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Abstract
Collaborative filtering (CF) with implicit feedback is a suc-
cessful method for recommending items to users, which does
not require a knowledge of the items or users. CF methods can
be mainly classified into two categories. One is point-wise
regression based and the other is pair-wise ranking based,
where the latter one only tries to find out the items that users
prefer while ignores the items that users dislike, and usually
gives out a better recommended item list. The performance of
CF-based methods degrades significantly when the feedback
information is sparse. To address the problem, many kinds
of auxiliary information have been utilized such as users’ re-
views on items, items’ content and description information,
price, brands. In this paper we utilize a weighted recursive
autoencoder (RAE) to extract useful features from several
heterogeneous auxiliary information and tightly couple the
weighted RAE with a pair-wise ranking based CF method.
Analysis of the hyperparameters illustrates that auxiliary in-
formation from different sources is indeed able to benefit our
model. Empirical experiments on six real world datasets show
that our method outperforms other state-of-the-art methods.

Introduction
Recommendation techniques have gained notice due to
nowadays information overload in online service (Sarwar et
al. 2001; Su and Khoshgoftaar 2009; Zhang et al. 2014). The
main goal of recommendation system (RS) is to find out the
items that users may be interested in from a large repository
of items. To provide personalized service, RS should utilize
users’ feedback which contains two kinds of information,
explicit feedback for example ratings on items or implicit
feedback such as browse history, clicks and time spent on
the websites. Because explicit feedback are always hard to
obtain, making recommendation based on implicit feedback
is a more valuable task.

Collaborative filtering (CF) based methods using implicit
feedback are widely applied in RS for their outstanding per-
formance and simple requirement for feedback. CF based
methods can be mainly classified into two categories, point-
wise regression algorithms like (Hu, Koren, and Volin-
sky 2008) and pair-wise ranking preference algorithms like
(Rendle et al. 2009) . The task of point-wise regression al-
gorithm is to evaluate the degree that a user likes an item.
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As a result, point-wise regression algorithm can not only tell
which items that users like, but also can predict the items
that users dislike, which has less value. Moreover, to predict
items that users dislike can constrain the whole model’s per-
formance on recommending suitable items for users. Pair-
wise ranking algorithm’s task is to evaluate which one a
user loves more between two items and ignores the degree of
love. This relaxes the assumption and pair-wise ranking al-
gorithms usually performs better than point-wise regression
algorithm.

When the sparsity of feedback becomes severe, perfor-
mance of CF methods drops rapidly. Recently, some works
have introduced different kinds of auxiliary information
about users and/or items, which is also called side in-
formation, into the CF framework to improve the perfor-
mance. The methods utilizing both feedback and content of
items/users are called hybrid methods. For the reason of pri-
vacy concern, users’ detailed profiles are hard to collect. So
in most cases, the applied side information is about items
such as items’ description text, price, brands or the visual
image of items. Most of previous works only utilize one kind
of the above side information. Further more, hybrid methods
can be divided into two sub-classes: loosely coupled meth-
ods like (Sevil et al. 2010) and tightly coupled methods like
(Wang and Blei 2011). loosely coupled methods process side
information once for extracting suitable features. The CF al-
gorithm will not guide the extraction of features, and it is a
manual and tedious work to choose out the right features. On
the contrary, tightly coupled methods allow CF algorithm to
guide the extraction of features, and also take advantage of
the features during the CF process.

In this paper, we propose a novel tightly coupled CF based
hybrid model: collaborative deep learning with heterologous
side information for ranking (CDHR) which incorporates
one of the powerful deep learning models, recursive autoen-
coder (RAE), with CF based pair-wise ranking algorithm
to utilize several kinds of heterologous side information at
the mean time to improve the performance of recommenda-
tion. Because different side information may have different
forms, have different characteristics and show items’ differ-
ent aspects, it is intuitive to use RAE to extract features from
them. We will explain the reason in following sections. The
main contributions of this paper are listed below:

• By utilizing a specific recursive autoencoder (RAE), we
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extract useful features from the following four kinds of
side information: items’ description texts, users’ review
texts on items, items’ price and items’ brand.

