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Abstract

This paper presents an approach to automatically ex-
tracting and representing narrative information from
stories written in natural language. Specifically, we
present our results in extracting story graphs, a formal-
ism that captures the entities (e.g., characters, props, lo-
cations) and their interactions in a story. The long-term
goal of this research is to automatically extract this nar-
rative information in order to use it in computational
narrative systems such as story generators or interac-
tive fiction systems. Our approach combines narrative
domain knowledge and off-the-shelf natural language
processing (NLP) tools into a machine learning frame-
work to build story graphs by automatically identifying
entities, actions, and narrative roles. We report the per-
formance of our fully automated system in a corpus of
21 stories and provide examples of the extracted story
graphs and their uses in computational narrative sys-
tems.

Introduction

Computational narrative studies how to algorithmically rep-
resent, understand, and most importantly, generate stories.
Computational narrative has applications in areas of dig-
ital entertainment such as interactive fiction or computer
games and can provide insights into computational creativ-
ity (Turner 1993) and the analysis and understanding of lit-
erature (Elson, Dames, and McKeown 2010).

Computational narrative systems, especially story genera-
tion systems, require a significant amount of domain knowl-
edge encoded in some form of structured formalism in or-
der to function. Currently this information is mostly hand-
authored, a notoriously time-consuming task requiring ex-
pertise in both storytelling and knowledge engineering. This
well-known “authorial bottleneck” problem could be alle-
viated if narrative information could be automatically ex-
tracted from natural language since we could leverage the
content in the vast amount of existing written literature.

In this paper, we present a fully automated system that can
extract story graphs from natural language stories. These
story graphs encode information from the entities in the
text (e.g., characters, props, locations) and their interactions

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

(e.g., a character moves to a location or obtains a prop).
Story graphs are similar to the background knowledge re-
quired in existing story generation systems such as Tale-spin
(Meehan 1976) or Riu (Ontañón and Zhu 2010), or auto-
matic game generation systems such as Game Forge (Hart-
sook et al. 2011). Thus this paper constitutes a first step to-
ward allowing these kind of systems to exploit information
contained in natural language stories.

The proposed approach has been implemented into a sys-
tem called Voz, which pre-processes the text using off-the-
shelf natural language processing tools, and then uses a col-
lection of machine-learning modules that exploit narrative
domain knowledge to extract the different pieces of informa-
tion required to construct the story graphs. We report results
using a dataset consisting of 21 Russian stories manually
translated to English, evaluating the quality of the resulting
story graphs, and discussing the feasibility of utilizing these
graphs directly as input to map and story generation systems.

In the rest of the paper, we first discuss previous work on
computational narrative systems and the formalisms used,
and research on extracting narrative information from natu-
ral language. Next, we present our automatic narrative ex-
traction system and the story graphs it extracts. We follow
with an empirical evaluation of the quality of the extracted
story graphs, provide samples of the output of our system,
and show a sample application to content generation for
games. The paper closes with conclusions and future work.

Related Work

Most computational narrative systems require a signifi-
cant amount of domain knowledge which is mostly hand-
authored. Several variations of the Planning Domain Defini-
tion Language (PDDL) have been proposed to formalize the
plot of a narrative or narrative space in order to generate sto-
ries. Tale-spin (Meehan 1976) was a pioneer computational
narrative system that generated stories using planning.Other
approaches to story generation, such as those based on case-
based reasoning, or analogical methods, require background
knowledge and story examples annotated in a machine read-
able format. ProtoPropp (Gervás et al. 2005) uses annotated
stories and an ontology to generate stories matching a user
query. The Riu system (Ontañón and Zhu 2010) uses com-
putational analogy between manually annotated stories dur-
ing an interactive storytelling session. Systems like Game

The AAAI-17 Workshop on  
What's Next for AI in Games? 

WS-17-15

1006



Forge (Hartsook et al. 2011) or the work by Valls-Vargas
et al. (Valls-Vargas, Ontañón, and Zhu 2013) augment plot
points with annotations for spatial restrictions or graphical
realization in order to generate game environments.

