
A Stackelberg Game Model for Botnet Traffic Exfiltration

Thanh H. Nguyen, Michael P. Wellman, Satinder Singh
University of Michigan, Ann Arbor

{thanhhng,wellman,baveja}@umich.edu

Abstract

Cyber-criminals can distribute malware to control comput-
ers on a networked system and leverage these compromised
computers (i.e., botnets) to perform their malicious activities
inside the network. Botnet-detection mechanisms, based on a
detailed analysis of network traffic characteristics, provide a
basis for defense against botnet attacks. In this work, we for-
mulate the botnet defense problem as a Stackelberg security
game, allocating detection resources to deter botnet attacks
taking into account the strategic response of cyber-criminals.
Based on the new game model, we propose a game-theoretic
algorithm, ORANI, to compute an optimal detection resource
allocation strategy in zero-sum game settings. Our algorithm
employs the double-oracle method to deal with an exponen-
tial number of players’ actions. Furthermore, we provide
greedy heuristics to approximately compute an equilibrium
of these botnet defense games. Finally, we conduct extensive
experiments based on both simulated and real-world network
topologies to demonstrate advantages of our game-theoretic
solution compared to previously proposed defense policies.

Introduction

Cyber-criminals intent on denial-of-service, spam dissem-
ination, data theft, or other information security breaches
often pursue their attacks with the assistance of botnets:
collections of compromised computers subject to their con-
trol (Holz, Engelberth, and Freiling 2009; Peng, Leckie,
and Ramamohanarao 2007; Stone-Gross et al. 2009). In
2014 testimony, the US Federal Bureau of Investigation
cited over nine billion dollars of US losses and $110 billion
losses globally (Demarest 2014). The estimated 500 million
computers infected globally each year by botnet activities
amounts to 18 victims per second.

The threat of botnets has drawn significant attention
from network security researchers (Bacher et al. 2005;
Choi et al. 2007; Cooke, Jahanian, and McPherson 2005;
Feily, Shahrestani, and Ramadass 2009; Gu et al. 2008;
2007; Gu, Zhang, and Lee 2008; Strayer et al. 2008). Much
existing work focuses on detection mechanisms to identify
compromised computers based on network traffic charac-
teristics. For example, BotSniffer (Gu, Zhang, and Lee

Copyright c© 2017, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

2008) searches for spatial-temporal patterns in network traf-
fic characteristic of coordinated botnet behavior. Given
some underlying detection capability, it remains to design
defenses against botnet attacks that effectively deploys de-
tection resources. For example, Venkatesan et al. consider
the problem of allocating a limited number of localized de-
tection resources on a network in order to maximally dis-
rupt botnet data exfiltration attacks, where the botnet aims
to transfer stolen information out of the network. Their first
solution (Venkatesan, Albanese, and Jajodia 2015) allocated
resources statically, which could effectively disrupt one-time
attacks but is vulnerable to adaptive attackers. They ex-
tended this method to randomize detector placement dynam-
ically to improve robustness against adaptation (Venkatesan
et al. 2016). In a related work, Mc Carthy et al. (2016) ad-
dress the additional challenge of imperfect botnet detection.

Our work extends these prior efforts by formulating the
botnet defense problem as a Stackelberg security game, thus
accounting for the strategic response of attackers to de-
ployed defenses. In our botnet defense game, the defender
attempts to protect traffic traversing within a computer net-
work by allocating detection resources (detectors). The at-
tacker eavesdrops on network traffic, and attempts to exfil-
trate the stolen information by transferring it outside the de-
fender’s network. We assume that the source bot routes the
stolen information along a single path designated by the at-
tacker, and term this the uni-exfiltration setting.

Given our game model, we propose a new algo-
rithm to compute optimal defense strategies, named
ORANI (Optimal Resource Allocation for uNi-exfiltration
Interception). We adopt the double-oracle methodology
(McMahan, Gordon, and Blum 2003) to overcome the com-
putational challenges of exponential strategy spaces for both
players. Our main algorithmic contributions lie in defining
mixed-integer linear programs (MILPs) for the defender’s
and attacker’s best-response oracles. In addition, we intro-
duce greedy heuristics to approximately implement these
oracles. Finally, we conduct experiments based on both
simulated and real-world network topologies to evaluate so-
lution quality as well as runtime performance of our new
game-theoretic algorithms, demonstrating significant im-
provements over previous defense strategies.