• To guide the extraction of features for recommendation.
We tightly couple the RAE with the BPR (Rendle et al.
2009) and design a sampling based learning process.

• In order to balance the importance of the heterogeneous
side information and achieve a better performance for
recommendation, we improve the RAE by introducing a
weight matrix.

• To prove the value of side information for recommenda-
tion, we analyze the effect of the weight matrix which
controls the importance of the different kinds of side in-
formation.

Related Work
In this section, we review some works that are closely re-
lated to our work, including point-wise regression and pair-
wise ranking CF based methods without using side informa-
tion, point-wise regression methods using side information
and pair-wise ranking based methods only using homolo-
gous side information.

One of the most widely used and successful approaches
in traditional recommender systems is collaborative filter-
ing. Due to the effectiveness and efficiency in dealing with
very large user-item rating matrices, the low-rank matrix
factorization (MF) models (Hu, Koren, and Volinsky 2008;
Hofmann 2003) receive a great attention. MF framed mod-
els’ goal is to predict users’ ratings on items, which is called
point-wise.

Different from point-wise methods, Bayesian Personal-
ized Ranking (BPR) proposed in (Rendle et al. 2009) is
one of the most successful CF based pair-wise ranking algo-
rithms. BPR assumes that users prefer observed items than
unobserved items and demonstrates that the optimization ob-
jective of BPR based methods is to lower the Area Under
ROC Curve (AUC), which is more reasonable than the Root
Mean Square Error (RMSE) in evaluating the quality of rec-
ommended items list.

All CF based recommendation methods will encounter the
sparsity problem when the sparsity of feedback is severe.
Researchers propose many context-aware methods (Chen et
al. 2014; Van den Oord, Dieleman, and Schrauwen 2013;
Wang and Blei 2011) which explore information about items
to address the problem.

With the development of deep learning, many neural net-
work models show the great power in processing nature lan-
guage and image, such as the stacked denoising autoencoder
(SDAE) (Vincent et al. 2008) and recursive autoencoder
(RAE) (Socher et al. 2011a). As a result, it is reasonable
to apply neural networks into context-aware recommender
system to take advantage of the side information. For ex-
ample, VBPR (He and McAuley 2016) incorporates CNN
with MF for recommending, and CDL (Wang, Wang, and
Yeung 2015; Ying et al. 2016) use SDAE to extract features
from text for recommending. Moreover, CDR (Ying et al.
2016) combines BPR with SDAE and achieves a better re-
sult. However, prior hybrid methods always consider only

one kind of homologous side information. In this paper, by
utilizing recursive denoising autoencoder, we introduce sev-
eral heterogeneous side information to help improve the per-
formance.

CDHR Model
In this section, we elucidate our CDHR model. We first state
the recursive autoencoder applied in our model, then present
our CDHR model, which combines BPR with weighted
RAE. Finally, we derive a sampling based learning process
to obtain the approximate optimal solution of the model.

Preliminaries
We have the implicit feedback user-item purchase matrix R
of size m× n, where m is the number of users, and n is the
number of items. U = {u1, u2, . . . , um} is the set of users
and V = {v1, v2, . . . , vn} is the set of items. rij is the el-
ement of matrix R, and rij = 1 if user ui has purchased
item vj , rij = 0 otherwise. Besides purchase matrix, we can
also obtain the side information matrix about items. In this
paper, we make use of four kinds of side information as fol-
lows: the description text of items, the review text of items,
the price of items and the brand of items. We use bags-of-
words vector to represent text type side information of items,
and use numerical tag to represent the brand information.
Thus, the side information matrix in this paper S ∈ R

m×4

can be defined as S = [W d,W r, P,B], where the length
of W d,W r, P,B is m. And W d

j ,W
r
j are the bags-of-words

vector of description text, review text of item vj , Pj , Bj are
the price and numerical tag of item vj . Let Ui, Vj denote the
latent factors with low dimension K of user ui and vj . Our
objective is to learn the latent factor Ui(i = 1, 2, . . . ,m)
and Vj(j = 1, 2, . . . , n) from implicit feedback matrix R
and item side information matrix S for recommending an
personalized ranking list for users.

