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Abstract

Domain adaptation deals with adapting classifiers trained on
data from a source distribution, to work effectively on data
from a target distribution. In this paper, we introduce the Non-
linear Embedding Transform (NET) for unsupervised domain
adaptation. The NET reduces cross-domain disparity through
nonlinear domain alignment. It also embeds the domain-
aligned data such that similar data points are clustered to-
gether. This results in enhanced classification. To determine
the parameters in the NET model (and in other unsupervised
domain adaptation models), we introduce a validation proce-
dure by sampling source data points that are similar in dis-
tribution to the target data. We test the NET and the valida-
tion procedure using popular image datasets and compare the
classification results across competitive procedures for unsu-
pervised domain adaptation.

Introduction

There are large volumes of unlabeled data available online,
owing to the exponential increase in the number of im-
ages and videos uploaded online. It would be easy to ob-
tain labeled data if trained classifiers could predict the la-
bels for unlabeled data. However, classifier models do not
perform well when applied to unlabeled data from differ-
ent distributions, owing to domain-shift (Torralba and Efros
2011). Domain adaptation deals with adapting classifiers
trained on data from a source distribution, to work effec-
tively on data from a target distribution (Pan and Yang
2010). Some domain adaptation techniques assume the pres-
ence of a few labels for the target data, to assist in train-
ing a domain adaptive classifier (Aytar and Zisserman 2011;
Duan, Tsang, and Xu 2012; Hoffman et al. 2013). However,
real world applications need not support labeled data in the
target domain and adaptation here is termed as unsupervised
domain adaptation.

Many of the unsupervised domain adaptation techniques
can be organized into linear and nonlinear procedures,
based on how the data is handled by the domain adaptation
model. A linear domain adaptation model performs linear
transformations on the data to align the source and target
domains or, it trains an adaptive linear classifier for both
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Figure 1: (Best viewed in color) Two-moon binary classifi-
cation problem with source data in blue and target data in
red. We assume the target labels are unknown. (a) Original
data, (b) KPCA aligns the data along nonlinear directions of
maximum variance, (c) MMD aligns the two domains, (d)
MMD+Similarity-based Embedding aligns the domains and
clusters the data to ensure easy classification.

the domains; for example a linear SVM (Bruzzone and Mar-
concini 2010). Nonlinear techniques are deployed in situa-
tions where the source and target domains cannot be aligned
using linear transformations. These techniques apply non-
linear transformations on the source and target data in order
to align them. For example, Maximum Mean Discrepancy
(MMD) is applied to learn nonlinear representations, where
the difference between the source and target distributions is
minimized (Pan et al. 2011). Even though nonlinear trans-
formations may align the domains, the resulting data may
not be conducive to classification. If, after domain align-
ment, the data were to be clustered based on similarity, it
can lead to effective classification. We demonstrate this in-
tuition through a binary classification problem using a toy
dataset. Figure (1a), displays the source and target domains
of a two-moon dataset. Figure (1b), depicts the transformed
data after KPCA (nonlinear projection). In trying to project
the data onto a common ‘subspace’, the source data gets
dispersed. Figure (1c), presents the data after domain align-
ment using Maximum Mean Discrepancy (MMD). Although
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the domains are now aligned, it does not necessarily ensure
enhanced classification. Figure (1d), shows the data after
MMD and similarity-based embedding, where data is clus-
tered based on class label similarity. Cross-domain align-
ment along with similarity-based embedding, makes the data
classification friendly.

In this work, we the present the Nonlinear Embedding
Transform (NET) procedure for unsupervised domain adap-
tation. The NET performs a nonlinear transformation to
align the source and target domains and also cluster the
data based on label-similarity. The NET algorithm is a
spectral (eigen) technique that requires certain parameters
(like number of eigen bases, etc.) to be pre-determined.
These parameters are often given random values which
need not be optimal (Pan et al. 2011; Long et al. 2013;
2014). In this work, we also outline a validation procedure
to fine-tune model parameters with a validation set created
from the source data. In the following, we outline the two
main contributions in our work:
• Nonlinear embedding transform (NET) algorithm for un-

supervised domain adaptation.
• Validation procedure to estimate optimal parameters for

an unsupervised domain adaptation algorithm.
We evaluate the validation procedure and the NET algorithm
using 7 popular domain adaptation image datasets, including
object, face, facial expression and digit recognition datasets.
We conduct 50 different domain adaptation experiments to
compare the proposed techniques with existing competitive
procedures for unsupervised domain adaptation.