The AAAI-17 Workshop on
Artificial Intelligence for Cyber Security

WS-17-04

210

Related Work

Recent work has introduced game-theoretic models and/or
corresponding defense solutions for various botnet detection
and/or prevention problems (Bensoussan, Kantarcioglu, and
Hoe 2010; Kolokoltsov and Bensoussan 2015; Soper and
Musacchio 2014; Soper 2015). In these game models, cy-
ber criminals intrude by compromising computers in a net-
work. Users or owners of computers in the network defend
by patching or replacing their computers based on alerts of
potential security threats.

Stackelberg security games have been successfully ap-
plied for solving many real-world physical security prob-
lems (Fang et al. 2016; Basilico, Gatti, and Amigoni 2009;
Letchford and Vorobeychik 2011; Shieh et al. 2012; Tambe
2011). Jain et al. (2011) address a problem in urban net-
work security with some analog to uni-exfiltration, as the
attacker follows a single path to attack its best target in an
urban road network. Vaněk et al. (2012) tackles a problem
of malicious packet prevention in computer networks, as-
suming the attacker only determines which entry point to
access to a network to attack a specific target in that network
while the corresponding traversing path is fixed. In our bot-
net defense problem, cyber criminals can not only determine
which computers to compromise but can also create an over-
laying network over these compromised computers to exfil-
trate traffic from multiple targets in the network. The action
complexities of cyber criminals in our game model lead to a
totally different and difficult security problem to solve.

Botnet Defense Game Model

Our game model is based upon the botnet model presented
by Venkatesan et al. (2015). Specifically, G = (V,E) rep-
resents a computer network where V is the set of nodes
which refer to network elements such as routers and end
hosts,and E is the set of edges connecting these nodes. Let
Vh ⊆ V be a set of mission-critical end hosts and Ph be
a set of pairs of these end hosts that need to exchange data
via the network. Traffic between any two nodes is routed by
a routing algorithm fixed by the network system. For each
pair of nodes (u, v) in the network, we denote by P(u, v)
the routing path between u and v.

Definition 1 (Mission-critical Nodes). Given a network G
= (V,E) and a set of pairs of mission-critical end hosts Ph

that need to exchange data, the set of mission-critical nodes,
denoted by Vc, consists of all the nodes in the network that
lie on routing paths between any pair of nodes in Ph:

Vc =
⋃

(u,v)∈Ph
P(u, v) (1)

We model the botnet defense problem as a Stackelberg se-
curity game (SSG). In such a game, the defender commits
to a mixed (randomized) strategy to allocate limited secu-
rity resources to protect important targets. The attacker then
optimizes its attack action with respect to the distribution of
defender allocations. In our context, the defender is the se-
curity controller of a computer network, with a limited set
of available detection resources. The defender aims at de-
ploying these resources in the most effective way to detect

and thereby impede the attack chosen in response to the de-
fender’s deployment strategy.

The attacker in this game is a cyber criminal who eaves-
drops on network traffic. Compromising a node on the rout-
ing path P(u, v) enables the attacker to eavesdrop on traffic
between u and v. Compromising other nodes in the network
helps the attacker to relay the eavesdropped traffic to a server
he controls, Sa. The attacker evades the defender’s detectors
to the best of his ability through compromised nodes. Note
that the attacker can determine a sequence of compromised
nodes to relay eavesdropped traffic, yet the traffic exchange
between any pair of consecutive bots in the chain must still
follow fixed routing paths specified by the network. The at-
tacker successfully exfiltrates traffic from an eavesdropping
bot b to Sa if and only if (iff) the defender has no detectors
on routing paths between consecutive compromised nodes
on the chain used for relaying traffic. We call this chain of
ordered bots and nodes on routing paths between consecu-
tive bots an exfiltration path, denoted by π(b, Sa).

Definition 2 (Exfiltration Prevention). Given a network
G = (V,E) and a set of mission-critical nodes Vc, for
each eavesdropping bot b, traffic exfiltration from b is im-
peded by the defender iff there is a detector on the exfiltra-
tion path π(b, Sa).

In our game model, the attacker’s remote server Sa is lo-
cated outside the network. The defender is aware of which
nodes in the network can potentially communicate with the
attacker’s server. The defender randomizes the allocation of
detection resources so that locations of detectors become un-
predictable to the attacker. Given the defender strategy, the
attacker chooses an optimal response consisting of a set of
compromised nodes and a set of exfiltration paths over these
compromised nodes.

