
What Is Going On: Utility-Based Plan Selection in BDI Agents

Ameneh Deljoo
Institute of Informatics

University of Amsterdam
Amsterdam, Netherlands

a.deljoo@uva.nl

Tom van Engers
Leibniz Center for Law

University of Amsterdam
Amsterdam, Netherlands
t.m.vanEngers@uva.nl

Leon Gommans
Air France-KLM

Amsterdam,The Netherlands
leon.gommans@KLM.com

Cees de Laat
Institute of Informatics

University of Amsterdam
Amsterdam, Netherlands

delaat@uva.nl

Abstract

This work addresses the problem of choosing an appropriate
plan for achieving a goal in any realistic complex situation
where an agent has to respond and act upon uncertain and/or
an unknown information. We use the belief-desire-intention
(BDI) model, a popular model for developing agents. The
flexibility of choosing among different plans to achieve a de-
sired goal is one of the benefits of this model. This paper de-
scribes a particular algorithm for selecting the most appropri-
ate plan. Since the agent may have to reason with incomplete
or uncertain information, we explore how to integrate prob-
abilities in the agent model for taking an appropriate action
and keeping the system behavior within acceptable bound-
aries and compliance to acceptable norms. Considering the
uncertainty of the current state of the environment, this pro-
cess relies on probability and utility theory. The plan selection
algorithm has been implemented with Jadex.

1 Introduction

In this paper, we propose to integrate the probability and the
utility into the BDI agent model of Rao and Georgeff (Rao
and Georgeff 1995). In order to perform this task, we
designed an algorithm that given possible plans selects
the most appropriate plan to keep the system within the
boundaries that is determined by the applicable norms.
This research focuses on a domain of collaborating service
providers (SPs) (Gommans et al. 2015). SPs in our case
are part of an organizational network (in this research a dis-
tributed network) they are also bound by the rules that define
this collaborative network. This distributed network high-
lights some prerequisites, such as 1- needs for acting in an
open, dynamic and unpredictable environment, 2- necessi-
ties of behaving according to the rules (SP ′s rules) and 3-
demands for providing the appropriate plan, which responds
to the current state of the environment (Abdelkader 2003;
Giorgini, Mylopoulos, and Sebastiani 2005).
Previously, (Deljoo et al. 2016) presented the elements of

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

an application framework based on normative reasoning.
Agent Based Modeling (ABM) has been exploited to model
open systems where agents are self-governed autonomous
entities and pursue their individual goals based only on their
beliefs and capabilities (Abdelkader 2003).
On the basis of our experience with open systems, we
have identified an essential requirement for an agent model,
which is a well-developed model of decision making under
uncertainty, which is regarded as the basis for dealing with
the complexities of open systems. In open systems decisions
may involve high levels of uncertainty about the true state of
the environment and agents may not be able to fully under-
stand the consequences of actions on the environment.
Moreover, in a fully distributed system, there is no central
control mechanism that can observe every agent’s behavior
regarding enforced conventions and norms into the agents.
Therefore agents have to be able to cope with the other
agent’s behaviors. Due to the number of observations and re-
ceived information, taking an appropriate action in the open
system is much more complex compared to closed systems.
In this paper, we will introduce a plan selection algorithm
that can cope with such uncertain situations. Choosing an
appropriate plan based on received information about the
current environment’s state is the main contribution of the
work presented in this paper. We developed an agent plan
selection that can reason with probability and utility. Both
probability and utility are used to choose a preferred plan
from the set of possible plans, by weighing them towards
achieving a particular goal. Depending on circumstances,
the probability may not always result in an achievable plan
for realizing the goal, but it is a prerequisite for selection the
most applicable plans. Therefore, we have extended the ar-
chitecture of the agent to address this requirement. First we
will answer the following question, how should the plan se-
lection of agent select the plans that fit the agent’s context?
The contributions of this work are as follows:

• An extension of the BDI agent model to allow the repre-
sentation of the concepts needed for agents, which is able
to choose plans based on the utility and the probability.

The AAAI-17 Workshop on
Knowledge-Based Techniques for Problem Solving and Reasoning

WS-17-12

711

• A simple but effective control loop algorithm to choose
proper plans by applying the concepts of our extended
BDI agent model.