Related Work

For the purpose of this paper, we discuss the relevant litera-
ture under the categories linear domain adaptation methods
and nonlinear domain adaptation methods. A detailed sur-
vey on transfer learning procedures can be found in (Pan
and Yang 2010). A survey of domain adaptation techniques
for vision data is provided by (Patel et al. 2015).

The Domain Adaptive SVM (DASVM) (Bruzzone and
Marconcini 2010), is an unsupervised method that iteratively
adapts a linear SVM from the source to the target. In re-
cent years, the popular unsupervised linear domain adapta-
tion procedures are Subspace Alignment (SA) (Fernando et
al. 2013), and the Correlation Alignment (CA) (Sun, Feng,
and Saenko 2015). The SA algorithm determines a linear
transformation to project the source and target to a common
subspace, where the domain disparity is minimized. The CA
is an interesting technique which argues that aligning the
correlation matrices of the source and target data is suffi-
cient to reduce domain disparity. Both the SA and CA are
linear procedures, whereas the NET is a nonlinear method.

Although deep learning procedures are inherently highly
nonlinear, we limit the scope of our work to nonlinear trans-
formation of data that usually involves a positive semi-
definite kernel function. Such procedures are closely related
to the NET. However, in our experiments, we do study the
NET with deep features also. The Geodesic Flow Kernel
(GFK) (Gong et al. 2012), is a popular domain adaptation
method, where the subspace spanning the source data is

gradually transformed into the target subspace along a path
on the Grassmann manifold of subspaces. Spectral proce-
dures like the Transfer Component Analysis (TCA) (Pan et
al. 2011), the Joint Distribution Alignment (JDA) (Long et
al. 2013) and Transfer Joint Matching (TJM) (Long et al.
2014), are the most closely related techniques to the NET.
All of these procedures involve a solution to a general-
ized eigen-value problem in order to determine a projection
matrix to nonlinearly align the source and target data. In
these spectral methods, domain alignment is implemented
using variants of MMD, which was first introduced in the
TCA procedure. JDA introduces joint distribution alignment
which is an improvement over TCA that only incorporates
marginal distribution alignment. The TJM performs domain
alignment along with instance selection by sampling only
relevant source data points. In addition to domain alignment
with MMD, the NET algorithm implements similarity-based
embedding for enhanced classification. We also introduce a
validation procedure to estimate the model parameters for
unsupervised domain adaptation approaches.

Domain Adaptation With Nonlinear

Embedding

In this section, we first outline the NET algorithm for un-
supervised domain adaptation. We then describe a cross-
validation procedure that is used to estimate the model pa-
rameters for the NET algorithm.

We begin with the problem definition where we consider
two domains; source domain S and target domain T . Let
Ds = {(xs

i , y
s
i )}ns

i=1 ⊂ S be a subset of the source do-
main and Dt = {(xt

i, y
t
i)}nt

i=1 ⊂ T be the subset of the
target domain. Let XS = [xs

1, . . . ,x
s
ns
] ∈ R

d×ns and XT =
[xt

1, . . . ,x
t
nt
] ∈ R

d×nt be the source and target data points
respectively. Let YS = [ys1, . . . , y

s
ns
] and YT = [yt1, . . . , y

t
nt
]

be the source and target labels respectively. Here, xs
i and xt

i

∈ R
d are data points and ysi and yti ∈ {1, . . . , C} are the

associated labels. We define X := [x1, . . . ,xn] = [XS ,XT ],
where n = ns+nt. The problem of domain adaptation deals
with the situation where the joint distributions for the source
and target domains are different, i.e. PS(X,Y ) �= PT (X,Y ),
where X and Y denote random variables for data points and
labels respectively. In the case of unsupervised domain adap-
tation, the labels YT are unknown. The goal of unsupervised
domain adaptation is to estimate the labels of the target data
ŶT = [ŷt1, . . . , ŷ

t
nt
] corresponding to XT using Ds and XT .