Definition 3 (Strategy Space). In our game model, the strat-
egy spaces of the players are defined as follows:

Defender’s strategy space: The defender can deploy up
to Kd < |V| detection resources. We denote by D = {Di |
Di ⊆ V, |Di| ≤ Kd} the set of all pure strategies of the
defender, each is an allocation of detectors over the nodes.
Let x = {xi} be a mixed strategy of the defender where
xi is the probability that the defender plays Di such that∑

i xi = 1 and forall i, xi ∈ [0, 1].
Attacker’s strategy space: The attacker can compromise

up to Ka < |V| nodes in the network. We denote by
A = {Aj = (Bj ,Πj) | Bj ⊆ V, |Bj | ≤ Ka,Πj =
{πj(b, S

a), b ∈ Bj ∩ Vc}} the set of all pure strategies
of the attacker. In particular, each pure strategy Aj con-
sists of Bj a set of compromised nodes and Πj a set of all
exfiltration paths over Bj .

A simple example of a botnet defense game is shown in
Figure 1. Our work mainly focuses on computing an optimal
mixed strategy of the defender in zero-sum game settings.

Definition 4 (Payoff in Zero-sum Game). Traffic of every
pair (u, v) ∈ Ph is associated with a value, denoted by
r(u, v) > 0, which implies the importance of the traffic. If
the attacker successfully exfiltrates traffic of (u, v) ∈ Ph,
he obtains a reward r(u, v) while the defender receives a

211

Figure 1: In this example, two pairs of mission-critical
end hosts which need to exchange data are Ph =
{(0, 1), (2, 3)}. These two pairs of hosts has to exchange
data via fixed routing paths (0 → 4 → 1) and (2 →
5 → 8 → 3) respectively. Thus, the set of mission-
critical nodes is Vc = {0, 4, 1, 2, 5, 8, 3}. Suppose the at-
tacker can compromise three nodes at most, then a pure-
strategy example of the attacker Aj can be: (i) a set of
compromised nodes Bj = {4, 5, 7}; and (ii) a set of ex-
filtration paths Πj = {πj(4), πj(5)} to exfiltrate traffic
from eavesdropping bots 4 and 5 to the attacker’s server
Sa. These exfiltration paths πj(4) = P(4, 7) ∪ P(7, Sa)
and πj(5) = P(5, 7) ∪ P(7, Sa) relay eavesdropped traf-
fic via relaying bot 7, where P(4, 7) = (4 → 8 → 7),
P(5, 7) = (5 → 6 → 7) and P(7, Sa) = (7 → 9 → Sa)
are routing paths predetermined by the network system.
Suppose the defender has only one detection resource, then
if the defender allocates this detector on node 8, the attacker
fails at exfiltrating traffic from node 4 since 8 ∈ πj(4) while
succeeding at node 5 since 8 /∈ πj(5).

penalty −r(u, v). Conversely, if the defender deploys a
detector on the exfiltration path π(b, Sa) of the attacker’s
eavesdropping bot b, both players receive a payoff of zero.

We can now determine the payoff of the players if the
players play (Di,Aj). In particular, the defender receives
a payoff Ud(Di,Aj) and the attacker receives a payoff
Ua(Di,Aj) which are determined as follows:

Ud(Di,Aj) = −
∑

(u,v)∈Ph

r(u, v)I(u, v) (2)

Ua(Di,Aj) =
∑

(u,v)∈Ph

r(u, v)I(u, v) (3)

where I(u, v) implies whether the attacker successfully ex-
filtrates the traffic of the pair of the mission-critical end hosts

Algorithm 1: ORANI Algorithm Overview
1 Initialize the sets of pure strategies: A = {Aj} and

D = {Di} for some j and i;
2 repeat
3 (x∗, a∗) = MaximinCore(D,A);
4 Do = DefenderOracle(a∗);
5 Ao = AttackerOracle(x∗);
6 A = A ∪ {Ao}, D = D ∪ {Do}
7 until converge;

(u, v) ∈ Ph or not, which is determined as follows:

I(u, v)=

{
1 if ∃b∈Bj s.t. b∈P(u, v) and Di∩πj(b, S

a)=∅
0 otherwise

(4)