In the next section, we review some essential literature about
game theory and utility in ABM. In the section 3, we intro-
duce an example to illustrate our scenario. The central part
of the contribution is in sections 4 and 5, where the imple-
mentation of integrated probabilities in our BDI agent model
with a set of concepts is discussed. The paper ends with dis-
cussion and further developments.

2 Related Work

The BDI agent (Rao and Georgeff 1995) is a popular model
for developing agents and is supported by different methods
and techniquess(Meneguzzi and De Silva 2015; Giorgini,
Mylopoulos, and Sebastiani 2005) and platforms (Bordini,
Hübner, and Wooldridge 2007; Busetta et al. 1999; Nunes,
Lucena, and Luck 2011; Pokahr, Braubach, and Lamersdorf
2005).
Researchers have proposed plan selection techniques
(e.g., (Dasgupta and Ghose 2010; Visser, Thangarajah, and
Harland 2011)), and other methods to customize different
parts of BDI agents model, such as belief revision and goal
generation (e.g., (Van Benthem 2007; Dietrich, List, and
Bradley 2016)). (Singh et al. 2010) proposed a novel BDI
programming framework that, by suitably modeling context
conditions as decision trees, allows agents to learn the prob-
ability of success for plans based on previous execution ex-
periences. Nevertheless, their direct use in open systems is
still problematic since in such open system each agent aims
to use a particular strategy th at maximizes its own welfare,
which is not necessarily maximize the overall network’s per-
formance.
In the last few years, there has been an increasing interest
in the use of techniques from decision theory and game the-
ory for analyzing and implementing agents. In applications
of game theory in multi-agent systems (MASs), agents are
usually taken to maximize their expected utilities. This ap-
proach, however, is not always practical, as there are often
boundaries on computational resources, which prevent the
optimal solution being computed. As a result, there has been
much interest in computing solutions under bounded ratio-
nality. This means that we aim to find a solution, maximizing
the expected utility but limiting the required resources.
One sub-area of decision theory is the field of Markov de-
cision processes (MDP), discussed in detail in (Boutilier,
Dean, and Hanks 1999). In essence, an MDP is an iterative
set of classical decision problems. Consider a state of the
world as a node in a graph. Carrying out an action in that
state will result in a transition to one of a number of states,
each connected to the first state by an arc, with some prob-
abilities, and some cost. After a series of transitions a goal
state may be reached, and the sequence of actions that should
be executed to reach that goal is known as a policy. MDPs
aim to find a minimal cost policy for moving from some ini-
tial state to a goal state and capture many of the facets of
real-world problems, but unrealistically assume that what-
ever system is solving the MDP knows at every point what

state it is in. MDPs are not applicable in open domain sys-
tems because the network changes dynamically, and there-
fore the current state of the environment may be (partly) un-
known to the agents. Indeed, in open systems the network
changes constantly (an agent may join or leave the net-
work) therefore, agents behavoir may change the network.
In that sence, we need to apply an intraction framing algo-
rithm (Rovatsos 2001) to frame the agent’s behavior, which
is not addressed in the MDP. Partially observable Markov
decision process (POMDP) is a sub-branch of MPDs, which
applied by a Robotic navigation and Intelligent Control (Liu
et al. 2016). Although POMDPs have been known for many
decades, they are scarcely used in practice. POMDPs are
computationally very expensive and thus applicable in prac-
tice only to very simple problems (Hauskrecht 2011). This
is mainly due to two major difficulties 1) obtaining the envi-
ronment dynamics and 2) solving the resulting model (Shani
2007). For these reasons, POMDP is not the appropriate
method for our domain.
In contrast, Lang, van der Torre and Weydert (Lang, Van
Der Torre, and Weydert 2002) combined a logic-based
method and decision theory to consider how an agent might
reason about its goals and use them to define its utility.
Recently, some approaches have been introduced based on
whether the plan and preference formalisms are ordinal,
qualitative or quantitative. They model temporal preferences
or solely static preferences; and the formalism is propo-
sitional or first-order. Indeed, it induces a total order and
the degree of incomparability in the ordering (Meneguzzi
and De Silva 2015; Visser, Thangarajah, and Harland 2011).
These approaches extended a language for preference based
planning, without considering the expected utility for each
plan.

