
Deep Style Match for Complementary Recommendation

Kui Zhao†, Xia Hu‡, Jiajun Bu†, Can Wang†
†College of Computer Science, Zhejiang University

Hangzhou, China
{zhaokui, bjj, wcan}@zju.edu.cn

‡Hangzhou Science & Technology Information Research Institute
Hangzhou, China
hx@hznet.com.cn

Abstract

Humans develop a common sense of style compatibility be-
tween items based on their attributes. We seek to automati-
cally answer questions like “Does this shirt go well with that
pair of jeans?” In order to answer these kinds of questions,
we attempt to model human sense of style compatibility in
this paper. The basic assumption of our approach is that most
of the important attributes for a product in an online store
are included in its title description. Therefore it is feasible
to learn style compatibility from these descriptions. We de-
sign a Siamese Convolutional Neural Network architecture
and feed it with title pairs of items, which are either compat-
ible or incompatible. Those pairs will be mapped from the
original space of symbolic words into some embedded style
space. Our approach takes only words as the input with few
preprocessing and there is no laborious and expensive feature
engineering.

Introduction

We have a common sense of style compatibility between
items and can naturally answer questions like “Does this
shirt go well with that pair of jeans?” These kind of style
compatibility information can be exploited in many com-
mercial applications, such as recommending items to users
based on what they have already bought; or generating the
whole purchase outfits (see Figure 1 for an example of
clothes) to users querying certain items, if sufficient com-
patibility relationships between items are provided.

To identify these compatibility relationships, existing
methods such as frequent itemset mining (Han, Pei, and
Yin 2000) attempt to generate match items automatically by
analyzing historical purchasing patterns. However, frequent
itemset mining relies on historical purchasing records to find
items frequently purchased together and new items will in-
evitably suffer from the “cold start” problem (Schein et al.
2002).

Recently, McAuley et al. (McAuley et al. 2015) and Veit
et al. (Veit et al. 2015) intend to discover the style match
relationships between items using visual information pre-
sented in the images of items. However, besides being com-
putationally expensive, image-based matching methods are

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example for clothing outfits: on the left are
query items and on the right are corresponding complemen-
tary items.

frequently plagued by the plentiful contents presented in im-
ages. For instance, Figure 2 shows a part of the image for
leggings from Taobao, which is the largest e-commerce plat-
form in China. Besides leggings, the image also contains a
coat, a pair of shoes and a very complex background etc.
These contents will confuse the learning machines if only
leggings are expected.

Figure 2: A typical image from Taobao, it actually is an im-
age to show leggings.

To overcome the limitations of existing methods, we pro-
pose in this paper a novel style match approach using the
title descriptions of items in online stores. The basic assump-
tion of our work is that online sellers will place most of the
important attributes of a product in its title description, so
that the product can be easily found by a keyword-based
query. Therefore, the title description is a highly condensed
collection of attribute descriptions for a product. So it is fea-

The AAAI-17 Workshop on
Crowdsourcing, Deep Learning, and Artificial Intelligence Agents

WS-17-07

464

sible to model compatibility between two items better if we
are capable of mapping the title pairs from the original space
of symbolic words into some embedded style space.

We here design a Siamese Convolutional Neural Network
architecture for matching title sentences. It will map two ti-
tle sentences from an item pair into low-dimensional vec-
tors respectively in parallel, which are then used to learn
the compatibility between these two items in the style space.
When designing the amalgamation part of Siamese CNN for
computing compatibility, we have considered the ability of
our model to be extended to big data scenarios, which is
critical for real-world recommendation applications. We test
our approach on two large datasets: a Chinese dataset from
Taobao provided by Alibaba Group and an English dataset
from Amazon provided by (McAuley et al. 2015). Our ap-
proach demonstrates strong performance on both datasets,
which indicates its ability of learning human sense of style
compatibility between items.