The expected utility the players receive when the defender
plays x while the attacker plays Aj is computed as follows:

Ud(x,Aj) =
∑
i

xiU
d(Di,Aj) (5)

Ua(x,Aj) =
∑
i

xiU
a(Di,Aj) (6)

In botnet defense games, the defender chooses a mixed strat-
egy x, and the attacker chooses a best response against x. A
defender mixed strategy that maximizes her utility given the
attacker plays a best response and breaks tie in favor of the
defender constitutes a Strong Stackelberg Equilibrium (SSE)
of the game. Given the new game model, our second main
contribution lies on providing a new algorithm, ORANI, for
computing an optimal defense strategy in zero-sum games.

Overview of ORANI Algorithm

In zero-sum games, any defender’s SSE strategy is also a
Maximin strategy (Yin et al. 2010). Therefore, finding an
optimal defense mixed strategy is formulated as follows:

maxx Ud
∗ (7)

s.t. Ud
∗ ≤ Ud(x,Aj), ∀j (8)∑

i
xi = 1, xi ∈ [0, 1], ∀i. (9)

where Ud
∗ is the defender’s utility for playing a mixed strat-

egy x that we aim to maximize. Constraint (8) ensures the
attacker will choose an optimal action against x, leading to
the lowest utility for the defender. Essentially, solving (7–9)
is computationally expensive due to an exponential number
of pure strategies of the defender and the attacker involved.
To overcome this computational challenge, ORANI ap-
plies the double oracle method – a commonly-used standard
method to solve massive zero-sum games (Jain et al. 2011;
McMahan, Gordon, and Blum 2003). The general overview
of ORANI is sketched in Algorithm 1.

Essentially, our ORANI algorithm starts by solving a
maximin sub-game of (7–9) by considering only a small sub-
set of pure strategies for the defender D and the attacker A
(Line 3). By solving this sub-game, we obtain a solution

212

of the defender and attacker’s mixed strategies (x∗, a∗) w.r.t
the current (D,A). Then ORANI iteratively adds new best
pure strategies Do and Ao to the current strategy sets in the
defender and the attacker’s oracles respectively (Lines (4–
6)). These strategies Do and Ao are chosen such that max-
imizing the defender’s and the attacker’s utility against the
attacker and the defender’s current mixed strategy a∗ and x∗
respectively. This iteration process continues until the solu-
tion converges (i.e., no new pure strategy can be added to
improve the defender and the attacker’s utilities). Previous
work showed that once the double oracle converges, the cur-
rent solution of the algorithm must be an equilibrium of the
game (McMahan, Gordon, and Blum 2003). Following this
general algorithmic framework, our main contributions of
ORANI lies on providing new MILPs to solve the attacker
and the defender oracle in botnet defense games.

ORANI: Attacker Oracle

The attacker oracle attempts to find a new pure strategy for
the attacker that maximizes his utility against the current
mixed strategy of the defender x∗ returned by Maximin-
Core. We first represent a MILP to solve the attacker oracle
problem and then show that the problem is NP-hard.

Attacker Strategy Representation

We first parameterize each pure strategy of the attacker as
follows: (i) we represent a set of compromised nodes of the
attacker using compromising variables z = {zw} where w ∈
V, indicating if the attacker compromises that node (zw =
1) or not (zw = 0); and (ii) we represent exfiltration paths
via path-exfiltration variables q = {qc(u, v)} where u ∈
V and v ∈ V ∪ {Sa} which refer to the exfiltration path
from the mission-critical node c ∈ Vc to the attacker server
Sa. In particular, when zc = zu = zv = 1, qc(u, v) = 1
if the exfiltration path from the eavesdropping bot c ∈ Vc

includes the routing path P(u, v) between two bots (u, v).
Otherwise, qc(u, v) = 0. Note that qc(u, v) = 0 for all
(u, v, c) where either c or u or v is not compromised.