3 Illustration

In this section, we present an example that is used subse-
quently to explicate our approach. In a distributed, open and
dynamic environment with multiple administrative domains,
it is a challenge for agents to take an appropriate action due
to the number of observations.
The scenario is as follows: Bob is a security manager at com-
pany A. For the sake of his company, he is looking for a way
to collaborate with Alice, who is a security manager at com-
pany B. Alice and Bob are not part of a collaborative group
(i.e., SPs). To establish this collaboration, each agent needs
to plan its actions based on the estimated risks and benefits,
which means maximizing the benefits while minimizing the
risks.
Bob has three options. The options are:

Plan A Give complete access over the company’s data to
Alice;

Plan B Request certification from her company;

Plan C Deny Alice’s request.

In this scenario, the goal for agent Bob is “Sharing with Al-
ice” and sub-goals are “calculate risks” and “estimate Bene-
fits”. Although all these plans are a way of achieving the goal
of “Sharing with Alice” or sub-goals, each plan has differ-

712

ent characteristics. For example, suppose that Bob and Al-
ice have not yet collaborated before, then Bob would take a
risk if he would select plan (A), as he can not be sure about
the trustworthiness of Alice. Whereas if he chooses Plan (C)
Bob knows right away that he will not be able to gain bene-
fits of this collaboration. One may think that selecting plan
(B) is the most appropriate plan for this scenario. However,
each plan is associated with a particular response time and
requires a different amount of work; e.g., requesting a cer-
tification from the company implies completing many pro-
cesses.
This scenario exposes the following problem: how can agent
Bob select the most appropriate plan to achieve its goal
based on its current state, the utility of the selected action
and act upon the unknown information about the trustwor-
thiness of Alice?
In the following, we provide a brief introduction to the area
of decision theory, game theory, and we formalize our con-
tribution in this area.

Decision Theory in Agent systems

A classical decision theory is a set of mathematical tech-
niques for making decisions about what action to take when
the outcomes of the various actions are not known. This
theory can usefully apply in agent based theory (i.e., such
agents are canonical examples of the decision makers). An
agent operating in a complex environment is inherently un-
certain about that environment; it simply does not have
enough information about the environment to know either
the precise current state of its environment nor how that en-
vironment will evolve. Thus, for every variable S, which
captures some aspect of the current state of the environment,
all the agent typically knows is that each possible value has
some probabilities Pr(S). Writing S for the set of all S
reads:

Pr : S ∈ [0, 1] (1)

and

Pr(S1) + Pr(S2) + Pr(S3) + ...+ Pr(Sn) = 1 (2)

Expected Utility

As we presented in the earlier described scenario, agent Bob
has a set of possible plans to select. To choose an appropriate
one, Bob has three alternatives:

1. Select the first plan on the list and execute that plan, which
is sharing everything with Alice. And, taking this plan
will put the organization at risk.

2. Select the cheapest plan (i.e., the most efficient plan) re-
garding resource consumption. In this case, Bob takes
plan (C) to reduce the resource and will not gain benefits
from this collaboration.

3. Select the best outcome (i.e., the most effective plan).

To solve this problem and avoid the risk, we use a utility
function to combine all the alternatives and select the best
alternative regarding this case study. By applying the utility
function, we aim to propose an approach to formulate the

appropriate plan selection algorithm in a way that is applica-
ble in practice and theory (Parsons and Wooldridge 2002). A
utility represents the value that the agent places on that state
of the world (or environment). It also provides a convenient
means of encoding the preferences of the agent (Von Neu-
mann and Morgenstern 2007).

EU(P) =
∑

Si∈S Pr(Si | P)U(Si) (3)

where S is the set of all states. Then, the agent selects the
plan with:

P ∗ = argmaxp∈P

∑
Si∈S Pr(Si | P)U(Si). (4)

As we mentioned before, our aim is to extend an existing
BDI agent model by integrating the utility and the probabil-
ity in the BDI control loop algorithm and redesign the BDI
planner component. To do so, first, we illustrate a current
BDI agent model and its decision loop algorithm and then,
look at the agent planner in detail and apply the probability
and the utility in the extension of our BDI agent model.