Related Work

Finding complementary items has been studied for a long
time. The early works can be traced back to frequent itemset
mining (Han, Pei, and Yin 2000), which generates match
items automatically by analyzing history purchasing pat-
terns. Frequent itemsets such as “beer and diaper” some-
times have nothing to do with compatibility. What’s more,
they are challenged by the “cold-start” problem, which
means new products with no historical records are invisible
to the algorithm (Schein et al. 2002).

Many approaches such as content-based recommendation
or social recommendation are proposed to address this prob-
lem (see (Pazzani and Billsus 2007) for a survey). Closely
related to our work are (McAuley et al. 2015) and (Veit et
al. 2015), in which McAuley et al. and Veit et al. attempt
to learn clothing style similarity based on their appearance
in images. However, our work differs from (McAuley et al.
2015) and (Veit et al. 2015) in the following two aspects:
(1) we use title descriptions, which contain rich attribute in-
formation instead of item images; (2) the objective of our
method is to find matching items from their attribute descrip-
tion instead of learning visual similarities from item images.

Problem formulation

We here describe the problem in a formal way: given a
query item set Q = {q1, · · · , qm} and a candidate item set
C = {c1, · · · , cn}, where each query item qi ∈ Q comes
together with the compatibility judgements {yi1 , · · · , yin}.
The complementary item cj ∈ C is labeled with yij = 1 and
yij = 0 otherwise. Our goal is to build a model to compute
the compatibility probability between qi and cj :

P (y = 1|qi, cj) = f(φ(qi, θ1), φ(cj , θ1), θ2), (1)

where function φ(·) is the sentence model mapping a ti-
tle sentence into a low-dimensional representation vector
and function f(·) computes the compatibility probability be-
tween two items in the style space. The parameter vectors θ1
and θ2 are learned in the training process.

Style Match

The main building block of our approach is a sentence model
based on CNN. This sentence model will map two title sen-
tences from an item pair into low-dimensional vectors re-
spectively in parallel, which are then used to learn the com-
patibility between two items in the style space.

Sentence model

We model sentences with function φ(·), which is a convolu-
tional architecture as shown in Figure 3.

Figure 3: The architecture of our sentence model.

In the following, we give a brief explanation of the main
components in our Convolutional Neural Network.

Sentence matrix. Our sentence model takes a sentence s
as the input, where it is treated as a sequence of raw words:
[s1, · · · , s|s|] and each word si is from a vocabulary V .

Firstly, each word si is represented by a distributional rep-
resentation vector wi ∈ R

d, looked up from the word-level
embedding matrix W ∈ R

d×|V |. Then a sentence matrix
S ∈ R

d×|s| can be built for the input sentence s:

S =

[| | |
w1 · · · w|s|
| | |

]
, (2)

where the i-th column is the distributional representation
vector wi for the i-th word in s. The values in the embedding
matrix W are parameters initialized with an unsupervised
neural language model (Mikolov et al. 2013) and sequen-
tially optimized during training. The embedding dimension
d is a hyper-parameter of the model.

As shown in Figure 3, for the sentence s=[Uniforms,
Men’s, Short, Sleeve, Polo, Shirt], when the embedding di-
mension d is 4, the sentence matrix is a matrix in R

4×6.

Convolutional feature maps. Convolution can be seen as
a special kind of linear operation and aimed to extract lo-
cal patterns. We use the one-dimensional convolution to rec-
ognize discriminative word sequences from the input sen-
tences. The one-dimensional convolution is an operation be-
tween two vectors f ∈ R

m and s ∈ R
|s|. The vector f is

called as a filter of size m and the vector s is a sequence of
size |s|. The specific operation is to take the dot product of

465

the vector f with each m-gram sliding along the sequence s
and obtain a new sequence c where:

cj = fTsj−m+1:j . (3)

In practice, we usually add a bias b to the dot product result:

cj = fTsj−m+1:j + b. (4)

There are two types of convolution depending on the al-
lowed range of index j: narrow and wide. The narrow type
restricts j in the range [m, |s|] and the wide type restricts
j in the range [1, |s| + m − 1]. The benefits of wide type
over the narrow type in text processing are discussed in de-
tail in (Blunsom et al. 2014). Briefly speaking, unlike the
narrow convolution where words close to margins are seen
fewer times, wide convolution gives equal attention to all
words in the sentence and so is better at handling words at
margins. More importantly, a wide convolution always pro-
duces a valid non-empty result c even when |s| < m. For
these reasons, we use wide convolution in our model.

