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Abstract

The quantity of information that is collected and stored
in computer systems continues to grow rapidly. At the
same time, the sensitivity of such information (e.g., de-
tailed medical records) often makes such information
valuable to both external attackers, who may obtain in-
formation by compromising a system, and malicious in-
siders, who may misuse information by exercising their
authorization. To mitigate compromises and deter mis-
use, the security administrators of these resources of-
ten deploy various types of intrusion and misuse detec-
tion systems, which provide alerts of suspicious events
that are worthy of follow-up review. However, in prac-
tice, these systems may generate a large number of false
alerts, wasting the time of investigators. Given that se-
curity administrators have limited budget for investigat-
ing alerts, they must prioritize certain types of alerts
over others. An important challenge in alert prioriti-
zation is that adversaries may take advantage of such
behavior to evade detection - specifically by mounting
attacks that trigger alerts that are less likely to be inves-
tigated. In this paper, we model alert prioritization with
adaptive adversaries using a Stackelberg game and in-
troduce an approach to compute the optimal prioritiza-
tion of alert types. We evaluate our approach using both
synthetic data and a real-world dataset of alerts gener-
ated from the audit logs of an electronic medical record
system in use at a large academic medical center.

1 Introduction

The quantity of sensitive information that is collected and
stored on computer systems grows steadily. At the same
time, the number cybersecurity incidents also grows at an
alarming rate (PricewaterhouseCoopers 2016). In recent
years, we have seen a number of high-profile attacks, which
have demonstrated that determined and resourceful attack-
ers can penetrate even highly secure systems. The impact of
these cyberattacks can be disastrous, as evidenced by large-
scale data breaches, such as the 2015 Anthem data breach,
which exposed the personal information of as many as 80
million individuals (Hiltzik 2015).

Further, computer systems are also threatened by insider
attacks, in which individuals that are authorized to access
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a system misuse their authorization (Silowash et al. 2012;
Farahmand and Spafford 2013). According to the 2014 U.S.
State of Cybercrime Survey, which is based on responses
from 557 organizations of various sizes, 28% of electronic
crime events were caused by insiders, while 46% of the par-
ticipating organizations reported that crimes perpetrated by
insiders were more damaging (CSO Magazine et al. 2014).
Insiders pose a serious threat because they harbor detailed
knowledge and are authorized to access the target system.
Specifically, they can exploit such capabilities to circumvent
(or simply click through) technical security measures. For
example, a CERT investigation of 23 insider attacks showed
that in 78% of incidents, insiders were indeed authorized
users with live computer accounts. Moreover, in 43% of
the incidents, the insiders invoked their own usernames and
passwords to perpetrate the attack (Randazzo et al. 2005).

To address the threats posed by intrusions and misuse, se-
curity administrators often deploy intrusion and misuse de-
tection systems. These detectors can continuously monitor a
computer system or network for signs of malicious activity,
and raise an alert when they encounter such activity. These
alerts can then be investigated by security administrators,
who may mitigate the attacks through appropriate response
measures. Further, the possibility of detection also deters in-
siders from mounting an attack since they now face the risk
of being held accountable.

Unfortunately, practical detection systems also have the
potential to generate a large number false alerts. This is be-
cause, in practice, it is challenging to differentiate unusual
but non-malicious activities from attacks. This is problem-
atic because the defenders of such systems (e.g., adminis-
trators who must work within the confines of their business)
often have limited time and resources to spend on investi-
gations. This budget is typically insufficient for investigat-
ing every alert that has been generated. (Rostad and Edsberg
2006). As a result, defenders must establish a policy for de-
ciding which alerts to investigate using their limited budget.
Since defenders do not know if an alert is false or not until
they investigate it, this problem is inherently challenging.