Nonlinear Domain Alignment

A common procedure to align two datasets is to first project
them to a common subspace. Kernel-PCA (KPCA) es-
timates a nonlinear basis for such a projection. In this
case, data is internally mapped to a high-dimensional
(possibly infinite-dimensional) space defined by Φ(X) =
[φ(x1), . . . , φ(xn)]. φ : Rd → H is the mapping function and
H is a RKHS (Reproducing Kernel Hilbert Space). The dot
product between the mapped vectors φ(x) and φ(y), is es-
timated by a positive semi-definite (psd) kernel, k(x,y) =
φ(x)�φ(y). The dot product captures the similarity between
x and y. The kernel similarity (gram) matrix consisting of
similarities between all the data points in X, is given by,
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K = Φ(X)�Φ(X) ∈ R
n×n. The matrix K is used to deter-

mine the projection matrix A, by solving,

max
A�A=I

tr(A�KHK�A). (1)

Here, H is the n×n centering matrix given by H = I− 1
n
1,

where I is an identity matrix and 1 is a n × n matrix of
1s. A ∈ R

n×k, is the matrix of coefficients and the nonlin-
ear projected data is given by Z = [z1, . . . , zn] = A�K ∈
R

k×n. Along with projecting the source and target data to
a common subspace, the domain-disparity between the two
datasets must also be reduced. We employ the Maximum
Mean Discrepancy (MMD) (Gretton et al. 2009), which is
a standard nonparametric measure to estimate domain dis-
parity. We adopt the Joint Distribution Adaptation (JDA)
(Long et al. 2013), algorithm which seeks to align both the
the marginal and conditional probability distributions of the
projected data. The marginal distributions are aligned by es-
timating the coefficient matrix A, which minimizes:

min
A

∣∣∣∣

∣∣∣∣
1

ns

ns∑

i=1

A
�
ki −

1

nt

n∑

j=ns+1

A
�
kj

∣∣∣∣

∣∣∣∣
2

H
= tr(A

�
KM0K

�
A).

(2)

M0, is the MMD matrix which given by,

(M0)ij =

⎧⎪⎨
⎪⎩

1
nsns

, xi,xj ∈ Ds

1
ntnt

, xi,xj ∈ Dt

−1
nsnt

, otherwise,
(3)

Likewise, the conditional distribution difference can also be
minimized by introducing matrices Mc, with c = 1, . . . , C,
defined as,

(Mc)ij =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1

n
(c)
s n

(c)
s

, xi,xj ∈ D(c)
s

1

n
(c)
t n

(c)
t

, xi,xj ∈ D(c)
t

−1

n
(c)
s n

(c)
t

,

{
xi ∈ D(c)

s ,xj ∈ D(c)
t

xj ∈ D(c)
s ,xi ∈ D(c)

t

0, otherwise.

(4)

Here, Ds and Dt are the sets of source and target data points
respectively. D(c)

s is the subset of source data points with
class label c and n

(c)
s = |D(c)

s |. Similarly, D(c)
t is the subset

of target data points with class label c and n
(c)
t = |D(c)

t |.
Since the target labels being unknown, we use predicted tar-
get labels to determine D(c)

t . We initialize the target labels
using a classifier trained on the source data and refine the la-
bels over iterations. Combining both the marginal and con-
ditional distribution terms leads us to the JDA model, which
is given by,

min
A

C∑
c=0

tr(A�KMcK
�A). (5)

Similarity Based Embedding

In addition to domain alignment, the NET algorithm ensures
that the projected data Z, is classification friendly (easily
classifiable). To this end we introduce laplacian eigenmaps
in order to cluster datapoints based on class label similarity.

The (n × n) adjacency matrix W, captures the similarity
relationships between datapoints, where,

Wij :=

{
1 ysi = ys

j or i = j

0 ys
i �= ys

j or labels unknown.
(6)

To ensure that the projected data is clustered based on data
similarity, we minimize the sum of squared distances be-
tween data points weighted by the adjacency matrix. This
can be expressed as a minimization problem,

min
Z

1

2

∑
ij

∣∣∣∣
∣∣∣∣ zi√

di
− zj√

dj

∣∣∣∣
∣∣∣∣
2

Wij = min
A

tr(A�KLK�A).

(7)

Here, di =
∑

k Wik and dj =
∑

k Wjk. They form the
diagonal entries of D, the (n×n) diagonal matrix. ||zi/

√
di−

zj/
√

dj ||2, is the squared normalized distance between the
projected data points zi and zj , which get clustered together
when Wij = 1, (as they belong to the same category). The
normalized distance is a more robust clustering measure as
compared to the standard Euclidean distance ||zi − zj ||2,
(Chung 1997). Substituting Z = A�K, yields the trace term,
where L, denotes the symmetric positive semi-definite graph
laplacian matrix with L := I − D−1/2WD−1/2, and I is an
identity matrix.