The sentence matrix S is not just a sequence of single
values but a sequence of vectors, where the dimension of
each vector is d. So when we apply the one-dimensional
convolution on the sentence matrix S, we need a filter bank
F ∈ R

d×m consisting of d filters of size m and a bias bank
B ∈ R

d consisting of d baises. Each row of S is convoluted
with the corresponding row of F and then the corresponding
row of B is added to the convolution result. After that, we
obtain a matrix C ∈ R

d×(|s|+m−1):

conv(S,F,B) : Rd×|s| → R
d×(|s|+m−1). (5)

The values in filter bank F and bias bank B are parame-
ters optimized during training. The filter size m is a hyper-
parameter of the model.

In Figure 3, after applying a 4 × 3 filter bank and a bias
bank of size 4 on the 4 × 6 sentence matrix, we obtain an
intermediate matrix of size 4× 8.

Activation function. To make the network capable of
learning non-linear functions, a non-linear activation α(·)
need to be applied in an element-wise way to the output of
the preceding layer and a matrix A ∈ R

d×(|s|+m−1) is then
obtained:

α(C) : Rd×(|s|+m−1) → R
d×(|s|+m−1). (6)

Popular choices of α(·) include: sigmod, tanh and relu
(rectified linear defined as max(0, x)). In practice, our ex-
perimental results are not very sensitive to the choice of ac-
tivation, so we choose relu due to its simplicity and comput-
ing efficiency. In addition, we can see the bias b in (4) plays
the role of setting an appropriate threshold for controlling
units to be activated.

Pooling. Pooling layer will aggregate the information in
the output of preceding layer. This operation aims to make
the representation more robust and invariant to small transla-
tions in the input. More importantly, pooling helps to handle
inputs with varying size, e.g. processing sentences with un-
certain length.

For a given vector a ∈ R
|a|, traditional pooling aggre-

gates it into a single value:

pooling(a) : R|a| → R. (7)

The way of aggregating the information defines two types
of pooling operations: average and max. Max pooling is
used more widely in practice. Recently, max pooling has
been generalized to k-max pooling (Blunsom et al. 2014),
in which k max values are selected from the vector a and
arranged in their original order:

k-pooling(a) : R|a| → R
k, (8)

where k is a hyper-parameter of the model.
When we apply k-max pooling on the matrix A, each row

of A is pooled respectively and we obtain a matrix P ∈
R

d×k:
k-pooling(A) : Rd×|a| → R

d×k. (9)
In Figure 3, after applying k-max pooling (with k = 5)

on the intermediate matrix of size 4 × 8, we obtain a new
intermediate matrix of size 4× 5.

Multiple feature maps. After a group of above opera-
tions, we obtain the first order representation learning to rec-
ognize the specific m-grams in the input sentence. To obtain
higher order representations, we can use a deeper network
by repeating these operations. The higher order representa-
tions can capture patterns of the sentence in much longer
range.