Weighted Recursive Autoencoder
Denoising Autoencoder (DAE) (Vincent et al. 2008) is a
neural network that is trained to reconstruct the clean inputs
from inputs with added noise. The front half of the DAE can
be regarded as an encoder, which is able to extracts some
important features that can be decoded into the original in-
puts by the last half of the DAE. Stacked denoising autoen-
coder (SDAE) (Vincent et al. 2010) is to stack several DAEs
together to get a better performance. Actually DAE is a spe-
cial SDAE that only has one DAE. Recursive autoencoder
(RAE) (Socher et al. 2011b) is similar to SDAE, except that
RAE will import one or more new inputs for each DAE. The
graphical models of DAE, SDAE and RAE are shown in Fig-
ure 1.

The objective of every SDAE in RAE is to minimize the
regularized optimization problem as below:

min
{Wl},{bl}

‖Xc −XL‖2F + λw

∑

l

(‖W‖2F + ‖b‖2F ),

where Xc is the clean inputs, XL is the outputs of SDAE,
λw is the regularization parameter. Wl and bl represent the
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(a) DAE (b) SDAE (c) RAE

Figure 1: The graphical model of DAE, SDAE and RAE

weight matrix and bias vectors of the SDAE, L is the number
of layers of the SDAE and ‖·‖F denotes the Frobenius norm.

Suppose that the corrupted input Xo and the clean input
Xc are observed variables, similar to (Bengio et al. 2013).
SDAE can be generalized as a probabilistic model. The gen-
erative process is as follows:

• For each layer l of the SDAE network,
For each column n of the weight matrix Wl, draw

Wl,∗n ∼ N (0, λ−1
w IKl

).

Draw the bias vector bl ∼ N (0, λ−1
w IKl

).
For each row j of Xl, draw

Xl,j∗ ∼ N (σ(Xl−1,j∗Wl + bl), λ
−1
s IKl

),

where σ(·) is the sigmoid active function.
• For each item j, draw a clean input

Xc,j∗ ∼ N (XL,j∗, λ−1
n Im).

Through maximizing a posteriori estimation, the model
will degenerate to be the Bayesian formulation of SDAE if
λs goes to infinity (Strichartz 2003).

The generalized bayesian model of RAE is similar to
SDAE, except that it will import one or more new inputs for
each DAE. Moreover, the dimension of the previous learned
feature vectors and the new input vectors may vary widely.
For example, in this paper the dimension of feature learned
from bags-of-words vector is usually larger than ten, while
the dimension of the price is only one. This will indeed re-
duce the importance of the price feature, hence we introduce
a weight matrix Mw to control the effect of the inputs. Thus
the objective of each DAE in RAE is modified to:

min
{Wl},{bl}

‖(Xc −XL)Mw‖2F + λw

∑

l

(‖W‖2F + ‖b‖2F ),

where Mw is a diagonal matrix, each element at the diago-
nal controls the effect of the corresponding input, Mw is an
identity matrix in original DAE. It is notable that Xc in the
RAE concludes the clean inputs and all the learned feature
vectors that used as inputs in the next DAE.

Compared with SDAE, RAE can change the noise’s level
and type for every new inputs and can adjust the sequence
of inputs to control the importance of the inputs. These char-
acteristics make RAE intuitive to extracts features from het-
erogeneous side information.

Combine RAE with BPR
The training data of BPR is the triple set Ds =
{(ui, vj , vk)}. Each triple denotes that user ui prefers item
vj than item vk. Let pijk = σ(δijk)(i = 1, 2, . . . ,m; j, k =
1, 2, . . . , n; ) be the probability of each triple’s occurrence,
where σ(·) is the logistic sigmoid function. To maximize the
posterior probability of BPR is equally to optimize the fol-
lowing objective function:

max
(i,j,k)∈Ds

∑

(i,j,k)

lnσ(δijk)− λu‖U‖2F − λv‖V ‖2F ,

where δijk = UT
i Vj − UT

i Vk, λu‖U‖2F and λv‖V ‖2F are
regularization terms that are used to avoid over-fitting.