Optimization Problem

To arrive at the optimization problem, we consider the non-
linear projection in Equation (1), the joint distribution align-
ment in Equation (5) and the similarity based embedding
in Equation (7). Maximizing Equation (1) and minimizing
Equations (5) and (7) can also be achieved by maintaining
Equation (1) constant and minimizing Equations (5) and (7).
Minimizing the similarity embedding in Equation (7) can re-
sult in the projected vectors being embedded in a low dimen-
sional subspace. In order to maintain the subspace dimen-
sionality, we introduce a new constraint in place of Equation
(1). The optimization problem for NET is obtained by min-
imizing Equations (5) and (7). The goal is to estimate the
(n×k) projection matrix, A. Along with regularization and
the dimensionality constraint, we get,

min
A�KDK�A=I

α.tr(A�K
C∑

c=0

McK
�A)

+ β.tr(A�KLK�A) + γ||A||2F . (8)

The first term controls the domain alignment and is
weighted by α. The second term ensures similarity based
embedding and is weighted by β. The third term is the regu-
larization (Frobenius norm) that ensures a smooth projection
matrix A and it is weighted by γ. The constraint on A (in
place of A�KHK�A = I), prevents the projection from
collapsing onto a subspace with dimensionality less than k,
(Belkin and Niyogi 2003). We solve Equation (8) by form-
ing the Lagrangian,

L(A,Λ) =α.tr
(
A�K

C∑
c=0

McK
�A

)
+ β.tr(A�KLK�A)

+ γ||A||2F + tr((I−A�KDK�A)Λ), (9)
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Algorithm 1 Nonlinear Embedding Transform
Require: X, YS , constants α, β, regularization γ and projection dimension k.
Ensure: Projection matrix A, projected data Z.
1: Compute kernel matrix K, for predefined kernel k(., .)
2: Define the adjacency matrix W (Eq. (6))
3: Compute D = diag(d1, . . . , dn), where di =

∑
j Wij

4: Compute normalized graph laplacian L = I − D−1/2WD−1/2

5: Solve Eq (10) and select k smallest eigen-vectors as columns of A
6: Estimate Z ← A�K

7: Train a classifier with modified data {[z1, . . . , zns ], YS}

where the Lagrangian constants are represented by the di-
agonal matrix Λ = diag(λ1, . . . , λk). Setting the derivative
∂L
∂A = 0, yields the generalized eigen-value problem,

(
αK

C∑
c=0

McK
� + βKLK� + γI

)
A = KDK�AΛ. (10)

The solution A in (8) are the k-smallest eigen-vectors of
Equation (10). The projected data points are then given by
Z = A�K. The NET algorithm is outlined in Algorithm 1.

Model Selection

In unsupervised domain adaptation the target labels are
treated as unknown. Current domain adaptation methods
that need to validate the optimum parameters for their mod-
els, inherently assume the availability of target labels (Long
et al. 2013), (Long et al. 2014). However, in the case of real
world applications, when target labels are not available, it is
difficult to verify if the model parameters are optimal. In the
case of the NET model, we have 4 parameters (α, β, γ, k),
that we want to pre-determine. We introduce a technique us-
ing Kernel Mean Matching (KMM) to sample the source
data to create a validation set. KMM has been used to weight
source data points in order to reduce the distribution dif-
ference between the source and target data (Fernando et al.
2013), (Gong, Grauman, and Sha 2013). Source data points
with large weights have a similar marginal distribution to the
target data. These data points are chosen to form the valida-
tion set. The KMM estimates the weights wi, i = 1, . . . , ns,
by minimizing

∣∣∣∣ 1
ns

∑ns
i=1 wiφ(x

s
i ) − 1

nt

∑nt
j=1 φ(x

t
j)
∣∣∣∣2

H. In
order to simplify, we define κi := ns

nt

∑nt

j=1 k(x
s
i ,x

t
j),

i = 1, . . . , ns and KSij = k(xs
i ,x

s
j). The minimization is

then represented as a quadratic programming problem,

min
w

=
1

2
w�KSw − κ�w,

s.t. wi ∈ [0, B],

∣∣∣∣
ns∑
i=1

wi − ns

∣∣∣∣ ≤ nsε. (11)

The first constraint limits the scope of discrepancy between
source and target distributions, with B → 1, leading to
an unweighted solution. The second constraint ensures the
measure w(x)PS(x), is a probability distribution (Gretton
et al. 2009). In our experiments, we select 10% of the source
data with the largest weights to create the validation set. We
fine tune the values of (α, β, γ, k), using the validation set.
For fixed values of (α, β, γ, k), the NET model is trained
using the source data (without the validation set) and target
data. The model is tested on the validation set to estimate
parameters yielding highest classification accuracies.