Alert prioritization must consider a variety of factors.
These include, but are not limited to, i) potential magnitude
of loss from undetected attacks, ii) the available budget, and
iii) the probability that an attack raises a certain alert. Since
attackers can often reliably estimate these factors in practice,
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they are also often able to infer the defenders’ prioritization
policies. Thus, an important challenge in alert prioritization
stems from the fact that attackers may use such knowledge
to evade detection. Specifically, they can do so by mounting
attacks that trigger alerts that are less likely to be investi-
gated by defenders.

It should be recognized that the notion of alert prioritiza-
tion is not a novel concept in artificial intelligence, and con-
siderable research has been performed on the topic (see, for
example, the surveys (Hubballi and Suryanarayanan 2014;
Salah, Maciá-Fernández, and Dı́az-Verdejo 2013)). How-
ever, to the best of our knowledge, there has been no in-
vestigation into strategic adversaries, who may adapt to the
prioritization chosen by a defender.

Thus, in this paper, we introduce a game-theoretic ap-
proach for alert prioritization. Note that intrusions by ex-
ternal attackers and misuse by insiders differ in both how
malicious actions may be carried out, as well as how they
may be detected. However, in the context of alert prioriti-
zation, we can study both threats using a single framework,
in which attacks model either intrusions or misuse. For con-
venience, in the remainder of the paper, we will refer to po-
tential perpetrators as adversaries, and to potential malicious
actions as attacks.

Note that even though alert prioritization may resem-
ble audit games (Blocki et al. 2013; 2015) at first glance,
there are fundamental differences between the two. In audit
games, the set of targets that can be audited is fixed, and both
players know this set at the beginning of the game. In alert
prioritization, the set of alerts raised is non-deterministic and
its cardinality may be multiple orders of magnitude higher
than the typical number of audit-game targets considered in
prior work. Further, we cannot simply map alert types (see
Section 2) to audit-game targets because 1) alert types are
non-atomic in the sense that the defender might end up in-
vestigating only a subset of the alerts of a given type and 2)
alert types contain a non-deterministic number of alerts.

The remainder of this paper is organized as follows. In
Section 2, we introduce a game-theoretic model of alert pri-
oritization in the presence of strategic adversaries. In Sec-
tion 3, we present analytical results on our model and pro-
pose a solution approach for finding an optimal prioritization
strategy. In Section 4, we present numerical results with our
approach using synthetic and real-world datasets. Finally, in
Section 5, we provide concluding remarks and recommen-
dations for next steps in this line of research.

2 Model
In this work, we model the problem of alert prioritization
as a Stackelberg security game between a defender and an
adversary. For reference purposes, we provide definitions
for the common notation used in this work in Table 1.

We assume that the defender has deployed an intrusion
detection system (IDS), which may raise alerts for actual
attacks, but which may also raise false alerts in the course
of routine system behavior. The possible alerts that can be
raised by the IDS are partitioned into a set of alert types T ,
such that alerts belonging to the same type appear equally
important (before they have been investigated). We assume

Table 1: Legend of Common Symbols
Symbol Description

T set of alert types
O set of possible prioritizations of the alert

types T
A set of possible attacks
B defender’s budget for investigating alerts
Da defender’s loss when attack a is not detected
Ga adversary’s gain when attack a is not de-

tected
Ct cost of investigating an alert of type t

Ka cost of mounting attack a

Ra,t probability that attack a raises an alert of
type t

Ft(n) probability that there are at most n false
alerts of type t

that the defender incurs a cost Ct when investigating an alert
of type t (e.g., the manpower spent on the investigation).
The defender is allocated a fixed budget B (e.g., the avail-
able manpower) to spend on investigating alerts. We further
assume that the budget B as well as each cost Ct is an inte-
ger value. 1

An adversary may mount any of the possible attacks A
against the defender’s computer system (e.g., compromis-
ing a database server or a web server), and each attack may
raise multiple alerts (though it may also raise no alerts). The
probability that attack a ∈ A raises an alert of type t ∈ T is
denoted by Ra,t. Independently of the attack, the IDS may
also generate any number of false alerts. We assume that
the number of false alerts for each type t ∈ T follows some
known probability distribution. We let Ft denote the cumu-
lative distribution function of the number of alerts of type t.
Additionally, assuming that an adversarial alert is generated
at a random point in time, we let F ∗

t denote the cumulative
distribution function of the number of false alerts that are
generated before the true adversarial alert.