Like (Wang, Wang, and Yeung 2015), maximizing the
posterior probability is equivalent to maximizing the joint
log-likelihood of U, V, {Xl}, Xc, {Wl}, {bl}, and R given
λu, λv, λw, λs, and λn. And we also set λs to infinity. Com-
bining RAE with BPR, we get the following likelihood func-
tion:

L =
∑

(i,j,k)∈Ds

lnσ(UT
i V j − UT

i Vk)− λu

2
‖U‖2F

− λw

2

∑

l

(‖Wl‖2F + ‖bl‖2F )

− λv

2

n∑

j=1

‖Vj −XT
f,j∗‖2F

− λn

2

n∑

j=1

‖(XL,j∗ −Xc,j∗)Mw‖2F .

(1)

From (1), BPR and RAE are connected by the term ‖Vj −
XT

f,j∗‖2F . When λv is set to a large value, CDHR actually
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treats XT
f,j∗ as Vj . When λv is set to 0, CDHR is separated

to two parts.
In this paper, we have four kinds of inputs for the RAE,

and the graphical model of CDHR is shown in Figure 2. To
show the structure of the RAE, we zoom in the the dashed
box on the left, and show the details on the right.

Figure 2: The graphical model of CDHR.

Parameter Learning
We optimize the objective function using coordinate ascent
by alternatively optimizing latent factors U , V , weight ma-
trix W and bias vector b. For the reason that the triples in
Ds is too many, it is not feasible to update U and V in the
BPR part using full gradient over all training data. We apply
bootstap sampling in each iteration to update the parameters
by a stochastic gradient descent algorithm.

Given the weight matrix W and bias vector b, we update
U and V by:

Ui = Ui + α(
e−δijk

1 + e−δijk
· (Vj − Vk)− λuUi)

Vj = Vj + α(
e−δijk

1 + e−δijk
· Ui − λv(Vj −XT

f,j∗))

Vk = Vk + α(
−e−δijk

1 + e−δijk
· Ui − λv(Vj −XT

f,j∗))

(2)

where α is the learning rate.
Given U and V , weight matrix W and bias vector b can be

updated by back-propagation learning algorithm. The gradi-
ents of the likelihood with respect to Wl and bl are as fol-
lows:

∇Wl
L =− λwWl − λv

∑

j

∇Wl
XT

f,j∗(Xf,j∗ − Vj)

− λn

∑

j

∇Wl
XL,j∗(XL,j∗ −Xc,j∗)Mw

∇blL =− λwbl − λv

∑

j

∇blX
T
f,j∗(Xf,j∗ − Vj)

− λn

∑

j

∇blXL,j∗(XL,j∗ −Xc,j∗)Mw

(3)

Experiment
In this section, we compare our approach with the most
related other state-of-the-art algorithms on six real-world

datasets, and demonstrate that our approach has a better per-
formance.

Dataset users items feedback sparsity

Beauty 11,448 27,017 154,559 99.95%
Books 94,375 10,002 298,248 99.97%

Cell Phones &
Accessories

8,643 24,767 100,756 99.95%

Office
Products

2,849 8,530 43,793 99.82%

Health &
Personal Care

14,210 33,005 218,373 99.95%

Sports &
Outdoors

17,278 37,342 211,351 99.97%

Table 1: General statistics of datasets

Datasets
In our experiments, we use six real-world datasets from
Amazon website. All the datasets are publicly available. 1

The general statistics of the datasets are shown in Table 1.
We have filtered out the users who have less than five feed-
back in the datasets. We consider a user likes an item if
he/she has rated the item and vice versa.

For each item, we collect the description text, review text,
brand tag and price information. All review text about one
item are viewed as a whole which is represented by a bags-
of-words vector in this paper. We follow the same proce-
dure as that in (Wang and Blei 2011) to preprocess the text
information. After removing stop words, the top 3,000 dis-
criminative words according to the tf-idf values are chosen
to construct the bags-of-words vectors.

We use numerical tags (1, 2, . . . , Nt) to represent the
brand information, where Nt is the total number of brands.
We map brand tag and price to the (0, 1) scopes to be consis-
tent with the bags-of-words vectors. As a result, the weight
matrix Mw undertakes the responsibility to control the dif-
ferent importance of various side information.

Competitors
We compare our approach CDHR with three state-of-art rec-
ommendation algorithms for implicit feedback as follows:
• BPR:Bayesian Personalized Ranking (Rendle et al. 2009)

is a pair-wise ranking algorithm for recommending as
mentioned in previous section.