4 Processing Agent Models

In this section, we introduce the agent definition and the
classic BDI agent model.
Definition 1 (Agent). Agent Bob is a tuple

{O,B,G, P,Ap}, (5)

where:
• O is a set of the observations made by the agent.
• B is the agent beliefs (including beliefs about other agents

and beliefs about the current state of the environment);
• G is the set of goals of the agent (e.g., the agent Bob’s

goal is to share information with Alice);
• P is a set of current plans (a new plan or the remain-

ing part of the plan that Bob is currently executing). P is
selected from the set of candidate plans produced by the
planner;

• Ap is the set of actions performed when the plan is exe-
cuted.

Figure 1: A classical BDI agent model.

In the classic BDI agent model, observations trigger a
belief set revision stage. Candidate goal sets are generated
based on primitive mental attitudes such as beliefs and de-
sires. This results in many different sets of mutually consis-
tent goals. The goal selection stage imposes an ordering on

713

the sets of generated candidate goal sets, such that the best
one will select for planning. This goal set is then passed on
to the planning stage to construct a plan set. Finally, the se-
lected plans trigger the action stage. The agent executes the
selected actions to achieve the goal set.
Figure 1 depicts the classic BDI framework (where goals are
equated with desires and plans with intentions). The deliber-
ation cycle of the BDI agent model is presented in Algorithm
1.

Algorithm 1: Control loop for the classic BDI agent.

Given an agent {O,B,G,P,Ap}
repeat

O := Observe(O);
B := Revise(B,O);
G := Generate Gg (B);
P := ∀g ∈ G → generate P (B,G);
take (Ap);
revise(B);

until forever;

5 Extended BDI Agent Models

We presented the BDI extension architecture in this section
with two determination cycles. As said before, our goal is to
build agents that are able to: (i) use the probability and utility
in their planner components; (ii) represent plan utility over
sub-plans, and (iii) use this information to choose plans. For
the purposes of this paper, we shall mostly focus on the plan
selection.
Our goal consists of the following parts:
• describes an agent architecture based on the extension of

the classical BDI model by (Rao and Georgeff 1995) in a
certain state (current state = i);

• an algorithm to process a model based on our extended
BDI agent model and to select plans;

• a modified control loop for the extended BDI agent
model.

Definition 2 (Agent at the current state i). The agent Bob’s
tuple in the current state i is

{Oi, Bi, Gi, Pi, Api
} ∈ {O,B,G, P,Ap} (6)

where:
• Oi is a set of the observations made by the agent in the

current state i .
• Bi is the agent beliefs in the current state i;
• Gi is the set of goals in the current state i;
• Pi is a set of plans in the current state i ;
• Api is the set of actions in the current state i when the

plan is executed.

Figure 2 shows the extended BDI model. It builds around
the three core entities of the original BDI model, which can
itself be seen as an extension of the BDI agent model. In our
terminology, beliefs encode the agents knowledge about the
world or its mental states, which the agent holds to be true
(that is, the agent will act upon them while they continue to

Figure 2: The extended BDI agent: considering utility in the
planner component. 6 and 6’ are executed simultaneously.

hold). Goals are equated with “desires”, and plans with “in-
tentions”. We view intentions as commitments to new be-
liefs or to carrying out certain plans or pursuing new goals
and actions in the future.
As stated above, the agent has a set of plans, where each

is primarily characterized by the goals and a set of possible
actions. In other words, each plan consists of an invocation
which is the event that the plan responds to and may con-
tribute to a (sub)goal, and is characterized by a set of con-
tributions to (sub)goal. We present a contribution value as a
number between 0 and 1 (the worst and the best contribu-
tion)1.
The set Pi is produced by the planner starting from the ini-
tial state Si, and inspecting Api

to find all the action recipes
which have among their effects a goal in Gi. Then, by the
utility function, the possible alternatives are examined, and
the best Pi will be chosen, which becomes the current inten-
tion of the agent. The best plan is the one that maximizes the
utility (i.e., equation 4).
Definition 3 (Plan). A plan pi ∈ Pi

{pi, Api
, Contributionvalue} (7)

where pi are a set of (sub)plans, Contribution value of pi
to a goal Gi and {Api

∈ Ap} is a set of actions performed
when the plan is executed.

