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Abstract

Recently a large attention has been devoted to the ethical is-
sues arising around the design and the implementation of ar-
tificial agents. This is due to the fact that humans and ma-
chines more and more often need to collaborate to decide on
actions to take or decisions to make. Such decisions should
be not only correct and optimal from the point of view of
the overall goal to be reached, but should also agree to some
form of moral values which are aligned to the human ones.
Examples of such scenarios can be seen in autonomous ve-
hicles, medical diagnosis support systems, and many other
domains, where humans and artificial intelligent systems co-
operate. One of the main issues arising in this context regards
ways to model and reason with moral values. In this paper
we discuss the possible use of AI compact preference models
as a promising approach to model, reason, and embed moral
values in decision support systems.

Introduction

Nowadays scenarios where humans and intelligent agents
collaborate together to reach a common decision are grow-
ing in many different disciplines and real-life situations.
For instance, the increasing number of autonomous vehicles
driving around force us to think about the implications of
the meaning of making autonomous decision. Such intelli-
gent agents could face several situations where they have to
resolve moral dilemmas, such as in the well know trolley
problem for autonomous vehicles (see for example (Thom-
son 1985) for a description of several of these situations).

Artificial agents helping professionals shall agree to some
form of deontological code for that profession. Think for in-
stance to medical scenarios where humans and intelligent
agents collaborate together to find a therapy. Doctors agree
to the Hippocratic oath and would not trust suggestions com-
ing from artificial agents that do not follow the same princi-
ples of the oath.

Agents should agree to the same ethical principles as hu-
mans in the same scenario. Thus it is crucial to be able to
model ethical principles in a way that they can be effec-
tively used by artificial agents. Researches from different
areas have already studied different frameworks to model
and to enable agents making decisions. Autonomous agents
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already schedule activities according to safety constraints,
or to make a collective decision using some form of voting
protocol which tries to satisfy the subjective preferences of
all members of the decision makers group. We propose to
adapt some of these frameworks to embed moral values in
the decision process.

Compactness in modelling both preferences and moral
values is a necessity when it comes to implementations for
artificial agents. Humans are very good at abstracting away
details which are not relevant for decision making and per-
ceive as atomic even complex events or objects which would
require large amounts of details to be formally described.
Artificial agents don’t have this luxury. They rely on com-
binatorial structures for the vast majority of the knowledge
they acquire and store. This is true also when it comes to
preferences and a key challenge that has been tackled by the
area of knowledge representation has been that of mapping
orderings over large sets of options into compact (graphical)
models while trying to minimize the information that is lost
in doing so.

Since ethical principles define the same kind of structures
as preferences that is, priority orderings over the possible
decisions, it is reasonable to conjecture that also ethical re-
quirements will need to be modelled compactly in order to
be embedded into a machine. One may argue that there are
alternatives available. For example, one could take a ma-
chine learning based approach where “ethics” is modelled
by one or more learning modules trained on, for example,
dilemmas and corresponding solutions. While this approach
may be feasible, it does raise some concerns. For example,
it may not be acceptable that the artificial agent will not be
able to provide an explanation on why it judged one action
“more ethical” than another. Moreover, as noted in many pa-
pers in the literature, e.g. (Allen, Varner, and Zinser 2000),
bottom up approaches to ethics tie the results to the data on
which the module is trained. This may lead to undesirable
outcomes if the data is biased or not general enough.

Background

We organize our discussion as follows. We consider the most
popular compact preference models and, for each of them,
after providing a short background we discuss issues and
research challenges related to adopting them as model for
modelling and reasoning with ethical theories.
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Hard and Soft Constraints

Hard constraints, usually just called constraints, model re-
strictions on the combination of values that some decision
variable can take. For example, in a scenario where we need
to schedule activities over time, we may use one decision
variable for each activities, which can take values from the
time line, and we may pose the constraint that activity A has
to occur before activity B. Thus, with a hard constraint, each
combination of values of variables A and B is either feasible
(if it satisfies the constraint) or not. Given several of such
constraints, the global scenarios that are declared as feasible
are those in which all constraints are satisfied.

Soft constraints generalise the notion of constraints to al-
low for more than just two states (feasible or not) for the
value combinations. More precisely, a soft constraint (Rossi,
van Beek, and Walsh 2006) involves a set of decision vari-
ables and associates a value from a (totally or partially or-
dered) set to each instantiation of its variables. Such a value
is taken from a preference structure 〈A,+,×, 0, 1〉, where A
is the set of preference values, + induces an ordering over A
(where a ≤ b iff a+b = b),× is used to combine preference
values, and 0 and 1 are the worst and best element. For exam-
ple, in the activity scheduling example described above, we
may work with a preference structure which includes totally
ordered values from 0 to 1, where a higher value denotes
a higher preference, and we may have a soft constraint as-
signing value 0 to combinations of values (A=a,B=b) where
a �≤ b, and value (b− a)/b to the other combinations of val-
ues, meaning that we do not allow A to occur after B, and
when A is before B, we prefer these two activities to be as
close as possible.