Meanwhile, we can also extend network to learning multi-
aspect representations. Let Pi denote the i-th order repre-
sentation. We can compute Ki representations Pi

1, · · · ,Pi
Ki

in parallel at the same i-th order. Each representation Pi
j is

computed by two steps. First, we compute convolution on
each representation Pi−1

k at the lower order i − 1 with the
distinct filter bank Fi

j,k and bias bank Bi
j,k and then sum up

the results. Second, non-linear activation and k-max pooling
are applied to the summation result:

Pi
j = k-pooling(α(

Ki−1∑
k=1

conv(Pi−1
k ,Fi

j,k,B
i
j,k))). (10)

In Figure 3, there are two representations at the first or-
der and two representations at the second order: P1

1 ∈
R

4×5,P1
2 ∈ R

4×5 and P2
1 ∈ R

4×3,P2
2 ∈ R

4×3.

Full connection. Full connection is a linear operation to
combine all representations at the highest order into a single
vector. More specifically, for the highest order representa-
tions Ph

1 , · · · ,Ph
Kh

(assume Ph
k ∈ R

d×l), we first flat them
into a vector p ∈ R

Kh×d×l. Then we transform it with a
dense matrix H ∈ R

(Kh×d×l)×n:

x = pTH, (11)

where x ∈ R
n is the final representation vector. The values

in matrix H are parameters optimized during training. The
representation size n is a hyper-parameter of the model.

In Figure 3, we finally represent the input sentence with a
vector of size n = 5.

466

Matching items

We compute the compatibility probability between two
items with function f(·), which is a Siamese Convolutional
Neural Network as shown in Figure 4.

Figure 4: The whole architecture of our model.

Siamese setup is introduced by Hadsell et al. (Hadsell,
Chopra, and LeCun 2006) and used widely in learning dis-
tance metrics. When designing the amalgamation part of our
model, we have considered its scalability for big data scenar-
ios, which is critical for real-world applications.

Style space. For two given items q and c, after generat-
ing the representation vectors xq ∈ R

n and xc ∈ R
n of

their title sentences respectively, we compute the compati-
bility probability between them as follow:

P (y = 1|q, c) = σ(xT
q Mxc + b)

=
1

1 + e−(xT
q Mxc+b)

,
(12)

where M ∈ R
n×n is a matrix and b is a scalar. We call M as

the compatibility matrix and the space spanned by M as the
style space. After transformation x′

q = xT
q M, x′

q represents
the item which is most style compatible to q. We seek items
whose representations are close to x′

q under linear kernel
distance. The values in compatibility matrix M and the bias
b are parameters optimized during the training.

On the other hand, xT
q Mxc in (12) can be viewed as a

noisy-channel model, which has been widely used in the
information retrieval and QA system (Echihabi and Marcu
2003) (Bordes, Weston, and Usunier 2014).

Recommendation

In recommendation applications, we are usually given a
query item set Q = {q1, q2, · · · , qm} and a candidate item
set C = {c1, c2, · · · , cn}, where the query item set is rela-
tively small and the candidate item set is usually very large.
For each query item qi, we intend to query its K most com-
plementary items from the candidate set C and rank them
from high compatibility to low compatibility. When the item
candidate set is very large, it is inefficient and even unaccept-
able to compute the compatibility for all item pairs (qi, cj)
and then sort them.

Our approach can be easily extended to handle these
big data scenarios. Given two items q and c, we first gen-
erate their representation vectors xq and xc respectively.
Then their compatibility probability is computed according
to (12). We notice that the function σ(·) in (12) is a mono-
tonic increasing function and b is a learned constant. Thus

for a query item q and two candidate items c1, c2, we have:

P (y = 1|q, c1) ≤ P (y = 1|q, c2)
⇔ xT

q Mxc1 ≤ xT
q Mxc2 .

(13)

Based on this property, we transform the original prob-
lem of querying the K most complementary items of q
from the item candidate set C into another problem, namely
searching K nearest neighbors of x′ (x′

q = xT
q M) from

{xc1 , · · · ,xcn} under the linear kernel distance. It is well
known as Maximum Inner Product Search (MIPS). There
are many methods solving MIPS efficiently on the large
scale data, such as tree techniques (Ram and Gray 2012)
and hashing techniques (Shrivastava and Li 2014) (Shen et
al. 2015) etc.