• CDL:Collaborative Deep Learning (Wang, Wang, and
Yeung 2015) is a point-wise regression algorithm which
incorporates MF with SDAE. By using SDAE to extract
useful features from text form side information of items,
CDL achieves a better performance.

• CDR:Collaborative Deep Ranking (Ying et al. 2016) re-
vises CDL by utilizing BPR instead of MF for collabora-
tive filtering. Benefit from the pair-wise ranking algorithm
BPR, CDR outperforms CDL significantly.

1http://snap.stanford.edu/data/web-Amazon-links.html
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Dataset Evaluation BPR CDL CDR CHDR Dataset Evaluation BPR CDL CDR CDHR

Beauty

precision
0.0143 0.0122 0.0172 0.0185

Office
Products

precision
0.0101 0.0086 0.0126 0.0137

29.4% 51.6% 7.6% 35.6% 59.3% 8.7%

recall
0.0868 0.0547 0.0893 0.0927 recall

0.0562 0.0412 0.0602 0.0668
6.8% 69.5% 3.8% 18.9% 62.1% 11.0%

nDCG
0.0170 0.0131 0.0182 0.0187 nDCG

0.0116 0.0090 0.0137 0.0155
10.0% 43.8% 2.7% 33.6% 72.2% 13.1%

Books

precision
0.0055 0.0039 0.0065 0.0072

Health &
Personal

Care

precision
0.0115 0.0084 0.0154 0.0161

30.9% 84.7% 10.8% 40.0% 91.7% 4.5%

recall
0.0809 0.0548 0.0819 0.0851 recall

0.0639 0.0554 0.0857 0.0963
5.2% 55.3% 3.9% 50.7% 73.8% 12.4%

nDCG
0.0068 0.0049 0.0083 0.0086 nDCG

0.0138 0.0098 0.0167 0.0182
26.5% 75.5% 3.6% 31.9% 85.7% 9.0%

Cell
Phones &

Accessories

precision
0.0112 0.0088 0.0130 0.0144

Sports &
Outdoors

precision
0.0082 0.0067 0.0115 0.0126

28.6% 63.6% 10.8% 53.7% 88.1% 9.6%

recall
0.0805 0.0642 0.0894 0.1013 recall

0.0556 0.0439 0.0621 0.0703
25.8% 57.8% 13.3% 26.4% 60.1% 13.2%

nDCG
0.0136 0.0113 0.0161 0.0177 nDCG

0.0097 0.0076 0.0123 0.0136
30.1% 56.6% 9.9% 40.2% 78.9% 10.6%

Table 2: Performance comparison of BPR, CDL, CDR, and CHDR

For CDL and CDR, we combine the four kinds of feature
vectors in this paper as the side information vectors in the
above models.

Parameter Setting
We ramdomly split the whole dataset into three parts at the
ratio of 8:1:1 for training, cross validation, testing corre-
spondingly. Each approach is repeated five times on every
dataset, and the average performance is reported. The grid
search is applied to find optimal hyperparameters for each
approach.

For BPR, we set λu = λv = 0.1 and sample 100 ×
Ntraining triples for training in every iteration, where
Ntraining is the number of feedback in training set. For
CDL and CDR, we both apply a 2-layer SDAE with the ar-
chitecture 3000-200-K-200-3000. A salt-and-pepper noise
is applied, and the noise rate is 0.3. Besides, we also use
a dropout rate of 0.1 for all the autoencoders in this paper
to achieve adaptive regularization. After grip search, we set
λw = 0.0001 and λn = 0.01 for CDL, and λw = 0.0001
and λn = 0.1 for CDR. For CDL, CDR and CDHR, λu and
λv vary in different datasets, and are decided by the valida-
tion process.

We set λw = 0.0001 and λn = 0.01 for CDHR. And the
architecture of RAE in CDHR shown in Figure 2 is stated as
follows:
• First, we use a 6000-800-100-800-6000 SDAE to learn

the middle feature vectors, which takes the corrupted
bags-of-words vectors of description text and review text
as inputs. A salt-and-pepper noise with 0.3 noise rate is
utilized to generate the corrupted inputs.