There have been some efforts to standardize the process of
adding computer-readable annotations to natural language
stories, which would allow computational narrative systems
to exploit the information in these stories. The Proppian
fairy tale Markup Language (PftML) project (Malec 2001)
proposes an annotation scheme standardize a formal analyt-
ical model for stories based on Propp’s work (Propp 1973).
The NarrativeML (Mani 2012) is a proposed markup lan-
guage that seeks to annotate several narrative primitives, dis-
course and character information.

Previous work on extracting narrative structures from text
include the work of Finlayson (2008), who created the Story
Workbench, a semi-automatic tool that facilitates story an-
notation. Similar work has been done by Elson (2012b) in
Scheherazade. Elson proposed a graph-like semantic encod-
ing of a story called Story Intention Graphs (SIG). SIGs are
annotated using Scheherazade and have been used to detect
story analogies (Elson 2012a). Rishes et al. (2013) use SIGs
to generate different story tellings by automatically learning
rules to convert SIG to the input required for a natural lan-
guage generation system. Harmon and Jhala (2015) explored
converting the output of Skald (a reconstruction of Minstrel)
into SIG. While SIGs encode much richer information than
the story graphs proposed in this paper, these are authored
manually whereas our goal is to extract a story representa-
tion automatically from unannotated text.

There is also research on automatically extracting nar-
rative information. Goyal et al.’s AESOP system (Goyal,
Riloff, and Daumé 2010) explored how to extract charac-
ters and their affect states from textual narrative in order
to produce plot units (Lehnert 1981) for a subset of Aesop
fables. The system uses both domain-specific assumptions
(e.g., only two characters per fable) and external knowledge
(word lists and hypernym relations in WordNet) in its char-
acter identification stage. Chambers and Jurafsky (Cham-
bers and Jurafsky 2008) proposed using unsupervised in-
duction to learn what they called “narrative event chains”
from raw newswire text. In order to learn Schankian script-
like information about the narrative world, they use unsu-
pervised learning to detect the event structures as well as the
roles of their participants without pre-defined frames, roles,
or tagged corpora. In related work, Li et al. (2013) extract
plot graphs to represent the events in a collection of stories
describing a given theme (e.g., bank robbery). Also related
is the body of work on text-to-scene conversion of Coyne et
al. (Coyne and Sproat 2001) and Chang et al. (Chang, Savva,
and Manning 2014).

Our past work involves the automatic identification of
characters and their narrative roles in stories so the stories
can be used as input for systems such as Riu (Ontañón and
Zhu 2010). In this paper we focus on extracting a graph
representation of a narrative that includes all entities and
can later be used as input to computational narrative sys-
tems that require a structured story representation. Another
possible application of our story graphs could be the auto-

mated analysis and visualization of literature works in terms
of interactions between characters similar to the work of El-
son et al. (Elson, Dames, and McKeown 2010). We also ex-
plore areas of application related to the spatial configuration
of story worlds that could be used with systems like Game
Forge (Hartsook et al. 2011) or the work by Valls-Vargas et
al. (2013).

Automatically Extracting Story Graphs

In this section we describe our fully-automated narrative ex-
traction system called Voz and the story graphs it extracts.

System Architecture

Voz is a narrative information extraction system. Given the
text of a story, Voz uses off-the-shelf natural language pro-
cessing (NLP) tools, commonsense knowledge, narrative
domain knowledge, and machine learning approaches to ex-
tract, enrich, classify and finally compile narrative informa-
tion into a graph representing the original story. Figure 1
illustrates the architecture of the system and the main pro-
cesses described in this section.