2.1 Strategy Sets

The adversary’s pure-strategy choice is to select an attack a
from the set of possible attacks A. The defender’s pure
strategies are prioritizations over the alert types T . We rep-
resent a prioritization as a vector o = (o1, o2, . . . , o|T |),
where oi ∈ T , and oi �= oj if i �= j (i.e., each oi is an
alert type, and every alert type t is listed only once). We let
the set of all possible prioritizations be denoted by O.

When the defender invokes prioritization o, they investi-
gate alerts of type o1 first, then move on to types o2, o3, and
so forth.2 This proceeds until the defender has exhausted its

1Note that this is for computational convenience. Fractions of
arbitrary precision can be represented by linearly scaling up B and
every Ct.

2Note that alerts within a type can be investigated in a random
order to prevent an attacker from minimizing the probability of de-
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budget B or, in rare instances, until there are no more alert
types left to investigate. Now, consider an alert of type t
that was raised due to an attack. Suppose that type t is the
kth element of the prioritization (i.e., ok = t). Then, this
adversarial alert will be investigated if and only if

Cok +

k∑
i=1

ni · Coi ≤ B, (1)

where ni, i = 1, . . . , k − 1, is the number of false alerts of
type oi, and nk is the number of false alerts of type ok that
were raised before the adversarial alert. Note that we have to
add cost Cok since the defender’s budget must also include
investigating the adversarial alert itself.

As a result, the probability that an adversarial alert of type
ok will be investigated is

PI (o, k) =
∑
n:

Cok
+
∑k

i=1 ni·Coi
≤B

[ (
F ∗
ok
(nk)− F ∗

ok
(nk − 1)

)

·
k−1∏
i=1

(Foi(ni)− Foi(ni − 1))

]
(2)

since the defender investigates the alarm if and only if the
numbers of false alerts satisfy Equation (1), and the prob-
ability of generating ni false alerts of type oi is Foi(ni) −
Foi(ni − 1) by definition.

We assume that the defender detects an attack if it investi-
gates any of the alerts raised due to the attack. Consequently,
an attack is detected if the defender does not exhaust its
alert-investigation budget before reaching the highest prior-
ity adversarial alert. Hence, if the set of alert types raised by
the attack is T̂ , then the attack is detected with probability

PI
(
o,min

{
i ∈ {1, . . . , |T |}

∣∣∣ oi ∈ T̂
})

. (3)

Therefore, the probability that the defender detects an at-
tack a ∈ A using prioritization o is

PD(o,a) =∑
T̂⊆T

∏
t∈T̂

Ra,t

∏
t∈T\T̂

(1−Ra,t)PI
(
o,min{i | oi ∈ T̂}

)
.

(4)

2.2 Payoffs

The adversary’s expected gain from attack a when the de-
fender uses prioritization o is

EG(o, a) = (1− PD(o, a)) ·Ga −Ka, (5)

while the defender’s expected loss from invoking prioritiza-
tion o when the adversary mounts attack a is

EL(o, a) = (1− PD(o, a)) · La. (6)

A mixed strategy for the defender is a probability distribu-
tion over its pure strategies, that is, a probability distribution

tection by carefully timing its attack.

over the possible prioritizations O. We let po denote the
probability that the defender chooses strategy o. Then, the
defender’s expected loss using the mixed strategy p when
the adversary mounts attack a is∑

o∈O

po · EG(o, a). (7)

Meanwhile, the adversary’s expected gain is∑
o∈O

po · EL(o, a). (8)