• Second, we apply a 102-K-102 weighted DAE to learn
the final feature, which takes the middle feature vectors,

price and brand as input. A Gaussian noise with deviation
of 0.001 is added to the price input, while we do not add
noise to the brand input.

• It is obvious that we should enhance the weight of price
and brand input to avoid the RAE just ignore the two in-
puts to achieve a less loss output. After several experi-
ments, we set the weight parameters to 1,50,10 for middle
feature, price and brand correspondingly.

Evaluation Metrics and Performance
We apply Precision, Recall and nDCG to evaluate the perfor-
mances of models. Given the recommended items list, Pre-
cision and Recall are defined as:

Precision@M =
# items the user likes in the list

M

Recall@M =
# items the user likes in the list

# total items the user likes

(4)

where M is the length of the recommend list.
nDCG is widely used to evaluate the quality of a ranked

list, which is defined as below:

nDCG =
DCG

IDCG

DCG =
M∑

i=1

2r(i) − 1

log(1 + i)

(5)

where r(i) is the relevance level of items. In this paper,
r(i) = 1 if user likes the item, and r(i) = 0 otherwise.
IDCG is the max value of DCG .

Because of space limitation, We only show the results
with M = 20 and dimension K = 50 in Table 2. Bold cell in
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Figure 3: The impact of λn and Mprice
w on dataset Beauty

Figure 4: The impact of λn and M brand
w on dataset Beauty

the table is the best results compared with other approaches
and the percentage improvement of CHDR compared with
other methods is also shown in the cells. Our approach keeps
outperforming others when M and K change. As we can see
in Table 2, CDL performs poorly because it is a point-wise
regression algorithm. Although CDL mines useful features
from side information, it is still worse than the basic pair-
wise ranking algorithm BPR. CDR and CDHR are better
than BPR for introducing extra valuable side information.
To focus on the comparison of CDR and CDHR, we can see
that our approach CDHR outperforms CDR by a margin of
7.6%-10.8% on precision, 3.8%-13.3% on recall and 2.7%-
13.1% on nDCG. The reason is that CDHR utilizes various
side information, especially the price and brand information,
to extract more valuable feature vectors of items for learning
V .

Impact of Mw and λn

In this section, we illustrate the influence of side information
from different sources on improving performance of rec-
ommendation. With other hyperparameters remaining un-
changed, we show the impact of Mw and λn in Figure 3
and Figure 4. The size of Mw is 3×3, with the first diagonal
element Mmiddle

w controlling the impact of middle feature
vector, the second diagonal element Mprice

w controls the im-
pact of price side information and the third diagonal element
M brand

w controls the impact of brand side information. We
set the value of λn to [0.001,0.01,0.1,1,10] separately and
keep Mmiddle

w = 1 then vary Mprice
w with M brand

w = 1 or
vice versa to see whether the import of new side information

will benefit the performance. Because of space limitation,
we only show the results of dataset Beauty. Given a fixed λv

, the smaller λn is the more RAE domains the learning pro-
cess of V . And Mw controls the effect of different inputs of
RAE on the final learned feature vector.

As we can see in Figure 3 and Figure 4, when both Mprice
w

and M brand
w approximate to 1, the RAE will degrade to

SDAE and the performance of CDHR and CDR are similar.
When the hyperparameter Mprice

w and M brand
w are tuned to

values, CDHR becomes better than CDR. When λn is large,
CDHR degenerates to two separate bayesian models which
are loosely coupled. As a result, the performance of CDHR
and CDR degrade significantly and CDHR becomes insen-
sitive to both price and brand information.

Conclusion

In this paper, we propose the CDHR model which incorpo-
rates BPR with RAE in order to take advantage of several
heterogeneous side information for item recommendation.
We construct a specific RAE architecture in terms of the at-
tributes of side information. The feature vectors extracted
by the RAE can also be applied in other tasks besides rec-
ommendation. Empirical studies on six real-world datasets
illustrate that our approach CDHR outperforms other com-
petitors. Moreover, analysis on the impact of hyperparame-
ters λn and Mw demonstrates that price and brand indeed
have useful value.
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