We now represent required constraints on the strategy
variables (z,q) as shown in (10–15) where constraints (10–
12) enforce that there is only a single exfiltration path for ex-
filtrating traffic from the mission-critical node c ∈ Vc to the
attacker’s server Sa if node c is compromised (zc = 1). In
particular, when zc = 1, constraint (10) indicates that there
is a single out-exfiltration path from node c and constraint
(11) imposes that there is only a single in-exfiltration path
to the attacker’s server Sa. Otherwise, when c is not com-
promised zc = 0, there is no exfiltration path from c. Con-
straint (12) ensures the flow reservation condition to hold
w.r.t to the mission-critical node c. In other words, the to-
tal number of in-exfiltration paths to a node v must be equal
to the total number of out-exfiltration paths from that node.
Furthermore, constraints (13–14) guarantee that exfiltration
paths are determined upon compromised nodes only (i.e., if
either zu = 0 or zv = 0, then qc(u, v) = 0). Finally, con-
straint (15) ensures that the total number of compromised

nodes does not exceed the attacker’s resource limit, Ka.∑
u∈V∪{Sa}\{c}

qc(c, u) = zc, ∀c ∈ Vc (10)

∑
u∈V

qc(u, S
a) = zc, ∀c ∈ Vc (11)∑

u∈V\{v}
qc(u, v) =

∑
w∈V∪{Sa}\{v}

qc(v, w), (12)

∀v ∈ V \ {c}, ∀c ∈ Vc

qc(u, v) ≤ zu, ∀u∈V, v∈V∪{Sa}\{c}, c∈Vc (13)
qc(u, v) ≤ zv, ∀u ∈ V, v ∈ V \ {c}, c ∈ Vc (14)∑

z∈V
zw ≤ Ka, ∀w ∈ V (15)

Traffic Exfiltration Representation

Given the attacker’s pure strategy (z,q), we then introduce
traffic-exfiltration variables h = {hi(c)}, implying if the
attacker can successfully exfiltrate traffic from the mission-
critical node c ∈ Vc (i.e., hi(c) = 1) or not (i.e., hi(c) = 0)
given the defender’s strategy Di ∈ D. Essentially, given
an eavesdropping bot c ∈ Vc (i.e., zc = 1), then hi(c) =
1 only when the defender does not deploys a detector on
the exfiltration path from node c to the attacker’s server Sa.
Otherwise, hi(c) = 0. Therefore, the required constraints
for h = {hi(c)} can be represented as:
hi(c) ≤ 1− qc(u, v), ∀c ∈ Vc, u ∈ V, v ∈ V ∪ {Sa} \ {u, c},
and ∀i s.t. P(u, v) ∩Di
= ∅ (16)
hi(c) ≤ zc, ∀c ∈ Vc, ∀i. (17)

where constraint (16) enforces that the attacker can not
successfully exfiltrate traffic from the mission-critical node
c ∈ Vc (i.e., hi(c) = 0) if the defender’s pure strategy
Di deploys a detector on the exfiltration path of c (i.e.,
qc(u, v) = 1 and P(u, v) ∩ Di 	= ∅ for some (u, v)). Fur-
thermore, constraint (17) implies that the traffic exfiltration
of node c is considered only when that node is compromised.
In other words, hi(c) is forced to be zero if zc = 0.

Attacker Reward Representation

Finally, we introduce reward variables I = {Ii(u, v)} where
(u, v) ∈ Ph, implying if the attacker successfully exfiltrates
the traffic between two mission-critical end hosts (u, v) ∈
Ph (i.e., Ii(u, v) = 1) or not (Ii(u, v) = 0) given that the
defender plays the pure strategy Di and the attacker plays
(z,q). In particular, given the exfiltration variables h =
{hi(c)}, the reward variables I = {Ii(u, v)} with (u, v) ∈
Ph are determined as follows:

Ii(u, v) =

{
1 if ∃c ∈ P(u, v) s.t. hi(c) = 1

0 otherwise
(18)

Therefore, we have the following required constraints for the
attacker reward variables:

Ii(u, v) ≤
∑

c∈P(u,v)

hi(c), ∀(u, v) ∈ Ph, ∀i (19)

which implies that the attacker can not successfully exfil-
trate traffic of the pair (u, v) ∈ Ph if he fails at exfiltrating
from any eavesdropping bots on the routing path P(u, v).
Specifically, Ii(u, v) = 0 when hi(c) = 0 ∀c ∈ P(u, v).