Training

We train the model to maximize the likelihood of a observed
relationship training set R, where rij ∈ R:

rij =

{
1 , if items i and j are compatible;
0 , otherwise.

(14)

Maximizing the likelihood is equal to minimizing the
binary-cross entropy loss function:

L = −
∑

rij∈R
[rij log(p) + (1− rij) log(1− p)] , (15)

where p = P (y = 1|i, j).
The parameters to be optimized in our network are θ1, θ2,

which have been mentioned above:

θ1 = {W,F,B,H} and θ2 = {M, b}, (16)

namely the word embeddings matrix W, filter bank F, bias
bank B, dense matrix H, compatibility matrix M and com-
patibility bias b. Note that there are multiple filter banks and
bias banks to be learned.

In the following sections, we present several crucial de-
tails for training our deep learning model.

Regularization

To alleviate the overfitting issue, we use a popular and ef-
ficient regularization technique named dropout (Srivastava
et al. 2014). Dropout is applied to the flatted vector p (pre-
sented in (11)) before transforming it with the dense matrix
H. A portion of units in p are randomly dropped out by set-
ting them to zero during the forward phase, which is helpful
for preventing the feature co-adaptation. The dropout rate is
a hyper-parameters of the model.

Hyper-parameters

The hyper-parameters in our deep learning model are set as
follows: the embedding dimension is d = 100; the size of
filters at the first order representation is m = 3; the number
of max values selected by k-max pooling at the first order
representation is k = 5; the size of filters at the second or-
der representation is m = 2; the number of max values se-
lected by k-max pooling at the second order representation is

467

k = 3; the dimension of the vector used to represent the sen-
tence is n = 100; the dropout rate is p = 0.2. What’s more,
there are K1 = 100 representations computed in parallel at
the first order representation and K2 = 100 representations
computed in parallel at the second order representation.

Optimization

To optimize our network, we use the Stochastic Gradient De-
scent (SGD) algorithm with shuffled mini-batches. The pa-
rameters are updated through the back propagation frame-
work with Adagrad rule (Duchi, Hazan, and Singer 2011).
The batch size is set to 256 and the network is trained for 20
epochs. The training progress will be early stopped if there
is no more update to the best loss on the validation set for
the last 5 epochs.

We train our network on a GPU for speeding up. A Python
implementation using Keras1 powered by Theano (Bastien
et al. 2012) can process 428k text pairs per minute on a sin-
gle NVIDIA K2200 GPU.

Experiments

We evaluate our method on two large datasets: a Chinese
dataset from Taobao and an English dataset from Amazon.

Datasets

Taobao. This dataset is collected from Taobao.com and
provide by Alibaba Group2. It includes a Clothing category
and there are about 406k compatibility relationships cover-
ing 61k items. The compatibility relationships in this dataset
are labelled manually by clothes collocation experts.

Amazon. This dataset is collected from Amazon.com and
provided by (McAuley et al. 2015). Though it includes mul-
tiple categories, in order to investigate the performance of
our approach on both datasets, we mainly focus on the
Clothing category. In this category, there are about 12 mil-
lion compatibility relationships covering 662k items. Un-
like the Taobao dataset, the compatibility relationships in
Amazon dataset are not labelled manually. They are the co-
purchase data from Amazon’s recommendations (Linden,
Smith, and York 2003).

Setup

Our goal is to differentiate compatibility relationships from
non-compatibility ones. We consider all positive relation-
ships (compatibility) and generate random non-relationship
distractors of the equal size. That is to say the ratio between
positive and negative samples in the dataset is 50:50. Then
we separate the whole dataset into training, validation and
testing sets according to the ratios 80:10:10. Although we
do not expect overfitting to be a serious issue in our exper-
iment with the large training set, we still carefully tune our
model on the validation set to avoid overfitting on testing
set. We compare our approach against baselines from two
aspects: visual one and non-visual ones.