2.3 Optimal Prioritization

Following Kerckhoffs’s principle (Kerckhoffs 1883), we as-
sume that an adversary can infer the defender’s strategy
(e.g., can obtain the same software or use the same algo-
rithms as the defender). As a result, the adversary can adapt
its attack to the defender’s strategy. Therefore, we assume
that an adversary will always choose a best-response strat-
egy, which is formally defined as follows.
Definition 1 (Adversary’s Best-Response Strategy). The ad-
versary’s best-response strategies BR(p) against a given
mixed strategy p are the set of attacks that maximize the
adversaries’s expected gain. Formally,

BR(p) = argmax
a∈A

∑
o∈O

po · EL(o, a). (9)

In contrast, the defender cannot know in advance which
attack the adversary will mount. However, the defender can
anticipate that the adversary will choose a best response. As
is typical in the security literature, we consider subgame per-
fect Nash equilibria as our solution concept (Korzhyk et al.
2011). As such, we will refer to the defender’s equilibrium
strategies as optimal strategies for the remainder of the pa-
per.
Definition 2 (Defender’s Optimal Strategy). A mixed strat-
egy is an optimal strategy if it minimizes the defender’s ex-
pected loss given that an adversary will always choose a best
response with tie-breaking in favor of the defender. For-
mally, a mixed strategy p∗ is optimal if it maximizes

max
p,a∈BR(p)

∑
o∈O

po · EG(o, a). (10)

Note that the effect of the tie-breaking rule is negligible in
practice. The only purpose it serves is to avoid pathological
mathematical cases where no optimal strategy would exist.

3 Analysis

Given the model design, we now derive its analytic aspects,
with a particular focus on its computational components.
First, in Section 3.1, we prove that finding an optimal pri-
oritization is a computationally hard problem. Then, in Sec-
tion 3.2, we show how to compute the detection probability
PD(o, a) in polynomial time for a given prioritization o and
attack a. Finally, in Section 3.3, we formulate the problem of
finding an optimal prioritization as a set of linear programs
and introduce a column-generation approach that works ex-
ceptionally well in practice.
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3.1 Computational Complexity

To establish our computational-complexity result, we first
formulate the problem of finding an optimal prioritization as
a decision problem.

Definition 3 (Optimal Prioritization Problem (OPP)). Given
an instance of the prioritization game and a threshold loss
value L∗, determine if there exists a mixed strategy p for
the defender such that for every a ∈ BR(p), the defender’s
expected loss is at most L∗.

Theorem 1. OPP is NP-hard.

We show that the OPP is NP-hard using a reduction from
a well-known NP-hard problem, the Set Cover Problem.

Definition 4 (Set Cover Problem (SCP)). Given a base set
U , a family S of subsets of U , and a threshold size k, de-
termine if there exists a subfamily C ⊆ S of cardinality k
whose union is U .

Proof sketch. Given an instance of SCP, we construct an in-
stance of OPP as follows:
• let T = S, A = U , and B = k;
• for each a ∈ A, let Da = Ga = 1 and Ka = 0;
• for each t ∈ T , let Ct = 1;
• for each a ∈ A and t ∈ T , let Ra,t = 1 if a ∈ t and 0

otherwise (note that an attack a corresponds to an element
of the set U and a type t corresponds to subsets from S);

• for each t ∈ T , let Ft(0) = 0, Ft(n) = 1 for n > 0, and
F ∗
t (n) = 1 for all n;

• the threshold loss is L∗ = 0.
It is clear that the reduction can be performed in polynomial
time. As a consequence, we only need to show that OPP has
a solution if and only if SCP does.

To do so, first let us suppose that there exists a set cover
C of cardinality k. Let o be a prioritization in which the first
B = k alert types are the subsets from C (i.e., {o1, . . . ok} =
C). Then, the mixed strategy p that always uses prioritiza-
tion o (i.e., po = 1) is a solution for OPP because it detects
every attack with probability 1.

Second, let us suppose that there exists a mixed strategy
p that achieves L∗ = 0 loss. Let o be an arbitrary prioriti-
zation from the support of this strategy (i.e., po > 0). Then,
it follows that this prioritization o must detect every attack
with probability 1; otherwise, the defender’s expected loss
would be non-zero. Hence, the subfamily C that comprises
the first B = k elements of o (i.e., C = {o1, . . . , oB}) is a
solution to SCP since it forms a set cover of U .