Extraction: Voz uses the Stanford CoreNLP suite to seg-
ment the input text into sentences and annotate them with
several layers of NLP information (i.e., part-of-speech tags,
syntactic parse trees, coreference information and typed de-
pendencies). Then the mention extraction process identifies
referring expressions (i.e. mentions) to entities in the text.
Voz traverses the syntactic parse trees looking for “noun
phrase” (NP) nodes. This process yields a set of mentions
E = {e1, ..., en}. After that, an additional coreference reso-
lution process is run in order to improve the output from the
Stanford Coreference Resolution system (Lee et al. 2013).
Besides the pronominal coreference resolution information,
our process uses semantic and contextual information to fur-
ther group mentions in E into coreference groups (Lee et
al. 2013). The output of this process is a coreference graph
G = 〈E,L〉 where E is the set of mentions, and, L ∈ E×E
is the set of edges between each pair of mentions which are
believed to refer to the same entity. In the verb extraction
process, Voz identifies actions linking the extracted mentions
using the typed dependencies from the Stanford CoreNLP.
Currently, we only consider actions represented by verbs.
The output is a set of triplets: V = {v1, ..., vw}, where each
triplet vi is of the form 〈verb, subject, object〉 and subject
and/or object may be empty.

Enrichment: For each extracted mention Voz computes a
feature-vector that encodes linguistic features related to the
extracted verbs and mentions combined with external com-
mon sense and domain knowledge (Valls-Vargas, Zhu, and
Ontanon 2016). The features are computed from the parse
tree of the sentence where the mention is found, the sub-
tree representing the mention, the leaves of the subtree (e.g.,
word-level tokens with POS tags) and the dependency lists
that contain a reference to any node in the mention’s subtree,
including verb arguments. We also query knowledge bases
such as WordNet, ConceptNet and word lists (i.e., dictionar-
ies or gazetteers). Our features also include features for de-
termining if a mention appears as a subject of a verb, which
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Figure 1: Architecture of the Voz system illustrating the processes in our automatic narrative information extraction pipeline.
Dotted boxes identify the four steps in our story graph extraction methodology. Solid arrows represent information passed
between the different processes. Dashed arrows represent the contribution to the extracted story graph.

argument of a verb a mention appears in, and, when a men-
tion appears as the subject or object, we compute additional
features for several individual verbs and conceptual action
clusters. The output is a set of mentions E = {e1, ..., en}
where each mention e is a feature vector.

Classification: In the next step, Voz uses a case-based rea-
soning (CBR) approach to classify each entity e into a set
of classes S inspired by Chatman’s taxonomy (1990): hap-
pening (e.g., rain), male character, female character, an-
thropomorphic animal character, anthropomorphic object
character, group or abstract set of characters (e.g., people,
pirates, all the devils), magical being character (e.g., Jack
Frost, the devil), part of a character (e.g., her soul, her fin-
gers), animal (non-character), object or prop, locations that
the characters visit (e.g., the hill), scenery that is mentioned
(e.g., the mountains in the distance, the fields surrounding
the hill), temporal references (e.g., the day after, Winter),
part of a non-character (e.g., the bed’s blankets, the horse’s
back), and an additional “N/A” class label used mostly for
parsing errors. As a CBR system, Voz contains a case-base
C = {c1, ..., cl}, where each case ci = 〈ei, si〉 is com-
posed of a mention ei (represented by the feature vector de-
scribed above) and a class si ∈ S. The case base is populated
from the training set, described in the experimental evalua-
tion section below. For experimentation purposes, when run-
ning the system for one story, only the annotated data for the
remaining 20 stories is included in the case base. When clas-
sifying a new mention, the most similar instance to e from
the case-base is selected, and, the class of e is predicted as
that of the retrieved case. To determine the most similar case,
Voz uses a continuous variant of the Jaccard distance (Valls-
Vargas, Ontañón, and Zhu 2014). Once all the mentions have
been classified, the output of coreference resolution is used
to refine the results. Given a mention e ∈ E, we identify
its coreference group coref (e), that is, all the mentions that
are linked to e in the coreference graph G. Then, the class
assigned to e is replaced by the majority class in the group
coref (e).

Finally, the set of characters in the story are passed on to a
role identification process that classifies each character into
a set or roles R derived from the 31 Proppian functions and
subfunctions (Propp 1973). The Proppian role labels in R

are: hero, false hero, sought-for-person, villain, helper (in-
cludes magical helper since mostly correspond to the same
character in our dataset), other (includes dispatcher, family
members and other minor roles), and an additional “N/A”
class label used mostly for misidentified characters. Roles
are predicted in a similar way to entity classes (Valls-Vargas,
Zhu, and Ontañón 2014).