Experiments

In this section, we evaluate the NET algorithm and the model
selection proposition across multiple image classification
datasets and several existing procedures for unsupervised
domain adaptation.

Datasets

We conduct our experiments across 7 different datasets.
Their characteristics are outlined in Table (1).
MNIST-USPS datasets: These are popular handwritten
digit recognition datasets. Here, the digit images are sub-
sampled to 16× 16 pixels. Based on (Long et al. 2014), we
consider two domains MNIST (2,000 images from MNIST)
and USPS (1,800 images from USPS).
CKPlus-MMI datasets: The CKPlus (Lucey et al. 2010),
and MMI (Pantic et al. 2005) are popular Facial Expres-
sion recognition datasets. They contain videos of facial ex-
pressions. We choose 6 categories of facial expression, viz.,
anger, disgust, fear, happy, sad, surprise. We create two do-
mains, CKPlus and MMI, by selecting video frames with
the most intense expressions. We use a pre-trained deep con-
volutional neural network (CNN), to extract features from
these images. In our experiments, we use the VGG-F model
(Chatfield et al. 2014), trained on the popular ImageNet ob-
ject recognition dataset. The VGG-F network is similar in
architecture to the popular AlexNet (Krizhevsky, Sutskever,
and Hinton 2012). We extract the 4096-dimensional features
that are fed into the fully-connected fc8 layer. We apply
PCA on the combined source and target data to reduce the
dimension to 500 and use these features across all the exper-
iments.
COIL20 dataset: It is an object recognition dataset consist-
ing of 20 categories with two domains, COIL1 and COIL2.
The domains consist of images of objects captured from
views that are 5 degrees apart. The images are 32×32 pixels
with gray scale values (Long et al. 2013).
PIE dataset: The “Pose, Illumination and Expression” (PIE)
dataset consists of face images ( 32 × 32 pixels) of 68 in-
dividuals. The images were captured with different head-
pose, illumination and expression. Similar to (Long et al.
2013), we select 5 subsets with differing head-pose to create
5 domains, namely, P05 (C05, left pose), P07 (C07, upward
pose), P09 (C09, downward pose), P27 (C27, frontal pose)
and P29 (C29, right pose).
Office-Caltech dataset: This is currently the most pop-
ular benchmark dataset for object recognition in the do-
main adaptation computer vision community. The dataset
consists of images of everyday objects. It consists of 4
domains; Amazon, Dslr and Webcam from the Office
dataset and Caltech domain from the Caltech-256 dataset.
The Amazon domain has images downloaded from the
www.amazon.com website. The Dslr and Webcam do-
mains have images captured using a DSLR camera and a we-
bcam respectively. The Caltech domain is a subset of the
Caltech-256 dataset that was created by selecting categories
common with the Office dataset. The Office-Caltech dataset
has 10 categories of objects and a total of 2533 images (data
points). We experiment with two kinds of features for the
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Office-Caltech dataset; (i) 800-dimensional SURF features
(Gong et al. 2012), (ii) Deep features. The deep features are
extracted using a pre-trained network similar to the CKPlus-
MMI datasets.

Table 1: Statistics for the benchmark datasets

Dataset Type #Samples #Features #Classes Subsets

MNIST Digit 2,000 256 10 MNIST
USPS Digit 1,800 256 10 USPS

CKPlus Face Exp. 1,496 4096 6 CKPlus
MMI Face Exp. 1,565 4096 6 MMI

COIL20 Object 1,440 1,024 20 COIL1, COIL2
PIE Face 11,554 1,024 68 P05, ..., P29

Ofc-Cal SURF Object 2,533 800 10 A, C, W, D
Ofc-Cal Deep Object 2,505 4096 10 A, C, W, D

Existing Baselines

We compare the NET algorithm with the following base-
line and state-of-the-art methods. Like NET, the TCA, TJM

Table 2: Baseline methods that are compared with the NET.