3.2 Computing PD(o, a) in Polynomial Time

Next, we address the problem of computing the detection
probabilities PD, which play a crucial role in the solution
that we present in Section 3.3. Computing PD(o, a) for a
given prioritization o and attack a is challenging because the
right-hand sides of Equations (2) and (4), which together de-
fine PD(o, a), both comprise exponential numbers of terms.
Consequently, it is imperative that we find a better way of
computing the probabilities PD.

Firstly, we can estimate PD(o, a) in practice using simu-
lations: repeatedly draw false-alert numbers and adversarial

alert types from the distributions F , F ∗, and the probabil-
ities Ra,·, and calculate the ratio of instances in which at-
tack a is detected. However, for distributions with large vari-
ability, reliable estimation may require a very large number
of repetitions. As a more efficient alternative, we propose a
dynamic-programming algorithm that can compute the ex-
act value of PD(o, a) for any prioritization o and attack a
in polynomial time.

Algorithm 1 Computing PD(o, a)

Input: prioritization game, prioritization o, attack a
1: for b = 0, 1, . . . , B do
2: PD(o, a, |T |, b) ← Ra,o|T | · F ∗

o|T |

(�b/Co|T |� − 1
)

3: end for
4: for i = |T | − 1, . . . , 2, 1 do
5: for b = 0, 1, . . . , B do
6: PD(o, a, i, b) ← Ra,oi · F ∗

oi(�b/Coi� − 1)

+ (1−Ra,oi)

�b/Coi
�∑

j=0

[
(Foi(j)− Foi(j − 1))

·PD(o, a, b− j ·Coi , i+1)

]

7: end for
8: end for
9: Return PD(o, a) := PD(o, a, 1, B)

Proposition 1. For any o ∈ O and a ∈ A, Algorithm 1
computes PD(o, a), and its running time is O(B2 · |T |).
Proof. We begin by introducing the values PD(o, a, b, i)
and discussing how they can be computed. For any b ∈
[0, B] and i ∈ [1, |T |], let PD(o, a, b, i) denote the con-
ditional probability that attack a is detected given that the
defender has already investigated alert types o1, . . . , oi−1

(none if i = 1), has only budget b left for subsequent investi-
gations, and has not detected the attack so far. First, we have
by definition that PD(o, a) = PD(o, a, B, 1). Second, for
any b, we have that

PD(o, a, b, |T |)=Ra,o|T | · F ∗
o|T |

(�b/Co|T |� − 1
)

(11)

since the defender will detect attack a using alert type o|T |
if and only if there is an adversarial alert of type o|T |,
whose probability is Ra,o|T | , and budget b is sufficient
for investigating both the false alerts and the adversarial
alert. The probability of the latter can be expressed as
F ∗
o|T |

(�b/Co|T |� − 1
)

since budget b is sufficient for inves-
tigating �b/Co|T |� alerts of type o|T |, which must include
both the false alerts and the adversarial alert.

Next, for any b and i < |T |, we have that

PD(o, a, b, i) =Ra,oi · F ∗
oi(�b/Coi� − 1)

+ (1−Ra,oi)

�b/Coi
�∑

j=0

[
(Foi(j)− Foi(j − 1))

· PD(o, a, b− j · Coi , i+ 1)
]

(12)
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since the defender will detect attack a if and only if it is
either 1) detected using alert type oi or 2) not detected us-
ing alert type oi but detected using a lower-priority type.
Clearly, the probability of the former can be computed the
same way as for alert type o|T | (see Equation (11)). To
compute the probability of the latter, we iterate over pos-
sible numbers j of false alerts (we do not have to con-
sider j > �b/Coi� since the defender exhausts its budget
in those cases). For each number j, we multiply the prob-
ability of having that many false alerts, which is equal to
Foi(j) − Foi(j − 1) by definition, with the probability that
the defender detects the attack using the remaining budget
and alert types, which is equal to PD(o, a, b−j ·Coi , i+1).