Story Graph Compilation: The output of the different
processes in Voz is finally compiled into a story graph S =
〈N,V 〉, where N is the set of nodes in the graph, and V the
set of edges. Each node ni is a tuple (g, s, r), where g is a
coreferenced entity group, s ∈ S is the class of the entities
in that group (happening, male character, female character,
object, etc.), and r ∈ R is the role of the entities in the
group (hero, villain, etc.), which is N/A for those entities not
being characters. The edges V correspond exactly to the set
of verbs extracted from the story. There is an edge between
two nodes n1 = (g1, s1, r1), n2 = (g2, s2, r2) ∈ N if there
is a verb v ∈ V such that g1 is the subject of the verb and g2
is the object of the verb.

Edges, therefore, represent the relation between the en-
tities, and the actions that each entity executes. However,
notice that in the current version of Voz, no temporal infor-
mation about the order of these actions is extracted. This will
be part of our future work.

Experimental Evaluation

In order to assess the quality of the extracted story graphs,
we report an empirical evaluation on a dataset containing 21
Russian stories. In this section, we first describe our dataset,
then numerically evaluate the accuracy of the resulting story
graphs, and finally illustrate the performance of the sys-
tem showing some automatically extracted story graphs, and
compare them with manually generated ones.

Dataset

Our dataset contains 21 Russian folk stories translated to En-
glish. We selected stories studied by Propp, 6 of which were
collected by Malec (2010) and 15 by Finlayson (2012). To
reduce NLP preprocessing issues at the discourse level, we
removed quoted (i.e., dialogue) and some instances of direct
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N/A AA AN AO FE GR HA MA MB OB PA PO SC SS ST Recall Prec.
N/A 0 24 1 7 8 17 30 37 4 166 11 0 9 150 47 0 0
AA 0 39 1 2 31 10 1 29 13 22 2 0 0 3 5 0.247 0.151
AN 0 4 2 6 0 2 2 8 2 49 0 0 1 3 7 0.023 0.133
AO 0 1 0 0 0 22 1 7 2 20 1 0 0 7 0 0 0
FE 0 14 0 0 510 3 8 9 0 24 0 0 0 17 4 0.866 0.765
GR 0 10 3 34 62 56 9 55 0 120 2 0 0 5 0 0.157 0.308
HA 0 3 2 1 2 2 4 7 1 60 4 0 6 21 10 0.033 0.033
MA 0 72 1 1 30 37 17 799 17 71 3 0 0 69 11 0.708 0.76
MB 0 34 1 9 1 5 0 57 52 58 0 0 21 1 2 0.216 0.433
OB 0 36 3 11 13 13 30 14 26 375 48 0 16 119 50 0.497 0.318
PA 0 5 1 8 7 5 5 4 0 56 33 0 1 16 0 0.234 0.308
PO 0 0 0 0 0 0 0 0 1 2 1 0 1 1 0 0 0
SC 0 8 0 0 0 2 2 1 1 19 0 0 2 21 6 0.032 0.032
SS 0 4 0 4 1 6 9 13 1 94 1 0 4 283 14 0.652 0.387
ST 0 5 0 0 2 2 2 12 0 42 1 0 2 16 57 0.404 0.268

Table 1: Confusion matrix for predictions in the 15 class labels in our classification process with counts for all the 21 stories
using the leave-one-story-out protocol. The two letter labels stand for (from top to bottom): “N/A” for parsing errors, AA:
anthropomorphic animal character, AN: animal (non-character), AO: anthropomorphic object character, FE: female character,
GR: group of characters, HA: happening, MA: male character, MB: magical being character, OB: object or prop, PA: part of
characters, PO: part of non-characters, SC: scenery that is mentioned, SS: locations that the characters visit, and ST: temporal
references. Bold face indicates correct predictions (diagonal) and color gradient normalized on total count of instances for each
class.

speech (4 passages where the narrator addresses the reader
directly: “What could she do in this trouble?”). The edited
dataset contains 914 sentences. The stories range from 14 to
69 sentences (μ = 43.52 sentences, σ = 14.47). There is a
total of 18,126 tokens (words and punctuation; μ = 19.83
words per sentence, σ = 15.40)