Plan Selection

As we discussed in the introduction, we aim to support the
development of agents with the ability to choose plans under
uncertain states when they have to keep the system within
boundaries. We now explore the integration of the proba-
bility and the expected utility of the deliberation process of
our BDI agent. Each plan has different probabilities of suc-
cessfully achieving the intended effect of the plan (i.e., the
goal associated with plan), which are known by the agent.
And, each goal and state are associated with the plan’s util-
ity, which is a weighted average of all possible (sub)plans
according to their probabilities. Therefore, the plan’s utility
of a plan pi with respect to the current state of the agent (Si)
is given by:

1The data for the contribution value adopted from (Nunes and
Luck 2014) for each goal.

714

Definition 4 (Plan Utility).

PU(Pi) =
∑

pi∈Pi
Pr(Si|pi)× U(Si) (8)

and

U(Si) = Pr(Si)× Contributionvalue(Gi, Si) (9)

where Pr ∈ [0, 1] is the probability of a plan promote
the contribution value Contributionvalue ∈ [0, 1] with
respect to the (sub)goal, 0 and 1 being the lowest and
highest possible contributions, respectively.

Definition 5 (Plan Expected Utility Preference).

Pref(Pi, Si) = argmax
∑

pi∈Pi
PU(Pi, Si) (10)

Agent Bob takes the plan, which maximizes Bob’s utility
and in this work we present it as the preferred plan based
upon expected utility. Such preferences express the trade-off
between different plans. Suppose Bob needs to share infor-
mation with Alice for an important project, and he wants to
receive a quick response, secure collaboration, with mini-
mum risk and high benefits. Preferences for plans that re-
flect this situation may be “ask for the certification” leads to
a secure collaboration. The definition of preferences above
completes the description of our model.
Based on the plan’s utility, we select the plan with the high-
est utility of a set of possible plans to achieve a goal. This
approach is implemented by algorithm 2; the algorithm has
linear complexity and is simple as well as effective.
Note that more than one plan may have the same plan util-
ity, and in this case, a plan is selected randomly from those
with the maximum utility. In algorithm 2, we select the first
processed plan. Thus, the plan options in the modified inter-
preter loop are possible sets of plans to be intended simul-
taneously. The deliberation step then selects between these
sets of plans on the basis of the utility. In this work, we as-
sume that each plan has a unique utility number.
We summarize our method in the following steps:

1. A planner receives the current state Si where Si ∈ S and
produces the states S1, S2, ..., Si; i is the number of dif-
ferent recipes for Gi.

2. For each state we generate the probability value Pr ∈
[0, 1], which is assigned to S1, S2, ..., Si.

3. The utility function applies to these states and the pre-
ferred plan PrefP regarding that states is chosen.

Using the rationale described above, each of the plans has
different contributions (probability and value) to (sub-)goal,
as detailed in Table1. For example, the probability of a
given over access is 0.35. Therefore, if the Overall access
plan is chosen, the contribution of this plan with respect to
estimate benefits is 0.06 and start to share plan probabil-
ity 0.65, and 0.0. Suppose, we have three plans Plan(A),
Plan(B) and Plan(C) having the respective probabilities
of PrpA = 1.0, PrpB = 0.2 and PrpC = 0.4, and with the
respective contribution’s values valA = 0.06, valB = 0.8
and valC = 0.05. This will result in utility U(S1, P (A)) =
0.021, U(S1, P (B)) = 0.12 and U(S1, P (C)) = 0.02.
The agent prefers to choose the plan with the highest util-
ity. Thus, the expected utility of the plan pi for the agent is

given by equation (10). The agent will choose the plan that
has the highest rank. In our example that is Plan (B).
In the generation of plans in the modified interpreter loop,

Algorithm 2: Select Plan

input : (sub)Goal, Set of plans (pi ∈ Pi), the Probability of each plan
output: Selected Pi, Plan that has the best utility.