A Soft Constraint Satisfaction Problem (SCSP) is a tuple
〈V,D,C,A〉 where V is a set of variables, D is the domain
of the variables, and C is a set of soft constraints (each one
involving a subset of V ) associating values from A.

An instance of the SCSP framework is obtained by choos-
ing a specific preference structure. For instance, a classical
CSP (Dechter 2003) is just an SCSP where the preference
structure is SCSP = 〈{false, true}, ∨,∧, false, true〉.
Preference values are only true and false and they are com-
bined via logical and.

Fuzzy CSPs (Rossi, van Beek, and Walsh 2006) are in-
stead modeled choosing SFCSP = 〈[0, 1], max,min, 0, 1〉
that means that preference values are in [0, 1] and we want
to maximize the minimum preference value. Fuzzy CSPs
are useful when we have safety-critical applications, since
we focus on the worst preference value when we evaluate a
complete variable assignment.

For weighted CSPs, the c-semiring is SWCSP = 〈R+,
min,+,+∞, 0〉: preferences are interpreted as costs from 0
to +∞, and we want to minimize the sum of costs.

The figure below shows the constraint graph of a Fuzzy
CSP where V = {x, y, z}, D = {a, b} and C = {cx, cy,
cz, cxy, cyz}. Each node models a variable and each arc
models a binary constraint, while unary constraints define
variables’ domains. For example, cy associates preference
value 0.4 to y = a and 0.7 to y = b.

x=a −> 1

x=b −> 1

(y=a,z=a) −> 0.9

(y=a,z=b) −> 0.2

(y=b,z=a) −> 0.2

(y=b,z=b) −> 0.5

(x=a,y=a) −> 0.9

(x=a,y=b) −> 0.8

(x=b,y=a) −> 0.7

(x=b,y=b) −> 0.6

 x

y=a −> 0.4 z=a −> 1

  y z

y=b −> 0.7 z=b −> 1

Given an assignment s to all the variables of a soft CSP P ,
its preference, written pref(P, s), is obtained by combining
the preferences associated by each constraint to the subtu-
ples of s referring to the variables of the constraint. For ex-
ample, in fuzzy CSPs, the preference of a complete assign-
ment is the minimum preference given by the constraints. In
weighted constraints, it is the sum of the costs given by the
constraints. An optimal solution of a soft CSP P is then a
complete assignment s such that there is no other complete
assignment s′ with pref(P, s) < pref(P, s′), where < is
the preference ordering of the considered preference struc-
ture.

In general, finding an optimal solution for a hard or a soft
CSP is computationally hard. However, it is polynomial for
some classes of (soft) constraints. This is the case for tree-
shaped fuzzy CSPs, where a technique called directional arc-
consistency, applied bottom-up on the tree shape of the prob-
lem, is enough to make the search for an optimal solution
backtrack-free and thus polynomial. A tree-shaped soft CSP
is a soft CSP whose constraint graph (where nodes represent
variables and arcs connect variables involved in the same
constraint) is a tree.

CP-nets

While hard and soft constraints exploit preference struc-
tures to state the preference value of a value combination,
other ways to model preferences are more qualitative, such
as CP-nets. CP-nets (Boutilier et al. 2004) (for Conditional
Preference networks) are a graphical model for compactly
representing conditional and qualitative preference relations.
They are sets of ceteris paribus preference statements (cp-
statements). For instance, the cp-statement “I prefer red
wine to white wine if meat is served.” asserts that, given
two meals that differ only in the kind of wine served and
both containing meat, the meal with red wine is prefer-
able to the meal with white wine. Formally, a CP-net has
a set of features F = {x1, . . . , xn} with finite domains
D(x1), . . . ,D(xn). For each feature xi, we are given a set
of parent features Pa(xi) that can affect the preferences
over the values of xi. This defines a dependency graph
in which each node xi has Pa(xi) as its immediate pre-
decessors. An acyclic CP-net is one in which the depen-
dency graph is acyclic. Given this structural information,
one needs to specify the preference over the values of each
variable x for each complete assignment on Pa(x). This
preference is assumed to take the form of a total or par-
tial order over D(x). A cp-statement has the general form
x1 = v1, . . . , xn = vn : x = a1 	 . . . 	 x = am, where
Pa(x) = {x1, . . . , xn}, D(x) = {a1, . . . , am} , and 	 is
a total order over such a domain. The set of cp-statements
regarding a certain variable X is called the cp-table for X .