Although the stories are relatively short, fully understand-
ing them often requires significant inference based on com-
monsense knowledge and contextual information. For exam-
ple, in one of the stories, a magical being called Morozko
gave a young girl “a warm fur coat and downy quilts.” In or-
der to understand Morozko is helping her, the context of the
forest in the winter is important. Furthermore, some actions
need to be inferred. In the same story, the text only describes
how the step-sister of the hero answered Morozko’s ques-
tion rudely. In the next scene, her mother “saw the body of
her daughter, frozen by an angry Morozko,” leaving out Mo-
rozko’s direct actions to inference. Coreference in these sto-
ries can be difficult, even for the human readers at times. It is
very common that a character’s referring expression changes
from “daughter” to “sister” or “girl” throughout the story. In
one of the stories there are two young female characters. Be-
sides the obvious pronominal coreference problems that may
arise, they are both referred as “daughter” and “maiden” in
different parts of the story.

To quantify the accuracy of the extracted story graphs and
performance of Voz, we annotated different aspects of the
story graph as the ground truth. First, we automatically iden-
tified noun phrases (NP) representing referring expressions.
There are 4,791 annotated NP using the 15 class labels de-
scribed in the previous section (including 511 parsing er-
rors that are falsely reported as NP). There are 2,781 NP
that represent characters (persons, anthropomorphic animals

and other magical beings) that are further annotated with
the 7 role labels also described in the previous section. The
annotation were performed by 2 annotators independently
and conflicts resolved by consensus. The coreference groups
are annotated for characters and groups of characters (e.g.,
“they”) but are not included for the rest of the mentions (i.e.,
we did not annotate coreference for props or locations). Fi-
nally, we manually annotated all the verb triplets present in
the stories including the triplets where the subject and/or ob-
ject may be empty. We used Finlayson’s initial annotations
to derive these and completed the annotations for the stories
collected by Malec.

Story Graph Extraction Evaluation

In this section we provide a break down of the performance
of different features of the automatically extracted story
graphs averaged across all 21 stories in the dataset.

Mention Extraction: Voz identifies a total of 4,791 indi-
vidual mentions, 4,280 correspond to noun phrases and 511
of which are not actual referring expressions but parsing er-
rors, mostly adjectival phrases identified as nominal phrases.
Our method has a recall of 1.000 (all of the annotated men-
tions were found) but a precision of 0.893 (due to parsing
problems introduced by the Stanford CoreNLP system).

Entity Classification: Voz achieves an average precision
of 0.567 and recall of 0.507 in the entity classification pro-
cess. These are micro-averaged results, which is, a weighted
average by the number of entities in each of the 15 class la-
bels. The confusion matrix for this classification is shown
in Table 1. When considering only whether the entity is cor-
rectly classified as a character or non-character, the precision
is 0.929 and recall 0.934, which shows that our approach is
very good at identifying which entities are characters and
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Figure 2: Example story graph extracted automatically from one of the stories in our dataset. This graph encodes a story with its
entities (nodes) and interactions (edges). Orange nodes are male characters, magenta are female characters, yellow are objects,
props and characters without a role, red are happenings and blue are locations visited by the characters. The arrows represent
verb triplets and the boxes represent nodes that should have been merged into a single node by coreference resolution.

which are not. Concerning role classification, Voz achieves a
precision of 0.425 and a recall of 0.661. With an f-measure
of 0.517, the performance is substantially higher than a ran-
dom baseline (0.143) or an informed baseline that always
predicts a hero (0.349), which is the most common role.

Verb Extraction: Voz extracts 1,335 verbs out of the
1,586 annotated in the ground truth across the 21 stories.
The verb extraction process then expands the extracted verbs
into verb triplets (edges in the story graph) with an average
precision of 0.260 and recall of 0.204. As we will show later,
this is one of the major bottlenecks in our system. Voz fails to
identify the subject and object of many verbs, which results
in many missing links in the resulting story graphs.