SelectedP lan(Pi) := null;
for pi ∈ Pi do

U(pi) := Pr(pi) × U(si);
PU(Pi) := setofPU(pi);

end

PrefPi := argmaxPU(Pi);
SelectedP lan(Pi) := PrefPi;
return SelectedP lan(Pi)

there are two places where choices are made: the plan gen-
erator (planner) and the plan selector. The “planner” selects
some subset of “high ranked” plans based on the utility and
updates the belief set. In the following, the “plan selector”
selects the best plan to fulfill the goal and determines the al-
ternative courses of action which should be used to respond
to these events. Bob’s preference is plan B, and so he asks
for Alice’s certification. So the course of actions for this plan
would be to check the certification, calculate risk and bene-
fits and allow access for Alice. In the extended BDI model,
we also consider agents preferences.

Algorithm 3: Modified control loop for the extended BDI agent, (1-6) are refer-
ring to Figure 2. In the extended BDI model, 6 and 6’ are executed simultane-
ously. i is the current state of the agent.

Given an agent {Oi, Bi, Gi, Pi, Api
}

repeat

Oi := Observe(Oi);
B := Revise(B,O);
(1)Gi := Generate Gg (B);
(2)Pi := ∀g ∈ G → generate Pi(Bi, Gi);
(3, 4)Pi := Calculte UP ∀ pi ∈ P (Bi, Gi, Pi);
(4, 5)PrefPi := Update P to PrefPi(Bi, Gi, Api

, Pi);
(6, 6′)Bi := revise(Bi−1, PrefPi);
(6′)take (Api

);
i := i + 1;

until forever;

6 Experiment Settings

Our experiment consists of a simulation to compare the ac-
cumulated satisfaction of an agent after executing a plan to
achieve a goal, when using our approach to select the plan
and when selecting it randomly from a set of possible plans.
The satisfaction of an agent is calculated based on how goals
are satisfied, i.e., the contribution of each plan (probability
and value). Our experiment consists of running a number of
iterations in which we perform the following steps. Step1 :
Probability for each event randomly generated number in the
interval [0, 1]. Step2 : Instantiate ascribed scenario for each
plan, according to the given probability of events. Step3 :
Compute the utility for each plan. And, select a plan in three
different situations:

715

Table 1: Plans and sub-plans Contributions value and prob-
abilities.

Plans and sub-plans Probabilities Contribution value
Pr ∈ [0, 1] val ∈ [0, 1]

Plan A Give overall access 0.35 0.06
Start to share data 0.65 0.0

Plan B Request a certification 0.95 0.08
Check the certification 0.05 1.0

Plan C Deny Alice’s request 0.40 0.05
Use the resources for own purpose 0.60 0.0

• When the agent selects our algorithm to assign utility for
each plan.

• The agent selects a plan randomly from the list of plans.

• The agent always selects the same plan over and over
again (constant plan selector).

And, we store the satisfaction of the scenario associated with
the selected plan. In our experiment, we ran 1000 iterations
of the steps described above, each of which takes less than
1 second to run. As result, we compared the average sat-
isfaction and the accumulated satisfaction of all iterations
for each plan selector (random and utility-based). Moreover,
we also analyzed constant plan selectors: those that always
choose the same plan. The average satisfaction obtained, the
standard deviation and minimum and maximum values, and
accumulated satisfaction are detailed in Table 2. In Table
2, the highest values are in bold and the lowest values are
in italics. As can be seen in Table 2 the plan selector with

Table 2: Satisfaction by Plan Selector (n = 1000). Ask for
a Certification (AskCTA) and Share everything are based on
the utility plan selection algorithm. Deny plan is the constant
plan that agent chooses as a current plan without considering
the utility.

Plans M SDV Min Max

Randomly 0.38 1.59 0.0001 0.44
AskCTA 0.93 0.54 0.0001 0.98

Share everything 0.41 0.72 0.0002 0.21
Deny 0.53 2.76 0.0001 0.60

the best results is the plan (B = AskCAT) with utility-based
plan selector, while the constant plan selector has the worst
results (Plan C = Deny). Therefore, even with an uncertain
outcome when selecting a plan, our approach manages to
achieve the best average satisfaction for the agent. However,
this is not the case for every individual iteration, since the
utility-based plan selector chooses the plan with the best
expected value, but an undesired event, such as a crash or
being selfish, could cause other plans to be more success-
ful. This uncertainty is clearly seen in the results of select-
ing the“Deny” plan, which is associated with high standard
deviation that can also be observed in Table 2 As a conse-
quence of choosing the (Plan C = Deny), the agent may get
very satisfied (very good performance and good costs) or
very unsatisfied (if the agent does not gain benefits). Even
though the plan“AskCTA” achieves the highest average sat-
isfaction, and the plan best fits the agent preferences – an

agent may want to take the risk of sharing the resources
if this increases its chances of gaining the more benefits.
Therefore, our plan selector selects a different plan for a dif-
ferent set of preferences. In order to consider the impact of