213

Algorithm 2: Attacker Greedy Heuristic
1 Initialize set of compromised nodes Bc = ∅, set of

exfiltration paths Π = ∅, attacker utility greedyU = 0;
2 repeat
3 for u ∈ V \Bc do
4 (Π(u), utility(u)) = optExPaths(x∗,Bc∪{u});
5 if utility(u) > greedyU then
6 greedyU = utility(u);
7 Π = Π(u);
8 u∗ = u;

9 Bc = Bc ∪ {u∗};
10 until |Bc| = Ka;

MILP Representation

Considering the reward variables I = {Ii(u, v)}, given that
the defender plays x∗ and the attacker plays (z,q), the at-
tacker obtains a utility which is computed as follows:

Ua(x∗, (z,q)) =
∑

Di∈D

xi

∑
(u,v)∈Ph

r(u, v)Ii(u, v) (20)

The problem of computing an optimal pure strategy for the
attacker can be now formulated as the following MILP:

max
z,q,h,I

Ua(x∗, (z,q)) (21)

s.t. Attacker strategy constraints (10–15) (22)
Traffic exfiltration constraints (16–17) (23)
Attacker reward constraints (19) (24)
qc(u, v) ∈ [0, 1], Ii(u, v) ∈ [0, 1], ∀u, v, c, i (25)
zw ∈ {0, 1}, hi(c) ∈ {0, 1}, ∀w, c, i. (26)

where only z = {zw} and h = {hi(c)} are required to be
binary (constraint (26)).

Theorem 1. The MILP (21–26) returns an optimal pure
strategy for the attacker against x∗.1

Finally, we obtain Proposition 1. The detail of the proof is
in the Online Appendix C. Next, we introduce a new greedy
heuristic to approximately solve the attacker oracle.

Proposition 1. The attacker oracle problem is NP-hard.

Attacker Greedy Heuristic

The general idea of the attacker greedy heuristic is out-
lined in Algorithm 2. Essentially, the heuristic iteratively
adds the next best node to compromise to the current set
of compromised nodes until the number of compromised
nodes reaches the resource limit Ka. In particular, at
each iteration, given the current set of compromised nodes
Bc, the greedy heuristic searches over all uncompromised
nodes u ∈ V \ Bc of the network to find the best next
node for the attacker to compromise such that his utility is
maximized. The core part of the greedy algorithm is the

1The proof of the theorem is in the Online Appendix B:
https://www.dropbox.com/s/s5lpoxt4mwn822p/appendix.pdf?dl=0

optExPaths(x∗,Bc∪{u}) method which determines the op-
timal exfiltration paths given the compromised set Bc ∪{u}
and the defender strategy x∗.

Overall, the problem of finding an optimal set of exfil-
tration paths for the attacker given a set of compromised
nodes Bc ∪ {u} and the defender’s strategy x∗ can be rep-
resented as a MILP which is a simplification of (21–26) in
which the compromising variables z = {zw} are no longer
needed. Furthermore, the path-exfiltration variables, traffic-
exfiltration variables, and reward variables are now defined
only upon the current set of compromised nodes Bc ∪ {u}
instead of the whole node set V. As a result, the total
number of variables and constraints involved in the result-
ing MILP is reduced significantly. Finally, although the at-
tacker greedy heuristic helps in reducing the computational
time of the attacker oracle, the core part of the heuristic,
optExPaths(x∗,Bc ∪ {u}), remains NP-hard.

ORANI: Defender Oracle

The defender oracle attempts to find a new defense pure
strategy which maximizes the defender utility against the
current mixed strategy of the attacker a∗ = {a∗j} returned
by MaximinCore. Here, a∗j is the probability that the at-
tacker will follow the pure strategy Aj such that

∑
j a

∗
j =

1, a∗j ∈ [0, 1]. We first present a new MILP to solve this
defender oracle and then show that the problem is NP-hard.
MILP Representation. We first parameterize a pure strat-
egy of the defender using detection variables z = {zw}
where w ∈ V. In particular, zw = 1 if the defender deploys
a detector on node w. Otherwise, zw = 0. In addition, given
that the attacker plays Aj and the defender plays z, we in-
troduce reward variables I = {Ij(u, v)} where (u, v) ∈ Ph,
implying whether the attacker successfully exfiltrates the
traffic of (u, v) (i.e., Ij(u, v) = 1) or not (Ij(u, v) = 0).
Then the following condition is required:

Ij(u, v) =

⎧⎨
⎩
1 if ∃c ∈ Bj s.t. c ∈ P(u, v) and

zw = 0 for all w ∈ πj(c, S
a)

0 otherwise
(27)