Coreference: Coreference is responsible for identifying
which mentions refer to the same characters of objects. This
is important, since, without it, each individual mention to

a character would be considered a separate character in the
graph. To evaluate the performance of the coreference res-
olution process, we compute the average number of differ-
ent characters found in each coreference group (C/Gr), and,
the average number of different groups a single character is
spread across (Gr/C). Perfect coreference would score C/Gr
= 1.00, and, Gr/C = 1.00 meaning that each group only con-
tains mentions to one character and a character is mentioned
in only one group respectively. Our process groups the 2781
mentions into 1,359 coreference groups and yields C/Gr =
1.07 and Gr/C = 6.00. This means that while our process is
relatively good at separating mentions from different charac-
ters, it performs poorly at merging different mentions of the
same character. The implication is that the resulting story
graphs have in average 6 times more nodes representing
characters than they should have. This observation is aligned
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Figure 3: Subgraph from the same story represented in Fig-
ure 2 with the character interactions extracted from the
ground truth story graph. Orange nodes are male characters,
magenta are female characters, yellow are groups of char-
acters. The arrows represent annotated verb triplets, one for
each interaction. This graph elicits the coreference resolu-
tion problems in our current automatic approach.

with results in the NLP community where coreference tends
to be conservative in terms of grouping coreference groups
as it prefers precision over recall. Our method improves the
groups of the Stanford Coreference Resolution system in
this domain but is still missing many groupings and several
pronouns are still unresolved.

Overall, Voz performs well at extracting and classifying
entities but there is significant room for improvement in the
verb argument extraction and coreference resolution tasks.

Visualizing Story Graphs

This section presents some visual examples of story graphs
extracted by Voz in order to provide an illustration of the nu-
merical performance reported in the previous section. Fig-
ure 2 shows an example of the story graph extracted for one
of the stories while Figure 3 shows the ground truth. Recall
that the ground truth does not contain any props or locations,
so it has many less nodes than the automatically extracted
node, which includes all types of mentions.

When comparing the automatically extracted story graph
against the story graph from the ground truth we can see
that the automatic coreference in the automatically extracted
story graph is not grouping several mentions representing
a single character. For example, while all mentions to the

shopkeeper were properly merged into a single node, men-
tions to the King, or the maid were not properly corefer-
enced, resulting in a collection of separate nodes. Moreover,
even if coreference resolution makes the resulting graph
have more nodes than necessary, the performance of the en-
tity classification yields nodes with adequate labels.

Temporal Information Although Voz does not currently
extract temporal information, many story generation sys-
tems require this information. For example, MEXICA (Pérez
and Sharples 2001) uses sequences of actions in its story rep-
resentation, and Riu (Ontañón and Zhu 2010) uses sequences
of scenes. In order to test the feasibility of employing our
story graph extraction approach once temporal information
is extracted by Voz we split the text of a story in three seg-
ments (the beginning of the story, the middle, and the end),
and generated story graphs containing the entities of all the
story, but highlighting the entities mentioned in the segment
and drawing only the verbs of the corresponding segment.
The resulting story graphs adequately capture the events in
each of the three parts of the story, as shown in Figure 4,
indicating that Voz could be used for extracting information
for different time frames. For this visualization, we split the
story in three parts manually, but part of our future work
will consist on identifying the different parts of a story au-
tomatically by analyzing references to locations or temporal
anchors in the text. As part of our future work, we would
like to experiment with providing the output of Voz directly
to a story generation system, and evaluate the quality of the
resulting stories as compared with those generated when the
system is given manually authored story graphs.

Spatial Information Finally, we looked at the location
and spatial information we can extract from our graphs, and
how this spatial information can be used for generating con-
tent for games. We filtered the graph by selecting only loca-
tions and character nodes and edges labeled with verbs re-
lated to movement (e.g., go, come) and copular verbs (used
to link adjectives and nouns). Then we select the biggest
connected subgraph, such as the one shown in Figure 5 ex-
tracted from Figure 2. If we consider that locations that the
same character is related to must be connected in order to
allow the character to travel between them, we can gener-
ate a graph representing the spatial relationships between
locations in the story. To show the usefulness of this graph,
we provided this graph as input to the graph embedder and
realizer by Valls-Vargas et al. (Valls-Vargas, Ontañón, and
Zhu 2013) to generate a two-dimensional map that may be
suitable for this particular story to happen (shown in Figure
6). This shows a first step toward automatically generating
spaces from stories written in natural language. These spaces
could be further populated by the characters and objects in
the first location at which they are mentioned in order to ob-
tain a complete spatial representation of the story world.