1http://keras.io
2http://tianchi.aliyun.com/datalab/index.htm

Visual baseline. We take the method in (Veit et al. 2015)
as the visual comparison since it is also in the end-to-end
fashion. In particular, we consider the specific setting config-
ured with GoogLeNet and naive sampling for two considera-
tions. First, in all situations of their experiments, GoogLeNet
(Szegedy et al. 2015) outperforms AlexNet (Krizhevsky,
Sutskever, and Hinton 2012). Second, naive sampling means
sampling randomly from the dataset, which is consistent
with the setup in our experiments. We experiment their
method on the Taobao dataset and take the results on the
Amazon dataset directly from (Veit et al. 2015).

Non-visual baselines. We take three methods as the non-
visual comparison:

1) Naive Bayes on Bag of Words (NBBW). We treat the
title sentences from an item pair as the bag-of-words and
feed Naive Bayes classifier with it as the feature vector;

2) Random Forest on Bag of Words (RFBW). Random For-
est is capable of modeling extremely complex classification
surface. We apply Random Forest classifier on the bag-of-
words representation of the title sentences from an item pair;

3) Random Forest on Topic Model (RFTM). For the given
item pair {q, c}, we first generate the topic representations
xq,xc of items q, c by LDA model (Blei, Ng, and Jordan
2003) respectively, where the topic number is set as 100.
Then we concatenate them into a single feature vector xq,c

and process Random Forest classifier on it.
The implementation of Naive Bayes and Random Forest

is taken from scikit-learn (Pedregosa et al. 2011). We turned
their parameters to obtaine the best loss on the validation set.

There is no preprocess on images and texts. All results
reported in the following section is on the testing set.

Results

Comparison to baselines. Tabel 1 shows the correspond-
ing areas under the ROC curves of compatibility prediction
on the testing set . The results show clearly that our approach
outperforms all other baselines.

Methods Taobao Amazon
Visual 0.579 0.770
NBBW 0.712 0.820
RFBW 0.807 0.931
RFTM 0.796 0.893
Ours 0.891 0.983

Table 1: AUC scores for all methods.

The visual method collapses on the Taobao dataset be-
cause unlike Amazon, Taobao is a Consumer to Consumer
(C2C) platform and has few strict requirement about quality
of item images uploaded by users. A majority of images are
like Figure 2, where the information is mixed up and con-
fusing to learning machines. In contrast, the title description
is a highly condensed collection of more attributes besides
appearances with few noises. When using title descriptions,
a simple method like Naive Bayes on Bag of Words can
achieve an acceptable performance and a more sophisticated
method like Random Forest on Bag of Words can generate

468

Category AUC Category AUC Category AUC
Automotive 0.922 Electronics 0.948 Patio Lawn & Garden 0.966

Baby 0.917 Grocery & Gourmet Food 0.959 Pet Supplies 0.972
Beauty 0.935 Health & Personal Care 0.929 Sports & Outdoors 0.912
Books 0.897 Home & Kitchen 0.949 Tools & Home Improvement 0.952

CDs & Vinyl 0.815 Movies & TV 0.878 Toys & Games 0.985
Cell Phones & Accessories 0.969 Musical Instruments 0.983 Video Games 0.890

Digital Music 0.818 Office Products 0.974

Table 2: AUC scores for compatibility prediction on twenty top-level categories from Amazon dataset.

competitive results. However, using topic models on title de-
scriptions is not a good idea since most title descriptions are
short texts. One important reason why our approach achieves
better performance is that our approach can recognize spe-
cific m-grams and more complicated patterns not captured
by bag-of-words models. For instance, the complementary
styles of the item titled with “white shirt with blue stripes”
and “blue shirt with white stripes” are very different, but
they have the same bag-of-words representation.

The performance upper bound of our approach on Taobao
dataset is limited by the segmentation quality of Chinese.
This is one of the reasons that all AUC scores on the Taobao
dataset are lower than that on the Amazon dataset.