Method Reference

SA Subspace Alignment (Fernando et al. 2013)
CA Correlation Alignment (Sun, Feng, and Saenko 2015)

GFK Geodesic Flow Kernel (Gong et al. 2012)
TCA Transfer Component Analysis (Pan et al. 2011)
TJM Transfer Joint Matching (Long et al. 2014)
JDA Joint Distribution Adaptation (Long et al. 2013)

and JDA are all spectral methods. While all the four algo-
rithms use MMD to align the source and target datasets, the
NET, in addition, uses nonlinear embedding for classifica-
tion enhancement. TCA, TJM and JDA, solve for A in a
setting similar to Equation (10). However, unlike NET, they
do not have the similarity based embedding term and α = 1,
is fixed in all the three algorithms. Therefore, these mod-
els have only 2 free parameters (γ and k), that need to be
pre-determined in contrast to NET, which has 4 parameters,
(α, β, γ, k). Since TCA, TJM and JDA, are all quite simi-
lar to each other, for the sake of brevity, we evaluate model
selection (estimating optimal model parameters) using only
JDA and NET. The SA, CA and GFK algorithms, do not
have any critical free model parameters that need to be pre-
determined.

In our experiments, NETv is a special case of the NET,
where model parameters (α, β, γ, k), have been determined
using a validation set derived from Equation (11). Similarly,
JDAv is a special case of JDA, where (γ, k), have been de-
termined using a validation set derived from Equation (11).
In order to ascertain the optimal nature of the parameters de-
termined with a source-based validation set, we estimate the
best model parameters using the target data (with labels) as
a validation set. These results are represented by NET in the
figures and tables. The results for the rest of the algorithms
(SA, CA, GFK, TCA, TJM and JDA), are obtained with the
parameter settings described in their respective works.

Table 3: Recognition accuracies (%) for domain adaptation
experiments on the digit and face datasets. {MNIST(M),
USPS(U), CKPlus(CK), MMI(MM), COIL1(C1) and
COIL2(C2). M→U implies M is source domain and U is tar-
get domain. The best and second best results in every exper-
iment (row) are in bold and italic respectively. The shaded
columns indicate accuracies obtained with model selection.

Expt. SA CA GFK TCA TJM JDA JDAv NET NETv

M→U 67.39 59.33 66.06 60.17 64.94 67.28 71.94 75.39 72.72
U→M 51.85 50.80 47.40 39.85 52.80 59.65 59.65 62.60 61.35

C1→C2 85.97 84.72 85.00 90.14 91.67 92.64 95.28 93.89 90.42
C2→C1 84.17 82.78 84.72 88.33 89.86 93.75 93.89 92.64 88.61

CK→MM 31.12 31.89 28.75 32.72 30.35 29.78 25.82 29.97 30.54
MM→CK 39.75 37.74 37.94 31.33 40.62 28.39 26.79 45.83 40.08
P05→P07 26.64 40.33 26.21 40.76 10.80 58.81 77.53 77.84 69.00
P05→P09 27.39 41.97 27.27 41.79 7.29 54.23 66.42 70.96 57.41
P05→P27 30.28 55.36 31.15 59.60 15.14 84.50 90.78 91.86 84.68
P05→P29 19.24 29.04 17.59 29.29 4.72 49.75 52.70 52.08 45.40
P07→P05 25.42 41.51 25.27 41.78 16.63 57.62 74.70 74.55 57.92
P07→P09 47.24 53.43 47.37 51.47 21.69 62.93 79.66 77.08 54.60
P07→P27 53.47 63.77 54.22 64.73 26.04 75.82 81.14 83.84 86.09

P07→P29 26.84 35.72 27.02 33.70 10.36 39.89 63.73 69.24 47.30
P09→P05 23.26 35.47 21.88 34.69 14.98 50.96 77.16 73.98 68.67
P09→P07 41.87 47.08 43.09 47.70 27.26 57.95 78.39 79.01 67.34
P09→P27 44.97 53.71 46.38 56.23 27.55 68.45 84.92 83.48 87.47

P09→P29 28.13 34.68 26.84 33.09 8.15 39.95 65.93 70.04 67.65
P27→P05 35.62 51.17 34.27 55.61 25.96 80.58 92.83 93.07 92.44
P27→P07 63.66 66.05 62.92 67.83 28.73 82.63 90.18 89.99 93.68