Now, we can prove the correctness of Algorithm 1. First,
the algorithm computes PD(o, a, b, |T |) for every b ∈ [0, B]
using Equation (11). Note that this is possible since Equa-
tion (11) depends only on the input of the algorithm. Sec-
ond, the algorithm iterates i backwards from |T | − 1 to
1, and computes PD(o, a, b, i) for b ∈ [0, B] using Equa-
tion (12). Note that this is possible since Equation (11)
depends only on the input and previously computed values
PD(o, a, b′, i + 1), b′ < b. Finally, the algorithm out-
puts PD(o, a, B, 1), which is equal to PD(o, a) by defi-
nition. Since the algorithm iterates over all combinations of
b ∈ [0, B] and i ∈ [1, |T |], and computes each PD(o, a, b, i)
using �b/Coi� ≤ B steps, the running time of the algorithm
is clearly O(B2 · |T |).
3.3 Finding an Optimal Prioritization

A natural solution approach for the problem of alert prior-
itization is by using multiple linear programs. Specifically,
for each attack a ∈ A, we solve the following linear pro-
gram for p, a probability distribution over possible prioriti-
zations o ∈ O, which we denote by LP (a):

max
p

∑
o∈O

po · PD(o, a) (13a)

subject to

∀ a′ ∈ A :
∑
o∈O

po ·D(o, a′) ≥ Δ(Ka′) , (13b)

where D(o, a′) = [(1−PD(o, a))Ga−(1−PD(o, a′))Ga′ ]
and Δ(Ka′) = Ka −Ka′ . Once each LP (a) is solved, we
can choose the solution p∗ from these which minimizes the
defender’s expected loss.

The key challenge for each LP is that the set of possible
prioritizations O is exponential, making this intractable to
represent, let alone solve. We propose to address this chal-
lenge using column generation. Specifically, we start with
a small subset of prioritizations Ō. Let y(Ō) be the opti-
mal dual solution of LP (13) for a fixed subset of prioritiza-
tions Ō, with y(Ō, a′) denoting the component of the dual
solution corresponding to attack strategy a′ ∈ A. In each
iteration of the column generation algorithm, we aim to find
a new prioritization o ∈ O to add to Ō that maximizes re-
duced cost c̄(o), where

c̄(o) = PD(o, a) +
∑
a′∈A

y(Ō, a′)D(o, a′). (14)

Once we find that maxo∈O c̄(o) ≤ 0, the solution of the LP
for a restricted set of prioritizations Ō generated so far is
optimal. Otherwise, we repeat with Ō = Ō ∪ {o∗}, where
o∗ ∈ argmaxo c̄(o).

Finally, we discuss the problem of finding prioritizations
that maximize reduced cost. Since the number of possible
prioritizations |O| is exponential in the number of alert types
|T |, exhaustive search is infeasible for larger problem in-
stances. In fact, using an argument similar to the one used in
the proof of Theorem 1, it can be shown that finding a cost-
maximizing prioritization is an NP-hard problem in general.

Algorithm 2 Greedy Column Generation
Input: prioritization game, reduced cost function c̄

1: o ← ∅
2: while ∃ t ∈ T \ o do
3: o ← o+ argmaxt∈T\o c̄(o+ t)
4: end while
5: Return o

To generate near-optimal columns in practice, we propose
Algorithm 2, a polynomial-time greedy algorithm. For this
algorithm, we generalize our model to consider truncated
prioritizations o, which have less than |T | elements. Specif-
ically, given a prioritization o of arbitrary length (i.e., a vec-
tor of at most |T | alert types), the defender will investigate
alert types in o one-by-one (the same way as in the original
definition), but will stop investigating after the last element
of o, even if the remaining budget is greater than zero.