0 200 400 600 800 1000 1200

Iterations (n>=1000)

0

100

200

300

400

500

600

700

800

900

A
c
c
u

m
u

la
te

d
 s

a
ti
s
fa

c
ti
o

n

Random

AskCTA

Deny

ShareEve

Figure 3: Accumulated Satisfaction.

using a plan selector over time, we also show in Figure 3 the
accumulated satisfaction obtained after running 1000 itera-
tions. The difference increases over time, but in the very first
iterations this difference is small, due to the uncertainty of
the scenario that arises in the selection of a plan. A proof-of-
concept plan selection algorithm was performed to demon-
strate the efficacy of this algorithm, using the collaboration
scenario. We used the Jadex (Braubach, Lamersdorf, and
Pokahr 2003) platform to implement the plan selection al-
gorithm.

7 Discussion

As discussed above, our plan selector significantly increases
an agent’s satisfaction in comparison to other plan selectors.
Our experiment allows us to identify a limitation of our ap-
proach: the representation of dependent probabilities. This
dependency is not captured in our model yet. Including these
dependencies is future work.
In our selection plan algorithm, we do not assume that each
action that is executed will succeed. Observations of the
agent (monitoring) will enable the agent to learn about the
effectiveness of its actions. Responding to action failure, di-
agnosing the situation and evidential reasoning, which is
necessary for reasoning about incomplete information, are
future research and will be addressed in a next publication.
Considering the consequences of other agent’s actions in a
time-dependent environment is one of the fundamental prob-
lems in open systems.
This issue is also known as the “Interaction Framing Prob-
lem (IFP)” and will cover in the future work. The work pre-
sented here is just one step towards a model that is capable
of capturing the knowledge that is necessary for agents to
understand “what is going on” when they meet each other
(Rovatsos 2001; Rovatsos, Weiss, and Wolf 2002).

716

8 Conclusion

Utility-based model development is a promising approach
for taking the appropriate action when it is uncertain about
the current state of observed information to maximize the
expected utility of the decision-maker. It has also been in-
vestigated in the context of the result of taking an action
(Parsons and Wooldridge 2002). In the current work, we
proposed integrating utility and probabilities into our BDI
planner to develop BDI agents which are able to select plans
based on the highest expected utility.
We proposed a simple, but effective algorithm, that chooses
a plan based on the plan utility, considering an uncertain out-
come of the plan execution.
The effectiveness of our approach was shown with an em-
pirical evaluation. As future work, we will extend this ap-
proach to represent dependent probabilities in plan contri-
butions, and also use languages and algorithms to represent
and reason about qualitative preferences. Moreover, we aim
to address other issues of BDI agents, such as revising an
agent belief set applying evidential reasoning using expec-
tations, confirming and disconfirming information.

9 Acknowledgments

We would like to thank the Netherlands COMMIT/program
and NWO organization for making this research possible.
We also like to thank KLM for providing guidance and the
context for this research. We would like to thank the anony-
mous reviewers for their suggestions and comments.

References

Abdelkader, G. 2003. Requirements for achieving software
agents autonomy and defining their responsibility. In Proc.
Autonomy Workshop at AAMAS 2003, volume 236.
Bordini, R. H.; Hübner, J. F.; and Wooldridge, M. 2007.
Programming multi-agent systems in AgentSpeak using Ja-
son, volume 8. John Wiley & Sons.
Boutilier, C.; Dean, T.; and Hanks, S. 1999. Decision-
theoretic planning: Structural assumptions and computa-
tional leverage. Journal of Artificial Intelligence Research
11(1):94.
Braubach, L.; Lamersdorf, W.; and Pokahr, A. 2003. Jadex:
Implementing a bdi-infrastructure for jade agents.
Busetta, P.; Rönnquist, R.; Hodgson, A.; and Lucas, A.
1999. Jack intelligent agents-components for intelligent
agents in java. AgentLink News Letter 2(1):2–5.
Dasgupta, A., and Ghose, A. K. 2010. Implementing re-
active bdi agents with user-given constraints and objectives.
International Journal of Agent-Oriented Software Engineer-
ing 4(2):141–154.
Deljoo, A.; Gommans, L.; Van Engers, T.; and de Laat, C.
2016. An agent-based framework for multi-domain service
networks:eduroam case study. In Proc. of International Con-
ference, ICAART 2016, Rome, Italy, February 24-26, 2016.
Dietrich, F.; List, C.; and Bradley, R. 2016. Belief revision
generalized: A joint characterization of bayes’ and jeffrey’s
rules. Journal of Economic Theory 162:352–371.