P27→P09 72.24 73.96 73.35 75.86 38.36 87.25 90.14 89.71 90.20

P27→P29 36.03 40.50 37.38 40.26 7.97 54.66 72.18 76.84 79.53

P29→P05 23.05 26.89 20.35 27.01 9.54 46.46 60.20 67.32 52.67
P29→P07 26.03 31.74 24.62 29.90 8.41 42.05 71.39 70.23 57.52
P29→P09 27.76 31.92 28.49 29.90 6.68 53.31 74.02 74.63 62.81
P29→P27 30.31 34.70 31.27 33.67 10.06 57.01 76.66 75.43 80.98

Average 41.14 47.55 40.65 47.59 26.79 60.63 72.85 74.67 68.73

Experimental Details

For fair comparison with existing methods, we follow the
same experimental protocol as in (Gong et al. 2012; Long
et al. 2014). We conduct 50 different domain adaptation ex-
periments with the previously mentioned datasets. Each of
these is an unsupervised domain adaptation experiment with
one source domain (data points and labels) and one target
domain (data points only). When estimating Mc, we choose
10 iterations to converge to the predicted test/validation la-
bels. Wherever necessary, we use a Gaussian kernel for
k(., .), with a standard width equal to the median of the
squared distances over the dataset. We train a 1-Nearest
Neighbor (NN) classifier using the projected source data
and test on the projected target data for all the experi-
ments. We choose a NN classifier as in (Gong et al. 2012;
Long et al. 2014), since it does not require tuning of cross-
validation parameters. The accuracies reflect the percentage
of correctly classified target data points.

Parameter Estimation Study

Here we evaluate our model selection procedure. The NET
algorithm has 4 parameters (α, β, γ, k), and the JDA has 2
parameters (γ, k), that need to be pre-determined. To deter-
mine these parameters, we weight the source data points us-
ing Equation (11) and select 10% of the source data points
with the largest weights. These source data points have a
distribution similar to the target and they are used as a vali-
dation set to determine the optimal values for the model pa-
rameters (α, β, γ, k). The parameter space consists of k ∈
{10, 20, . . . , 100, 200} and α, β, γ from the set {0, 0.0001,
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Table 4: Recognition accuracies (%) for domain adaptation experiments on the Office-Caltech dataset with SURF and Deep
features. {Amazon(A), Webcam(W), Dslr(D), Caltech(C)}. A→W implies A is source and W is target. The best and
second best results in every experiment (row) are in bold and italic respectively. The shaded columns indicate accuracies
obtained with model selection.

Expt.
SURF Features Deep Features

SA CA GFK TCA TJM JDA JDAv NET NETv SA CA GFK TCA TJM JDA JDAv NET NETv

C→A 43.11 36.33 45.72 44.47 46.76 44.78 45.41 46.45 46.24 88.82 91.12 90.60 89.13 91.01 90.07 89.34 92.48 90.70
D→A 29.65 28.39 26.10 31.63 32.78 33.09 29.85 39.67 35.60 84.33 86.63 88.40 88.19 88.72 91.22 90.18 91.54 91.43
W→A 32.36 31.42 27.77 29.44 29.96 32.78 29.33 41.65 39.46 84.01 82.76 88.61 86.21 88.09 91.43 87.04 92.58 91.95
A→C 38.56 33.84 39.27 39.89 39.45 39.36 39.27 43.54 43.10 80.55 82.47 81.01 75.53 78.08 83.01 78.27 83.01 82.28
D→C 31.88 29.56 30.45 30.99 31.43 31.52 31.08 35.71 34.11 76.26 75.98 78.63 74.43 76.07 80.09 78.17 82.10 83.38

W→C 29.92 28.76 28.41 32.15 30.19 31.17 31.43 35.89 32.77 78.90 74.98 76.80 76.71 79.18 82.74 78.90 82.56 82.28
A→D 37.58 36.94 34.40 33.76 45.22 39.49 31.85 40.76 36.31 82.17 87.90 82.80 82.17 87.26 89.81 77.07 91.08 80.89
C→D 43.95 38.22 43.31 36.94 44.59 45.22 40.13 45.86 36.31 80.89 82.80 77.07 75.80 82.80 89.17 80.25 92.36 90.45
W→D 90.45 85.35 82.17 85.35 89.17 89.17 88.53 89.81 91.72 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.36 100.00

