ 4 (see
Table 2).
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n 4 5 6 7 8 9

CLP(QS) 0.233 0.431 0.847 1.577 2.629 4.522
z3 0.022 time out time out time out time out time out

Redlog 3.571 4.508 time out time out time out time out
GQR n/a n/a n/a n/a n/a n/a

Table 3: Time (sec) to solve the spiral chain problem, n = 4 . . . 10.

Figure 7: A spiral chain for n = 7.

Spiral Chain Given n circles, make circles i, (i+1) exter-
nally connected, and make the centroid of circle (i+ 2) left
of the line between centroids i, (i+1), for i = 1, . . . , n−1.
This problem combines topology and orientation relations
(see Fig 7 and Table 3).

Lamp Design The lamp has a base and three bars con-
nected by three joints; the joints can only turn inwards; the
lamp shade connects to the third joint; the bulb must fit com-
pletely within the lamp shade. Figure 8 illustrates the con-
straint graph and corresponding FreeCAD interactive dia-
gram that maintains the specified qualitative relations. As
the user manipulates the diagram, the FreeCAD geometric
solver maintains the qualitative constraints in real time. The
solving time is 0.001 seconds per adjustment.
point(Base), point(Joint1),

point(Joint2), point(Joint3),

line(Bar1, point(Base), point(Joint1)),

line(Bar2, point(Joint1), point(Joint2)),

line(Bar3, point(Joint2), point(Joint3)),

circle(Shade), circle(Lamp),

fix(Base, point(0,0)),

length(Bar1, value(31)),

orientation(left_of, Joint2, Bar1),

orientation(left_of, Joint3, Bar2),

topology(proper_part, Lamp, Shade).

Next, we can specify Prolog queries that check possible
relations between objects that were not directly constrained.
Prolog finds potential spatial relations that could apply ac-
cording to its knowledge base and then determines spatial
validity by consulting the spatial reasoning module. When
Prolog finds a valid solution, a consistent configuration is
provided (as a consequence of the CGCS solving process).
Moreover, the configuration is dynamic and can be manipu-
lated within the current set of qualitative constraints:
?- orientation(Relation, Shade, Bar2).

Relation = left_of

When we backtrack Prolog reports the next qualitative re-
lation in front with the corresponding dynamic configura-
tion. Further backtracks do not yield any more qualitative

base

bar-1

joint-1

bar-2

joint-2
bar-3

joint-3

left

left

left

shade

bulb

proper
part

(a) (b)

Figure 8: (a) Constraint graph of lamp product design; (b)
screenshot of corresponding FreeCAD interactive lamp dia-
gram with qualitative constraints.

solutions.
...;

Relation = in_front.

Discussion and Future Work
We have presented a framework and geometric encodings
that enable the application of constructive geometric con-
straint solving for spatial reasoning within a KR-based
paradigm, specifically CLP(QS). Thus we employ rule-
based reasoning for formalising domain knowledge and sup-
porting querying and inference, extended to natively inter-
pret qualitative spatial predicates. Our spatial reasoning ap-
proach can be modularly applied to other KR frameworks,
e.g. we have experimented with integrating our spatial mod-
ule with ASPMT(QS) for reasoning about action and spatial
change; results are forthcoming.

It is straightforward to show that our definitions (except
relative orientation) hold true in the 3D case when we ex-
change 2D points for 3D points, 2D lines for 3D lines, and
circles for spheres. Our relative orientation (left, right) defi-
nition is modified to be defined with respect to 3D points and
planes. Due to limited space we have omitted 3D spatial do-
mains, although our preliminary experiments with Autodesk
Inventor 3D CGCS are promising.

An interesting open question is how to handle inconsis-
tent qualitative spatial constraints in general within a KR
framework: methods such as Cylindrical Algebraic Decom-
position are both sound and complete, whereas constructive
geometric constraint solving is incomplete in general. Thus,
a result of inconsistency using constructive approaches is
usually annotated with some measure of confidence (i.e. the
problem, or sub-problems, are executed a number of times
with different initial randomised parameter values until no
further progress towards a solution is made). Identifying
tractable classes of qualitative problems that have specific
properties with respect to completeness (and statistical con-
fidence in the case of reported inconsistency) is an interest-
ing direction for future research.
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