Tuning sentence model. There are several crucial setups
in the sentence model: 1) the word embedding dimension d;
2) the sentence representation dimension n; 3) whether the
word embedding matrix W is initialized or not.

The training epoch

1 2 3 4 5 6 7 8 9 10

A
U

C
 s

c
o
re

82

83

84

85

86

87

88

89

90

Word (d=50)

Sentence (n=50)

No initialization

Standard

Figure 5: Convergence processes of our approach with sen-
tence models under different setups.

We show the first ten epochs of training processes of our
model on the Taobao dataset with sentence models under
different setups in Figure 5, where the standard setup means
that we set d = 100, n = 100 and initialize the word em-
bedding matrix with an unsupervised neural language model
(Mikolov et al. 2013). We can see that the setup with larger
d or n claims better performance. Furthermore, the perfor-
mance can get better when we continue to increase the value
of d or n. In practice, there is a tradeoff between the perfor-
mance and resources requirement according to specific situ-
ations. What’s more, initializing the word embedding matrix
W with an unsupervised neural language model is indeed
benefit to the convergence rate and the final performance.

Discussion

Toward general match. While the previous section
mainly focuses on clothes matching, we also train classifiers
on the other twenty top-level categories from the Amazon
dataset and present the results in Table 2. As can be seen,
we obtain good accuracy in predicting compatibility rela-
tionships in a variety of categories. What’s more, we have
also tried to train a single model to predict compatibility re-
lationships for all categories. There appears to be no “silver
bullet” and the result is dissatisfactory: the AUC score of
that single model is only 0.694.

The comparison across categories is particularly interest-
ing. Our approach performs relatively poor on the categories
“CDs & Vinyl” and “Digital Music” since the content of mu-
sic is too rich to be described very clearly in a short title
description. In contrast, the title description is long enough
to describe an item from the category ‘Musical Instruments’
clearly and thus our approach performs very well on that. In
a word, the better titles can describe the attributes of items in
a category, the higher performance can be achieved on that
category by our approach.

Conclusions

In this paper, we present a novel approach to model the hu-
man sense of style compatibility between items. The basic
assumption of our approach is that most of the important at-
tributes for a product in an online store are included in its
title description. We design a Siamese Convolutional Neu-
ral Network architecture to map the title descriptions of an
item pair from the original space of symbolic words into
some embedded style space. The compatibility probability
between items can be then computed in the style space. Our
approach takes only words as the input with few preprocess-
ing and requires no laborious and expensive feature engi-
neering. Moreover, it can be easily extended to big data sce-
narios with KNN searching techniques. The experiments on
two large datasets confirm our assumption and show the pos-
sibility of modeling the human sense of style compatibility.

There are several interesting problems to be investigated
in our future work: (1) we would like to use more sophis-
ticated sentence models without injuring the simplicity of
our approach; (2) we are wondering whether it is possible to
use the text and image information simultaneously, e.g. hy-
brid model or mapping the texts and images of items into the
same embedded space for mutual retrieval and matching.

469

Acknowledgments

We would like to thank Alibaba Group and Julian McAuley
for providing the valuable datasets. This work is supported
by Zhejiang Provincial Natural Science Foundation of China
(Grant no. LZ13F020001), Zhejiang Provincial Soft Science
Project (Grant no. 2015C25053), National Science Founda-
tion of China (Grant nos. 61173185, 61173186).