Conclusions and Future Work

This paper presented an approach to automatically extract
story graphs from unannotated natural language text. The
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Beginning Middle End

Figure 4: Story graph generated from three segments of a story. In the beginning of the story there is an anthropomorphic animal
(the fox) that interacts with some coins (kopeks). In the middle of the story, the fox and the main character visit some locations
(home), some props are mentioned (clothes) and an event happens (the wedding). At the end of the story the fox interacts with
several beasts (raven, dragon).

Figure 5: Subgraph with character and location information
filtered from Figure 2.

long term goal of this line of research is to allow compu-
tational narrative systems, and in particular story genera-
tion systems, to automatically exploit stories represented in
natural language, thus alleviating the “authorial bottleneck”
problem. We presented Voz, our automated narrative infor-
mation extraction system, and evaluated the accuracy of the
extracted story graphs using an annotated ground truth on
our corpus of 21 Russian stories. Finally we provided exam-
ples of the story graphs our system is capable of automati-
cally extracting and briefly discussed how this could be used
for both feeding story generation as well as map and game
world generation systems.

As part of our current work, we are working on improv-
ing the quality of the generated story graphs by improving
the verb extraction process (our current focus is on auto-
matically parsing dialog to capture additional interactions),
coreference resolution (by feeding back information from
later stages of Voz’s pipeline back to coreference resolution
(Valls-Vargas, Zhu, and Ontañón 2015)), and extracting tem-
poral information from text. In our future work, we would
like to experiment with of feeding the story graphs extracted

Figure 6: Two-dimensional embedding and realization of the
locations in Figure 5.

by Voz to actual map and story generation systems.

References

Chambers, N., and Jurafsky, D. 2008. Unsupervised learn-
ing of narrative event chains. In Proceedings of the 2008
Anniversary Meeting of the Association for Computational
Linguistics (ACL), 789–797.
Chang, A. X.; Savva, M.; and Manning, C. D. 2014. Learn-
ing spatial knowledge for text to 3d scene generation. In
EMNLP, 2028–2038.
Chatman, S. 1990. What can we learn from contextualist
narratology? Poetics Today 309–328.
Coyne, B., and Sproat, R. 2001. Wordseye: an automatic
text-to-scene conversion system. In Proceedings of the 28th
annual conference on Computer graphics and interactive
techniques, 487–496. ACM.
Elson, D. K.; Dames, N.; and McKeown, K. R. 2010. Ex-
tracting social networks from literary fiction. In Proceedings
of the Fourty-Eighth Annual Meeting of the Association for

1012



Computational Linguistics, 138–147. Association for Com-
putational Linguistics.
Elson, D. K. 2012a. Detecting story analogies from annota-
tions of time, action and agency. In Proceedings of the 2012
Workshop on Computational Models of Narrative.
Elson, D. K. 2012b. Modeling Narrative Discourse. Ph.D.
Dissertation, Columbia University.
Finlayson, M. A. 2008. Collecting semantics in the wild:
The story workbench. In Naturally Inspired Artificial Intel-
ligence, Technical Report FS-08-06, Papers from the 2008
AAAI Fall Symposium, 46–53.
Finlayson, M. A. 2012. Learning narrative structure from
annotated folktales. Ph.D. Dissertation, Massachusetts In-
stitute of Technology.
Gervás, P.; Dı́az-Agudo, B.; Peinado, F.; and Hervás, R.
2005. Story Plot Generation based on CBR. Knowledge-
Based Systems.
Goyal, A.; Riloff, E.; and Daumé, III, H. 2010. Automat-
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tomatic role identification in unannotated folk tales. In Tenth
Artificial Intelligence and Interactive Digital Entertainment
Conference.
Valls-Vargas, J.; Zhu, J.; and Ontañón, S. 2015. Narrative
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