A→W 37.29 31.19 41.70 33.90 42.03 37.97 38.98 44.41 35.25 82.37 80.34 84.41 76.61 87.12 87.12 79.32 90.85 87.46
C→W 36.27 29.49 35.59 32.88 38.98 41.69 37.97 44.41 33.56 77.29 79.32 78.64 78.31 88.48 85.76 77.97 90.85 84.07
D→W 87.80 83.39 79.66 85.42 85.42 89.49 86.78 87.80 90.51 98.98 99.32 98.31 97.97 98.31 98.98 98.98 99.66 99.66

Average 44.90 41.07 42.88 43.07 46.33 46.31 44.22 49.66 46.24 84.55 85.30 85.44 83.42 87.09 89.12 84.63 90.70 88.71

(a) # bases k (b) MMD weight α (c) Embed weight β (d) Regularization γ

Figure 2: NET Validation Study. Each figure depicts the accuracies over the source-based validation set. When studying a
parameter (say k), the remaining parameters (α, β, γ) are fixed at the optimum value. The legend is, Digit (Di), Coil (Cl),
MMI&CK+ Face (Fc), PIE (Pi), Office-Caltech SURF (O-S) and Office-Caltech Deep (O-D).

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10}. For the
sake of brevity, we present one set of parameters for every
dataset, although in practice, a unique set of parameters can
be evaluated for every domain adaptation experiment. Given
a set of model parameters, we conduct the domain adapta-
tion experiment using the entire source data (data and labels)
and the target data (data only). The accuracies obtained are
represented as shaded columns JDAv and NETv in Tables
(3) and (4).

In order to evaluate the validity of our proposed model se-
lection method, we also determine the parameters using the
target data as a validation set. These results are represented
by the NET column in Tables (3) and (4). Since the NET
column values have been determined using the target data,
they can be considered as the best accuracies for the NET
model. The rest of the column values SA, CA, GFK, TCA,
TJM and JDA, were estimated with model parameters sug-
gested in their respective papers. The recognition accuracies
for NETv is greater than that of the other domain adaptation
methods and is nearly comparable to the NET. In Table (3),
the JDAv has better performance than the JDA. This goes
to show that a proper validation procedure does help select
the best set of model parameters. It demonstrates that the
proposed model selection procedure is a valid technique for
evaluating an unsupervised domain adaptation algorithm in

(a) # bases k (b) Regularization γ

Figure 3: JDA Validation Study. Each figure depicts the ac-
curacies over the source-based validation set. When study-
ing a parameter (say k), the remaining parameter γ is fixed
at the optimum value. The legend is, Digit (Di), Coil (Cl),
MMI&CK+ Face (Fc), PIE (Pi), Office-Caltech SURF (O-
S) and Office-Caltech Deep (O-D).

the absence of target data labels. Figures (2) and (3), de-
pict the variation of average validation set accuracies over
the model parameters. Based on these curves, the optimal
parameters are chosen for each of the datasets.

779



NET Algorithm Evaluation

The NET algorithm has been compared to existing un-
supervised domain adaptation procedures across multiple
datasets. The results of the NET algorithm are depicted un-
der the NET column in Tables (3) and (4). The parameters
used to obtain these results are depicted in Table (5). The ac-
curacies obtained with the NET algorithm are consistently
better than any of the other spectral methods (TCA, TJM
and JDA). NET also consistently performs better compared
to non-spectral methods like SA, CA and GFK.

Table 5: Parameters used for the NET model.

Dataset α β γ k

MNIST & USPS 1.0 0.01 1.0 20
MMI & CK+ 0.01 0.01 1.0 20

COIL 1.0 1.0 1.0 60
PIE 10.0 0.001 0.005 200

Ofc-SURF 1.0 1.0 1.0 20
Ofc-Deep 1.0 1.0 1.0 20

Discussion and Conclusions

The average accuracies obtained with JDA and NET using
the validation set are comparable to the best accuracies with
JDA and NET. This empirically validates the model selec-
tion proposition. However, there is no theoretical guarantee
that the parameters selected are the best. In the absence of
theoretical validation, further empirical analysis is advised
when using the proposed technique for model selection.

In this paper, we have proposed the Nonlinear Embed-
ding Transform algorithm and a model selection procedure
for unsupervised domain adaptation. The NET performs fa-
vorably compared to competitive visual domain adaptation
methods across multiple datasets.

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant No:1116360.
Any opinions, findings, and conclusions or recommenda-
tions expressed in this material are those of the authors and
do not necessarily reflect the views of the NSF.
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