References

Bastien, F.; Lamblin, P.; Pascanu, R.; Bergstra, J.; Goodfel-
low, I. J.; Bergeron, A.; Bouchard, N.; and Bengio, Y. 2012.
Theano: new features and speed improvements. Deep Learn-
ing and Unsupervised Feature Learning NIPS 2012 Work-
shop.
Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent
dirichlet allocation. the Journal of machine Learning re-
search 3:993–1022.
Blunsom, P.; Grefenstette, E.; Kalchbrenner, N.; et al. 2014.
A convolutional neural network for modelling sentences. In
Proceedings of the 52nd Annual Meeting of the Association
for Computational Linguistics. Proceedings of the 52nd An-
nual Meeting of the Association for Computational Linguis-
tics.
Bordes, A.; Weston, J.; and Usunier, N. 2014. Open question
answering with weakly supervised embedding models. In
Machine Learning and Knowledge Discovery in Databases.
Springer. 165–180.
Duchi, J.; Hazan, E.; and Singer, Y. 2011. Adaptive subgra-
dient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research 12:2121–
2159.
Echihabi, A., and Marcu, D. 2003. A noisy-channel ap-
proach to question answering. In Proceedings of the 41st An-
nual Meeting on Association for Computational Linguistics-
Volume 1, 16–23. Association for Computational Linguis-
tics.
Hadsell, R.; Chopra, S.; and LeCun, Y. 2006. Dimensional-
ity reduction by learning an invariant mapping. In Computer
vision and pattern recognition, 2006 IEEE computer society
conference on, volume 2, 1735–1742. IEEE.
Han, J.; Pei, J.; and Yin, Y. 2000. Mining frequent patterns
without candidate generation. In ACM SIGMOD Record,
volume 29, 1–12. ACM.
Krizhevsky, A.; Sutskever, I.; and Hinton, G. E. 2012.
Imagenet classification with deep convolutional neural net-
works. In Advances in neural information processing sys-
tems, 1097–1105.
Linden, G.; Smith, B.; and York, J. 2003. Amazon. com rec-
ommendations: Item-to-item collaborative filtering. Internet
Computing, IEEE 7(1):76–80.
McAuley, J.; Targett, C.; Shi, Q.; and van den Hengel, A.
2015. Image-based recommendations on styles and substi-
tutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information
Retrieval, 43–52. ACM.

Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G. S.; and
Dean, J. 2013. Distributed representations of words and
phrases and their compositionality. In Advances in neural
information processing systems, 3111–3119.
Pazzani, M. J., and Billsus, D. 2007. Content-based recom-
mendation systems. In The adaptive web. Springer. 325–
341.
Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.;
Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss,
R.; Dubourg, V.; Vanderplas, J.; Passos, A.; Cournapeau, D.;
Brucher, M.; Perrot, M.; and Duchesnay, E. 2011. Scikit-
learn: Machine learning in Python. Journal of Machine
Learning Research 12:2825–2830.
Ram, P., and Gray, A. G. 2012. Maximum inner-product
search using cone trees. In Proceedings of the 18th ACM
SIGKDD international conference on Knowledge discovery
and data mining, 931–939. ACM.
Schein, A. I.; Popescul, A.; Ungar, L. H.; and Pennock,
D. M. 2002. Methods and metrics for cold-start recom-
mendations. In Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in in-
formation retrieval, 253–260. ACM.
Shen, F.; Liu, W.; Zhang, S.; Yang, Y.; and Tao Shen, H.
2015. Learning binary codes for maximum inner product
search. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 4148–4156.
Shrivastava, A., and Li, P. 2014. Asymmetric lsh (alsh) for
sublinear time maximum inner product search (mips). In
Advances in Neural Information Processing Systems, 2321–
2329.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: A simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research 15(1):1929–1958.
Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.;
Anguelov, D.; Erhan, D.; Vanhoucke, V.; and Rabinovich,
A. 2015. Going deeper with convolutions. In Proceed-
ings of the IEEE Conference on Computer Vision and Pat-
tern Recognition, 1–9.
Veit, A.; Kovacs, B.; Bell, S.; McAuley, J.; Bala, K.; and Be-
longie, S. 2015. Learning visual clothing style with hetero-
geneous dyadic co-occurrences. In Proceedings of the IEEE
International Conference on Computer Vision, 4642–4650.

470