Considering the reward variables I = {Ij(u, v)}, given that
the attacker plays a∗ and the defender plays z, the defender
obtains a utility which is computed as follows:

Ud(z, a∗) = −
∑

Aj∈A

a∗j
∑

(u,v)∈Ph

r(u, v)Ij(u, v) (28)

Then the problem of finding an optimal pure defense strat-
egy that maximizes the defender’s utility against the at-
tacker’s strategy a∗ can be formulated as the MILP (29–32).

max
z,I

Ud(z,a∗) (29)

s.t. Ij(u, v) ≥ 1−
∑

w∈πj(c,Sa)
zw, (30)

∀c ∈ P(u, v) ∩Bj , ∀(u, v) ∈ Ph, ∀j∑
w∈V

zw ≤ Kd, zw ∈ {0, 1}, ∀w ∈ V (31)

Ij(u, v) ∈ [0, 1], ∀j, ∀(u, v) ∈ Ph. (32)

214

In (29–32), only z = {zw} are required to be binary. In par-
ticular, constraint (30) ensures that Ij(u, v) = 1 when the
attacker successfully exfiltrates from an eavesdropping bot
c ∈ P(u, v)∩Bj (i.e., the defender does not deploy a detec-
tor on the exfiltration path of that bot). On the other hand,
since the MILP attempts to maximize the defender’s utility
(Equation 29) which is a monotonically decreasing function
of Ij(u, v), then any MILP solver will automatically force
Ij(u, v) = 0 if possible given constraint (32). Finally, con-
straints (31) guarantee that the number of resources for the
defender does not exceed the limit Kd.

We provide Proposition 2 w.r.t the complexity of the de-
fender oracle. Its proof is in the Online Appendix D.
Proposition 2. The defender oracle problem is NP-hard.
Defender Greedy Heuristic. We introduce a new defender
greedy heuristic to approximately solve the defender oracle
in polynomial time. The overview of this greedy heuristic
is similar to Algorithm 2. Essentially, given the attacker’s
mixed strategy a∗ and an initially empty set of monitored
nodes Dc, the greedy heuristic iteratively adds the next
best node to monitor to the set Dc until |Dc| = Kd. At
each iteration, given the current set of monitored nodes Dc,
the greedy heuristic searches over all unmonitored nodes
u ∈ V\Dc of the network to find the best next node to moni-
tor such that the defender’s utility is maximized. Since com-
puting the defender’s utility given a set of monitored nodes
and the attacker’s strategy a∗ is polynomial (Equations 2 and
4), our defender greedy heuristic is of polynomial time.

Experiments

We aim at evaluating both solution quality and runtime per-
formance of our algorithms. We conduct experiments based
on two different datasets: (i) synthetic network topology —
we use JGraphT (Naveh and Contributors 2009), a free Java
graph library, to randomly generate scale-free graphs used
in our experiments since many real-world network topolo-
gies exhibit the power-law property (Faloutsos, Faloutsos,
and Faloutsos 1999); and (ii) real-world network topology
— we derive different network topologies from the Rocket-
fuel network topology dataset (Rocketfuel 2002). Each data
point in our results is averaged over 50 different samples of
network topologies. We compare six different algorithms:
1) ORANI – both exact oracles; 2) ORANI-AttG – exact
defender oracle and greedy attacker oracle; 3) ORANI-G
– both greedy oracles; 4& 5) CWP & ECWP – heuristics
proposed by (Venkatesan et al. 2016) to generate a defense
mixed strategy based on the centrality values of nodes in the
network; and 6) Uniform – generating a uniform defense
mixed strategy. We consider CWP, ECWP, and Uniform as
the three baseline algorithms.

Synthetic Network Topology

In the first experiment (Figure 2(a)), we examine solution
quality of the algorithms with varying graph size. In par-
ticular, in Figure 2(a), the x-axis is the number of nodes in
each graph. The y-axis is the averaged expected utility of the
defender obtained by the evaluated algorithms. The number
of defender resources, Kd, and of attacker resources, Ka,

(a) Varying #nodes (b) Varying #attacker resources

(c) Greedy enhancement (d) Iteration convergence

Figure 2: Evaluations on random scale-free graphs

are chosen to be 10% and 15% of the graph nodes respec-
tively. The number of pairs of end hosts to exchange data
is 10%× |V| and the traffic value associated with each pair
is generated uniformly at random within [0, 1]. