
Parallel Chromatic MCMC with Spatial Partitioning

Jun Song and David A. Moore
Computer Science Division

University of California at Berkeley
Berkeley, CA 94720

juns123@berkeley.edu, dmoore@cs.berkeley.edu

Abstract

We introduce a novel approach for parallelizing MCMC in-
ference in models with spatially determined conditional in-
dependence relationships, for which existing techniques ex-
ploiting graphical model structure are not applicable. Our ap-
proach is motivated by a model of seismic events and signals,
where events detected in distant regions are approximately
independent given those in intermediate regions. We perform
parallel inference by coloring a factor graph defined over re-
gions of latent space, rather than individual model variables.
Evaluating on a model of seismic event detection, we achieve
significant speedups over serial MCMC with no degradation
in inference quality.

1 Introduction

Probabilistic modeling is becoming an increasingly impor-
tant framework for designing machine learning algorithms.
However, scaling inference to large datasets is still a ma-
jor challenge. Methods such as Markov chain Monte Carlo
(MCMC) can require many steps to mix, especially for com-
plex models on large datasets of practical interest. A natural
solution is to exploit additional computational resources via
parallel inference, but existing methods for parallel MCMC
often depend on graphical model structure that may not be
present in all problems.

This paper proposes a new approach for parallel infer-
ence in models with conditional independence relationships
induced by spatial structure rather than a fixed graphical
model. Our approach is inspired by an application to seismic
event detection (Arora et al. 2010), and we use a toy model
of seismic events and signals as the running example to il-
lustrate the method. We partition a continuous latent space
into regions, inducing a conditional independence structure
on the sets of variables taking values in each region, rather
than individual variables themselves. Motivated by Chro-
matic Gibbs Sampling (Gonzalez et al. 2011), we color the
regions using an induced factor graph, and run inference
in parallel within all regions of a given color. The spatial
partitioning naturally allows for data subsampling, since the
Markov blanket (Pearl 1988) of each region involves only
a local subset of observed data. We further improve mixing
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by applying dynamic partitioning to avoid boundary effects
between spatial regions. Although this paper focuses on an
application to seismic event detection, the technique is appli-
cable more generally to any model in which objects or latent
structures are inferred from ”local” surroundings in a large
space. This potentially includes, among others, large-scale
visual recognition, object detection from aerial or satellite
imagery, radar tracking, modeling long time series such as
speech or video, and simultaneous localization and mapping
(SLAM).

We briefly review MCMC inference and graph coloring-
based parallelization in the next section, before introduc-
ing the toy model of seismic events and illustrating our ap-
proach for parallel inference by spatial partitioning. Evalu-
ating our approach with a comparison to serial MCMC, and
to a naı̈ve partitioning that does not preserve the correct sta-
tionary distribution, we observe significant speedups from
parallelism without compromising the quality of the result-
ing inferences, as measured by precision, recall, and mean
error in the location of recovered events.

2 Background

MCMC techniques are often applied to solve integration
and optimisation problems in large dimensional spaces, in-
cluding inference in probabilistic models. Most practically
applied MCMC chains are constructed using the frame-
work of the Metropolis-Hastings (MH) algorithm. An MH
step of invariant distribution π(x) and proposal distribu-
tion q(x∗|x) involves sampling a candidate value x∗ given
the current value x according to q(x∗|x). The Markov
chain then moves towards x∗ with acceptance probability
A(x, x∗) = min{1, π(x∗)q(x|x∗)

π(x)q(x∗|x) }, and otherwise remains at
x (Andrieu et al. 2003). If the proposal distribution is sym-
metric, q(x∗|x) = q(x|x∗), the acceptance probability re-
duces to α(x∗|x) = min{1, π(x∗)

π(x) }.
Gibbs sampling is the special case of Metropolis Hasting

where the proposal distributions are the posterior condition-
als. The acceptance probability of a Gibbs move is always 1
and thus all proposals are accepted.

Many methods have been proposed to parallelize MCMC
inference. We build on the work of Gonzalez et al., which
considers a Markov random field (MRF) with a k-coloring
such that each vertex is assigned one of k colors and adjacent
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vertices have different colors. Let ki denote the variables in
color i. Then the Chromatic sampler simultaneously draws
new values for all variables in ki before proceeding to ki+1.
The k-coloring of the graph ensures that all variables within
a color are conditionally independent given the variables in
the remaining colors and can therefore be sampled indepen-
dently in parallel.

Algorithm 1 Chromatic Gibbs Sampler

1: Input: k-color MRF
2: for each of k colors ki: i ∈ 1 . . . k do
3: for all Xi ∈ ki in the ith color do in parallel
4: Execute Gibbs Update
5: X

(t+1)
j ∼ π(Xj |X(t+1)

Nj∈k<i, X
(t)
Nj∈k>i)

However, the Chromatic Gibbs sampler depends on a
fixed factor graph structure and cannot exploit additional in-
dependences implied by spatial relationships between vari-
ables.

3 Generative Model of Seismic Signals

We motivate our proposed inference approach in a toy model
of seismic event detection, which we use as a running exam-
ple. Our model describes an unknown number of seismic
events in a world with one spatial dimension, so that each
event i is described by a tuple ei = (xi, ti) giving its scalar
location and time, as well as additional latent variables in-
cluding the arrival times of event signals at each of four sta-
tions. The signal observed at each station includes contribu-
tions from events as well as a background noise process. The
inference problem is to recover the number of events, and
their space-time positions, given noisy observed signals.

Event prior The number of events are generated from a
Poisson prior P (|e|) = (λ·T )|e| exp(−λ·T )

|e|! , where λ is the
event generation rate, T is the time span under considera-
tion, e is the set of events, |e| is the size of the set (number
of events). The location of the event is uniformly distributed
up to a maximum xmax. The time of the event is uniformly
distributed between 0 and T .

Event Detections The arrival time aij of event i at station
j is assigned by a Gaussian distribution with mean equal to

ti +
|xi−xsj

|
v where xsj is the station location and v is the

velocity of the seismic wave (v = 2 in our experiments):

P (aij |xi, ti) = N
(
ti +

|xi−xsj
|

v , σ2
)

The max travel time τmax = xmax/v is defined as the
time a seismic wave takes to travel from one end of the space
to the other.

The signal generated by event i at station sj lasts for a
fixed duration ts, covering the period [aij , aij + ts], and is
sampled to be iid Gaussian, with larger variance than the
background noise process.

Observed Signals The signal observed at each station is
the sum of signals from arriving events, added together at
the appropriate time offsets along with iid Gaussian back-
ground noise. Since each event signal is Gaussian, as is the

background noise, the observed signal is itself Gaussian con-
ditioned on the arrival times a.

Figure 1: Example of two events located in space-time.
Event e1 can be described by t1 = 169, x1 = 87. Events
e2 can be described by t2 = 99, x2 = 56. Locations of de-
tecting stations are shown by vertical lines, x = 0, 33, 66,
and 100.

Figure 2: Signals (blue) generated by events in Figure 1,
with arrival times dependent on the event–station distance.
Red indicates the marginal standard deviation.

The overall probability of any set of events e and signals
s can be written as

P (e, a, s) = P (e)

⎛
⎝

|s|∏
j

⎛
⎝

|e|∏
i

P (aij |ei)
⎞
⎠P (sj |a, e)

⎞
⎠

P (e) = P (|e|)
|e|∏
i=1

P (xi)P (ti)

where the signal model P (sj |e, a) is a zero-mean, diago-
nal Gaussian density with variance at each timestep given by
the sum of variances from the noise process and any arriv-
ing signals. Figures 1 and 2 show a sample from this model,
including space-time locations of two events and the signals
they generate.

We use Metropolis Hastings to infer the posterior on
events given observed signals. A serial inference algorithm
for this model involves several types of MH proposals:

506



Birth and Death Moves: We propose birthing a new
event from a uniform distribution, or killing an existing
event.

Event Location Move: We propose moving a random
event by a Gaussian offset in space and time.

Arrival Time Move: We propose changing the arrival
time of a random event at a random station by a Gaussian
offset.

Joint Events Move: The locations of nearby events are
coupled by the observed signals, potentially including multi-
ple joint modes from aliasing effects. We analyze the station
geometry to jointly propose moving a pair of random events
to another high probability mode .

4 Parallel Metropolis-Hastings Inference

Algorithm 2 Serial Metropolis Hastings

1: Input: world x
2: for j in range(k) steps do
3: pick a type of move, make proposal xcand

4: accept move with probability:
α(xcand|x(j−1)) =

min{1, q(x(j−1)|xcand)π(xcand)
q(xcand|x(j−1))π(x(j−1))

}
5: if accepted then

6: x(j) = xcand

7: else
8: x(j) = x(j−1)

Running inference on real seismic event signals serially
can take a long time. In a more complicated model with
real event signals from hundreds of stations all over the
space, the inference process on a 24-hour period signals
from roughly 100 stations will take weeks or even a month.

However, this model contains conditional independences
that we can exploit for parallel inference. To a first approx-
imation, the set of events occurring during a given time pe-
riod [t1, t2] can be inferred using only the signals from that
time period. In fact it is also necessary to consider signals up
to the maximum travel time τmax following the time period
in question, since an event at time t may not be detected un-
til t+ τmax. Since these additional signals may also include
arrivals from events in the following period [t, t + τmax],
the posterior on events is coupled by the observed signals
and does not decompose cleanly over adjacent time periods.
However, the events in a given time period are independent
of others conditioned on those occurring within the max-
imum travel time, i.e., conditioned on those events whose
signals could directly “explain away” arrivals from the time
period of interest.

Note that this independence is induced by the locations
(xi, ti) of the inferred events, and is not present a priori in
the factorization of the our model. Concretely, each timestep
of signal depends a priori on every inferred event ei, and in
fact the exchangeability of events in our model introduces a
labeling symmetry, so that the event variables ei are strongly
coupled by the observed signals. Therefore methods such as

r0 r1 r2 r3

s0 s1 s2 s3 . . .

Figure 3: Factor graph when l ≥ τmax, Bi-color

Chromatic Gibbs (Gonzalez et al. 2011) that exploit graphi-
cal model structure are not directly applicable.

Our contribution is to apply chromatic methods to an
induced factor graph constructed from a spatial partition.
We construct a factor graph by partitioning the continuous
space and design parallel Metropolis Hastings algorithms
that color these partitions and run inference on regions of
the same color in parallel.

Partitioning the World

We divide the latent event space into regions corresponding
to fixed time periods r0, r1, r2 . . . . The region rn describes
a two dimensional space, with x ranging from 0 to xmax,
t ranging from nl to (n + 1)l where l is the length of the
region. We will also overload notation to let rn refer to the
set of events occurring in that region.

We considered partitioning by both space and time, in-
stead of time alone; however, for this simple model there
is no clear gain because the conditional independence is in-
duced by the maximum travel time. A spatial partition would
be natural if our model included attenuation, so that events
are only detected by stations up to some maximum distance.
In general it might be advantageous to consider more com-
plex partitions across multiple latent dimensions, depending
on the conditional independence structure of the model.

We also divide observed signals into time periods, writ-
ten as s1, s2 . . . . The set of signals sn describes signals col-
lected by stations from t = nl to (n+ 1)l.

When l ≥ τmax, the Bayesian network of signals, regions
is shown in the Figure 3.

Using the property of Markov blanket (Pearl 1988), rn+2

are independent from rn when conditioned on the Markov
blanket of rn, which contains rn+1 and sn, sn+1. Thus, we
can bi-color the graph by assigning every two regions to the
same color. With this coloring, regions of one color are mu-
tually independent when conditioning on regions of other
colors and the set of signals.

We could also decrease the region size to 1
2τmax ≤ l <

τmax and three-color the regions, but a two-coloring will al-
ways allow the most parallelism.

Naive Parallel Metropolis Hastings

As a simple baseline, we consider the Naive Parallel algo-
rithm, which simply performs inference on all time periods
in parallel, so that each block of signals sn is explained by
events rn and also, independently, by events rn−1 occurring
during the previous time period. As seen in Figure 4, this
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r0 r1 r2

s0 s1 s1 s2 s2 . . .

Figure 4: Factor graph of Naive Parallel Metropolis-
Hastings

Algorithm 3 Naive Parallel Metropolis Hastings

1: Input: static world that are divided into regions of length
τmax, each region is written as xm

2: for all regions m do in parallel
3: for j in range(k) steps do
4: pick a move randomly, make proposal xcand

m
5: accept move with probability:

α(xcand
m |x(j−1)

m ) =

min{1, q(x(j−1)
m |xcand

m )π(xcand
m )

q(xcand
m |x(j−1)

m )π(x
(j−1)
m )

}
6: if accepted then

7: x
(j)
m = xcand

m
8: else
9: x

(j)
m = x

(j−1)
m

inference method breaks the factor graph and does not con-
verge to the correct overall stationary distribution.

For a world that has n regions, this approach can achieve
up to n times speed up. However, because it imposes ad-
ditional independence assumptions, it is likely to generate
multiple events to explain a true event, especially when the
true event is near the region boundary (See Figure 6). To fix
this problem, we design a Chromatic Metropolis Hastings
algorithm.

Chromatic Metropolis Hastings

In our implementation, we assign l (region length) to τmax

and bi-color the world. The factor graph of this setting is in
Figure 3. The actual coloring of this setting is in Figure 5.

Chromatic Metropolis Hastings with Static Coloring
The Chromatic Metropolis Hastings algorithm we designed
is based on a static two colored world, which means the
boundaries of each colored region and the order of region
colors stay the same throughout the inference process. The
method to color the world is as described above. Inference
alternates between the two colors, running a sequence of
MH updates on all red regions in parallel, then on all blue
regions given the red regions, and so on. For a world with
n regions, Chromatic Metropolis Hastings can get n

2 times
speed up ideally.

Actual Coloring l = τmax Local Maxima and Another
High Probability Mode

Figure 5

Algorithm 4 Chromatic Metropolis Hastings with
Static Coloring

1: Input: a two-colored world, initialize X(0) to be empty,
X(i) will store region events after the completion of ith

full round inference on blue or red regions. x(j) stores
temporary region events during a single round of infer-
ence.

2: while i < max iterations do
3: for A in {blue, red} do
4: for all regions m in color A do in parallel

5: x
(0)
m = X

(i−1)
m

6: for j in range(k) do
7: pick a move, make proposal xcand

m
8: accept move with probability:

α(xcand
m , X

(−1)
¬m |x(j−1)

m , X
(−1)
¬m ) =

min{1, q(x(j−1)
m ,X(−1)

¬m |xcand
m ,X(−1)

¬m )π(xcand
m ,X(−1)

¬m )

q(xcand
m ,X

(−1)
¬m |x(j−1)

m ,X
(−1)
¬m )π(x

(j−1)
m ,X

(−1)
¬m )

}
9: if accepted then

10: x
(j)
m = xcand

m
11: else
12: x

(j)
m = x

(j−1)
m

13: X
(i)
m = x

(k)
m

14: i = i+ 1

When doing inference using Chromatic Metropolis Hast-
ings, all regions that run in parallel are independent from
one another, conditioned on the contents of the remaining
regions. Because birth and death moves allow for events to
be removed from one region and reborn in another, in prin-
ciple, the joint chain is ergodic and has the correct station-
ary distribution. However, in practice the inability to move
events across region boundaries leads to difficulties in mix-
ing, especially for events whose posteriors straddle a bound-
ary. And we are likely to wrongly infer near-boundary events
to be in their neighbor regions. In addition, we cannot apply
joint moves to pairs of nearby events separated by region
boundaries, so they may get stuck in suboptimal modes. To
fix these problems, we slightly modify the above algorithm
and come up with the algorithm in the following section.
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Chromatic Metropolis Hastings with Dynamic Coloring
After completing a round of inference on all blue and red
regions, we select a random offset uniformly from [0, l] and
shift all region boundaries by this offset. We then run an-
other round of inference moves, and repeat the procedure
shifting the region boundaries after each epoch. This solves
two major problems we have in Chromatic Metropolis Hast-
ings with a static coloring—inferring near-boundary events
and applying joint moves to pairs of events separated by re-
gion boundaries.

In Figure 5, let A′, B′ be the current event hypothesis
and A,B the true events. With constant boundaries as in
the graph, events A′, B′ are in different regions and can-
not be jointly moved to the other high probability true state
A,B. However, with dynamic coloring, the region bound-
aries change based on the random offset. Whenever A′, B′
are in the same region, the joint move can move them to the
true state.

5 Experimental Results

We evaluate inference methods for our seismic model on
synthetic data generated by sampling from the model’s dis-
tribution over possible worlds. We compute the accuracy of
an inferred event hypothesis by comparing to the sampled
ground truth. A bipartite matching is built between inferred
and true events. We build the matching by looping through
all true events and finding the closest inferred event to it. We
add an edge between them if they are less than 12 units apart
in both time and distance. After an edge is added, the events
on both sides of the edge are removed from the matching
process, so that the degree of any event is at most 1. After
the matching is built, we report three key quantities: location
error (average distance between matched events), precision
(percentage of inferred events that are matched) and recall
(percentage of true events that are matched). It is desirable
to have a method with low error, high precision and high re-
call, which means the inference is more accurate in terms of
both location and number of events.