Now, we can formulate a greedy algorithm as follows.
First, begin with an empty prioritization vector o = ∅. Next,
add alert types to the end of the vector one-by-one (i.e.,
o ← o + t). In each iteration, choose an alert type t that
leads to maximal increase in reduced cost. In the follow-
ing section, we demonstrate using numerical results that this
algorithm performs exceptionally well in practice.

4 Numerical Results

In this section, we numerically evaluate the proposed
column-generation approach with Algorithm 2 using syn-
thetic and real-world datasets. Our evaluation will focus on
two metrics: 1) how close to optimal the strategies obtained
using our approach are in terms of the defender’s expected
loss and 2) the running time of our approach. To compute
optimal solutions, we use the linear programs LP (13) with
the full sets of prioritizations O.

4.1 Synthetic Datasets

First, we evaluate our solution approach using randomly
generated instances of the alert-prioritization game. We con-
trol the size of the randomly-generated instances using a size
parameter N . For a given N , we generate an instance of the
alert-prioritization game as follows:
• let T = {1, . . . , N}, A = {1, . . . , N}, and B = 5 · |T |;
• for each a ∈ A, Da and Ga are drawn uniformly at ran-

dom from [0.5, 1];
• for each a ∈ A, Ka = 0;
• for each t ∈ T , Ct = 1;
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• for each t ∈ T and a ∈ A: with probability 2
3 , Ra,t = 0,

and with probability 1
3 , Ra,t is drawn uniformly at random

from [0, 1];
• for each t ∈ T , Ft follows a Poisson distribution whose

mean is drawn uniformly at random from [5, 15], and F ∗
t

follows a Poisson distribution whose mean is half of the
mean of Ft.
For each size N , we generated 50 random instances,

and plotted the averages of the expected losses and running
times over these 50 instances. To compute the probabilities
PD(o, a), we used the polynomial-time Algorithm 1.

2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

Size N

D
ef

en
de

r’
s

ex
pe

ct
ed

lo
ss

Optimal
Greedy Column Generation

Figure 1: Defender’s expected loss in the synthetic instances
with optimal strategies ( ) and with strategies computed
using greedy column generation (Algorithm 2) ( ).

Figure 1 compares the strategies found using our greedy
column-generation approach ( ) to optimal ones ( ). We
can see that the strategies are close to each other in terms of
expected loss, even for larger problem instances.

Figure 2 compares the running time required to solve the
linear programs (13) with full sets of prioritizations O ( )
to that with our greedy column-generation algorithm ( ).
For N > 3, our column-generation approach is clearly su-
perior. For example, in the case N = 7, the average running
time is over 9 minutes with full sets of prioritizations, while
it is less than 17 seconds with Algorithm 2.

4.2 Real-World Dataset

Next, we evaluated our solution approach in a real set-
ting. To do so, we worked with five consecutive week-
days of access logs during 2016 from the electronic medi-
cal record (EMR) system, StarPanel (Giuse, Williams, and
Giuse 2010), in place at Vanderbilt University Medical Cen-
ter – a system that is well ingrained in clinical operations
with over 25 years of continuous use. This study was ap-
proved by the medical center’s institutional review board.

In preparation for this study, we integrated the EMR sys-
tem with human-resources data to document i) which med-
ical department each system user was affiliated with, ii)
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Figure 2: Running time of the linear programs with full sets
of prioritizations ( ) and with greedy column generation
(Algorithm 2) ( ). Please note the logarithmic scale on the
vertical axis.

which patients were also employees, and iii) home residen-
tial information for each system user. The resulting data
was then subject to an explanation-based auditing system
(EBAS) (Fabbri and LeFevre 2011; 2013) to annotate the
access logs for six types of alerts: EMR user and patient 1)
have the same surname, 2) are coworkers in the same de-
partment of the medical center, 3) have residential addresses
within 0.25 miles, 4) have department tags related to “Pri-
mary Care Physicians,” 5) have department tags related to
“Pediatrics Housestaff,” and 6) have department tags related
to “Internal Medicine.”