Giorgini, P.; Mylopoulos, J.; and Sebastiani, R. 2005. Goal-
oriented requirements analysis and reasoning in the tropos
methodology. Engineering Applications of Artificial Intelli-
gence 18(2):159–171.
Gommans, L.; Vollbrecht, J.; Gommans-de Bruijn, B.; and
de Laat, C. 2015. The service provider group framework: A
framework for arranging trust and power to facilitate autho-
rization of network services. Future Generation Computer
Systems 45:176–192.
Hauskrecht, M. 2011. Value-function approximations
for partially observable markov decision processes. Arxiv
preprint.
Lang, J.; Van Der Torre, L.; and Weydert, E. 2002. Utili-
tarian desires. Autonomous agents and Multi-agent systems
5(3):329–363.
Liu, M.; Amato, C.; Anesta, E. P.; Griffith, J. D.; and How,
J. P. 2016. Learning for decentralized control of multia-
gent systems in large, partially-observable stochastic envi-
ronments. In Thirtieth AAAI Conference on Artificial Intel-
ligence.
Meneguzzi, F., and De Silva, L. 2015. Planning in bdi
agents: a survey of the integration of planning algorithms
and agent reasoning. The Knowledge Engineering Review
30(01):1–44.
Nunes, I., and Luck, M. 2014. Softgoal-based plan selec-
tion in model-driven bdi agents. In Proceedings of the 2014
international conference on Autonomous agents and multi-
agent systems, 749–756. International Foundation for Au-
tonomous Agents and Multiagent Systems.
Nunes, I.; Lucena, C.; and Luck, M. 2011. Bdi4jade: a bdi
layer on top of jade. In Proc. of the Workshop on Program-
ming Multiagent Systems, 88–103.
Parsons, S., and Wooldridge, M. 2002. Game theory and
decision theory in multi-agent systems. Autonomous Agents
and Multi-Agent Systems 5(3):243–254.
Pokahr, A.; Braubach, L.; and Lamersdorf, W. 2005. Jadex:
A bdi reasoning engine. In Multi-agent programming.
Springer. 149–174.
Rao, A. S., and Georgeff, Michael P, e. a. 1995. Bdi agents:
From theory to practice. In ICMAS, volume 95, 312–319.
Rovatsos, M.; Weiss, G.; and Wolf, M. 2002. An approach
to the analysis and design of multiagent systems based on
interaction frames. In Proceedings of the first international
joint conference on Autonomous agents and multiagent sys-
tems: part 2, 682–689. ACM.
Rovatsos, M. 2001. Interaction frames for artificial agents.
Shani, G. 2007. Learning and solving partially observable
markov decision processes. Ph.D. Dissertation, Citeseer.
Singh, D.; Sardina, S.; Padgham, L.; and Airiau, S. 2010.
Learning context conditions for bdi plan selection. In Pro-
ceedings of the 9th International Conference on Autonomous
Agents and Multiagent Systems: volume 1-Volume 1, 325–
332. International Foundation for Autonomous Agents and
Multiagent Systems.
Van Benthem, J. 2007. Dynamic logic for belief revision.
Journal of applied non-classical logics 17(2):129–155.

717

Visser, S.; Thangarajah, J.; and Harland, J. 2011. Reason-
ing about preferences in intelligent agent systems. In IJCAI
Proceedings-International Joint Conference on Artificial In-
telligence, volume 22, 426.
Von Neumann, J., and Morgenstern, O. 2007. Theory of
games and economic behavior. Princeton university press.

718