Consider a CP-net whose features are A, B, C, and D,
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with binary domains containing f and f if F is the name of
the feature, and with the cp-statements as follows: a 	 a,
b 	 b, (a ∧ b) : c 	 c, (a ∧ b) : c 	 c, (a ∧ b) : c 	 c,
(a ∧ b) : c 	 c, c : d 	 d, c : d 	 d. Here, statement
a 	 a represents the unconditional preference for A = a
over A = a, while statement c : d 	 d states that D = d is
preferred to D = d, given that C = c.

A worsening flip is a change in the value of a variable to
a less preferred value according to the cp-statement for that
variable. For example, in the CP-net above, passing from
abcd to abcd is a worsening flip since c is better than c given
a and b. One outcome α is better than another outcome β
(written α 	 β) iff there is a chain of worsening flips from
α to β. This definition induces a preorder over the outcomes,
which is a partial order if the CP-net is acyclic.

Finding the optimal outcome of a CP-net is NP-
hard (Boutilier et al. 2004). However, in acyclic CP-nets,
there is only one optimal outcome and this can be found in
linear time by sweeping through the CP-net, assigning the
most preferred values in the cp-tables. For instance, in the
CP-net above, we would choose A = a and B = b, then
C = c, and then D = d. In the general case, the optimal out-
comes coincide with the solutions of a set of constraints ob-
tained replacing each cp-statement with a constraint (Braf-
man and Dimopoulos 2004): from the cp-statement x1 =
v1, . . . , xn = vn : x = a1 	 . . . 	 x = am we get the
constraint v1, . . . , vn ⇒ a1. For example, the following cp-
statement (of the example above) (a ∧ b) : c 	 c would be
replaced by the constraint (a ∧ b)⇒ c.

Ethical Theories via Preference Frameworks

Many ethical theories have been defined and are used to
model human behaviour when deciding what actions to take.
A deontological approach to ethics involves tagging each
action as either permissible, impermissible and obligatory.
Given the notions defined in the previous section, it is clear
that hard constraints appear to be ideal for modeling deonto-
logical ethics as defined by Kant. One could envision defin-
ing constraint problems where the actions under considera-
tion are complete assignments to a set of decision variables
modelling their different aspects and components. The con-
straints would be modelling ethical restrictions. Then, an ac-
tion would be defined permissible if it is one of several so-
lutions to the constraint problem, impermissible if it is not a
solution, and obligatory if it is the only solution.

The criteria that Kant uses to map actions into one of the
three categories are far from being defined as forbidden si-
multaneous assignments to some set of variables. One pos-
sible way to overcome this may be to have several hard con-
straints problems modelling ethical requirements in different
specific domains.

Soft constraints also have many appealing properties in
terms of what may be desired for modelling ethical require-
ments. First of all, any partial order can be represented. This
is not true for other models, such as for examples, CP-nets.
This is important in this context because ruling out some
orderings may mean that the model may not be able to rep-
resent the “true” ethical ordering but only an approximation.

Another interesting feature of soft constraints is that differ-
ent combination operators can be chosen in order to aggre-
gate preferences from different constraints. This can be use-
ful if different ethical theories want to be modelled.

Weighted constraints appear the natural choice when it
comes to model utilitarianism, that aims at maximising util-
ities. In fact, it easy to translate the principle of maximiz-
ing utilities to that of minimizing costs. On the other hand,
fuzzy preferences which are aggregated with min well rep-
resent the fact that a violation of “ethical” constraints on any
component should affect the quality of the entire option. The
fundamental question is what is the set of properties of a
preference aggregator which makes it suitable for handling
ethical requirements? Some may be obvious, for example
commutativity. Others may be a point of discussion, such as
for example the fact that the aggregation of two ethical pref-
erences cannot be “more ethical”. This is called intensive
property in soft constraints.

While soft constraints’ quantitative approach to prefer-
ences may be appealing to model some theories, there are
others which cannot be easily quantified. These are called
ordinal theories in (MacAskill 2014). For such theories qual-
itative preferences as those modeled in CP-nets may be a
better option.

Several properties of CP-nets look appealing for the ob-
jective considered in this paper. Firs of all, being able to
model conditional statements may be desirable. While one
may argue that ethical principles should be absolute, and not
context dependent, the study of several dilemmas, such as
the trolley problem, have shown that what humans regard
as ethical may very well be dependent on the context and
sometimes for not a very clear or rational reason.