During this week, there were 8,481,767 accesses made by
14,531 users to 161,426 patient records, leading to a total
of 863,989 alerts. To ensure that finding optimal strategies
is numerically tractable, we restricted our analysis to three
departments and a random sample of 12 patients. The com-
plete description of the dataset used in our experiments can
be found in the Supplementary Material.

First, we estimated the distribution of the number of false
alerts for each alert type. Since most of the alerts on each
workday are generated in the time interval between 8am and
4pm, the detection problem is by far the most challenging
during these time intervals. Consequently, we focused our
analysis on the numbers of false alert generated between
8am and 4pm. Table 2 shows the actual numbers for each
workday and alert type. Based on these numbers, we ap-
proximated the actual probability distributions with Poisson
distributions, which we then used as Ft in our model.

Second, we selected a random sample of 12 patients, and
determined which alert types may be generated by accessing
their records. Table 3 shows the occurrence of alerts for each
patient (i.e., attack in our model) and alert type. We then
used these values as Ra,t in our solution approach. Note
that we limited the size of the problem to ensure that we can
compute the optimal strategies, which we use as baselines to
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Table 2: Numbers of False Alerts
Alert type 1 Alert type 2 Alert type 3 Alert type 4 Alert type 5 Alert type 6 Sum

Day 1 2467 2544 2671 4340 3451 6152 21625
Day 2 2434 2072 2446 5002 4277 6304 22535
Day 3 2495 2538 2418 4192 3491 5461 20595
Day 4 3175 2842 2366 3745 3181 4920 20229
Day 5 2923 2597 2641 3064 2487 4280 17992
Sum 13494 12593 12542 20343 16887 27117 102976
Average 2698.8 2518.6 2508.4 4068.6 3377.4 5423.4

Table 3: Alert Types for Each Patient
Alert type 1 Alert type 2 Alert type 3 Alert type 4 Alert type 5 Alert type 6

Patient 1 0 0 1 0 0 0
Patient 2 1 1 0 0 0 0
Patient 3 0 0 0 1 0 0
Patient 4 0 0 0 1 1 1
Patient 5 1 1 0 0 0 0
Patient 6 1 1 0 0 0 0
Patient 7 0 0 0 0 1 1
Patient 8 0 0 0 1 1 1
Patient 9 0 0 0 0 1 1
Patient 10 1 1 0 0 0 0
Patient 11 0 0 0 1 1 1
Patient 12 1 1 0 0 0 0

evaluate our proposed algorithm.
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Figure 3: Defender’s expected loss in the real-world dataset
with optimal strategies ( ) and with strategies computed
using greedy column generation (Algorithm 2) ( ).

Figure 3 compares the strategies found using our greedy
column-generation approach ( ) to optimal ones ( ) for
various budget values B. We can see that our algorithm per-
forms exceptionally well as the defender’s expected loss is
very close to optimal in all cases.

5 Conclusion

The prioritization of alerts is of crucial importance to the ef-
fectiveness of intrusion and misuse detection. Even though
considerable research has been performed in this area, there
has been no investigation into strategic adversaries to the
best of our knowledge. In this work, we modeled strate-
gic adversaries, who may adapt to the prioritization chosen
the defender, as a Stackelberg security game. We showed
that finding an optimal prioritization against strategic ad-
versaries is a computationally hard problem, and we have
proposed a column-generation based approach, as well as a
greedy column-generation algorithm, for solving this prob-
lem in practice. Using numerical results, we have demon-
strated that our solution approach performs well in practice
with respect to both expected losses and running time.

There are multiple natural future research directions. In
this paper, we have shown using numerical results that Algo-
rithm 2 performs very well in practice. However, it remains
an open question if this algorithm – or any other polynomial-
time algorithm – can achieve a constant approximation ratio
for reduced cost. As another direction, the effectiveness of
alert prioritization could be further increased by consider-
ing multiple adversary types, with different attack costs and
gains. This extension could be modeled most naturally as a
Bayesian Stackelberg game.
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