The setting of the world in our experiment is xmax =
100, T = 240. There are n = 4 regions in our experiment.
τmax < T

n , thus allows bi-coloring. For Chromatic meth-
ods, we run 500 steps before switching to the other color.
Naive parallel Metropolis Hastings algorithm can achieve a
maximum 4 times speed-up. Chromatic Metropolis Hastings
algorithm can achieve a maximum 2 times speed-up. The
high-level distributed computing is built on PySpark. All the
experiments are run on a quad-core computer.

Figure 7 shows location error, precision, recall, log proba-
bility versus time metrics for each algorithm. These metrics
are generated based on the average result from 5 random
worlds. From the metrics, we see that Chromatic Dynamic,
Chromatic Static and Serial are achieving similar overall fi-
nal performance but Serial converges slower than the other
two methods. Naive Parallel converges fastest but it has the
lowest precision and recall. The low error of Naive Parallel is
also an artifact of its low recall (generates more events than
actual). In the metrics, Chromatic Dynamic has a slightly
better precision and recall than Serial algorithm because of

Figure 6: Red stars in the left sub-figure are actual events.
The middle sub-figure shows 1000 samples of Naive Par-
allel Metropolis-Hastings. The right sub-figure shows 1000
samples of Chromatic Dynamic Metropolis-Hastings.

random variation. This motivates us to do confidence inter-
val analysis of the three methods on more random worlds.

Using 50 possible worlds sampled from the model, we run
each algorithm 5 times and measure the average precision,
recall and error of our inference via the assumed ground
truth. From metrics above, we can see that at 200 seconds,
all algorithms have safely converged. So in this experiment,
we run longer than 200 seconds for each algorithm to show
the final performance after convergence. After we get 50 sets
of results, we calculate the mean location error, mean preci-
sion and mean recall for each algorithm and generate error
bars around the mean using 95% bootstrap confidence inter-
vals (Efron and Tibshirani 1993). See Figure 8. From the bar
graph, we see that dynamic partitioning yields precision and
recall statistically indistinguishable from serial MCMC, and
significantly better than naı̈ve parallelization.

6 Related Work

When partitioning spatial models, the general idea is to
group varaiables in a way that limits dependencies cross
partitions. Previous approaches to exploiting model struc-
ture model to distribute learning (Kumar et al. 2014; Lee
et al. 2014) attempt to achieve data parallelism, model par-
allelism or both. However, this set of approaches is re-
stricted to models expressible in a matrix form. Some previ-
ous parallel MCMC algorithms have been designed for spe-
cific models, such as mixture models (Williamson, Dubey,
and Xing 2013) and topic models (Newman et al. 2009;
Smola and Narayanamurthy 2010). However, this set of al-
gorithms is not applicable to other graphic models, such as
the seismic model in our setting. Another parallel MCMC
algorithm (Neiswanger, Wang, and Xing 2013) is more gen-
eral, but it requires observation to be i.i.d. independent data
points. Since we exploit a different kind of structure – spa-
tial/temporal locality in the observations themselves, our ap-
proach could be complementary to (Neiswanger, Wang, and
Xing 2013) or parallel MCMC with other conditional inde-
pendence assumptions in observations.
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Location Error vs Time,
lower is better

Precision vs Time, higher is
better

Recall vs Time, higher is
better

Log Probability vs Time,
higher is better

Figure 7

(a) Location Error (b) Precision (c) Recall

Figure 8: Bootstrap Confidence Interval of Location Error, Precision and Recall

7 Conclusion and Future Work

We have introduced a novel approach for parallel MCMC
inference exploiting value-dependent conditional indepen-
dence induced by spatial structure rather than a fixed graph-
ical model. Evaluating on a simple model of seismic events
and signals, we find that the Chromatic Metropolis Hastings
using Dynamic Coloring can achieve n

k times speedup while
still maintaining a similar level of error, precision and recall
as Serial Metropolis Hastings, where n is the number of spa-
tial partitions and k the number of colors.

Future work involves extending this approach to
production-scale models such as that of Arora et al., and to
other applications involving spatial object detection and/or
localization. Also of interest would be methods for auto-
matically detecting spatial independence relationships of the
form we exploit, given formal descriptions of model struc-
ture, and selecting an appropriate partition of the latent space
to maximize inference efficiency.
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