It is reasonable to assume that artificial agents will be sub-
ject to much harsher scrutiny from an ethical stand point than
humans. It is thus fundamental to be able to model what hu-
mans (or maybe a majority of humans) will consider ethical
in artificial agents.

CP-nets also have the quality of not requiring numbers
to express preferences. It has been argued that numbers may
be a cumbersome and tedious way of representing even mun-
dane preferences. When it comes to ethical requirements this
argument may become even stronger.

One issue concerning CP-nets that will need to be ad-
dressed, is that, as mentioned above, some orderings may
not be represented. Furthermore, given two options under-
standing if one is more desirable has a very high compu-
tational complexity. This may be unacceptable in situations
where the agent is confronted by a dilemma involving two
options, both with some catastrophic effect, and a decision
must be made in a short amount of time.

Meta-preferences and distance over compact

structures

In a social context, individual preferences are transformed
little by little by incorporating elements from the societal
interaction with other members of the group. This is often
called “reconciliation” of individual preferences with social
reason, and takes place in the context of collective choice.
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To be able to describe the dynamic moving from one prefer-
ence ordering to the next one (over time), and to make sure
that the latter preference orderings are indeed better in terms
of morality, one needs to have a way to judge preferences
according to some notion of good and bad (in any of the
above mentioned ethical theories). Indeed, Sen (Sen 1974)
claims that morality requires judgement among preferences.
To account for this, he introduced the notion of metarank-
ing (that is, preferences over preferences) which enables to
formalise individual preference modifications. A moral code
could then be defined as ranking of preference rankings.
That is, the moral code is defined by a structure that, by em-
ploying notions such as distance, is able to rank preferences
according to their morality level. The distance intrinsic in
the moral code can then be useful in measuring the devia-
tion of any social or individual action from the moral code
itself.

This approach to morality is appealing from a compu-
tational point of view. If we intend to use compact pref-
erences models we must address two key points regarding
compactly represented preferences, namely, (1) how to dy-
namically change them and, (2) how to define a notion of
distance among them.

The first challenge has been partially addressed in the
literature. Indeed, changing preferences can be seen as a
form of preference elicitation or learning. This has been
shown to pose some computational challenges for CP-nets
(Chevaleyre et al. 2010) and has only partially been stud-
ied in the case of soft constraints (Rossi and Sperduti 1998;
Khatib et al. 2007). The task of dynamically updating has
also been studied in CP-nets (Cornelio et al. 2013).

Another possibility is seeing learning moral preferences
as resolving uncertainty concerning what is moral. This
could be represented, for example, by an extension of CP-
nets called PCP-nets where preferences are expressed by a
probability distribution over ordering rather than by a single
ordering (Cornelio et al. 2015). Then learning can be mod-
elled as a change in the probability distribution which lead to
one in which there is no uncertainty (i.e. where one ordering
has probability 1).

The second challenge is to define distances over compact
preference structures. The meta-rankings defined by Sen as
orderings of orderings, would be, in our case, orderings over
CP-nets, where the ordering would be induced by the dis-
tance of the CP-nets from a reference “moral CP-net”. To the
best of our knowledge, this point has not yet been adequately
explored. Defining a meaningful distance over a compact
representation requires understanding the relation between
that distance and the distance of the induced orderings over
outcomes. Such a relation is not trivial as small differences
in the compact structures can result in a large number of in-
versions in the induced orderings. This is true both for CP-
nets and soft constraints. For CP-nets, it has been shown in
(Domshlak et al. 2006) that the position of a feature in the
topology of the dependency graph determines, to some ex-
tent, the magnitude of the effect of changes in its CP-table
on the induced ordering. This is partially exploited in the
definition of a distance over CP-nets which is proposed in
(Wang et al. 2010). However, in that work the authors do

not address the relation between the distance over CP-nets
and their induced orderings and ignore orderings induced
via transitive closure.

As far as we know, a distance on soft constraints has not
been formally defined. Due to its quantitative nature, one
point to clarify is if the actual values of the preference struc-
ture should matter or if only the relative ordering should
count. Another subject of study should be the impact of the
combination operator on the relation between the distance
over compact and induced preferences.

Conclusion

As artificial agents become more intelligent they will be re-
quired to adhere to ethical requirements. In this paper we
propose compact presence models as a way to embed ethical
requirements and moral preferences into intelligent systems.
We highlight some features of such models which make
them particular appealing for this purpose and we also out-
line possible challenges which will have to be considered.
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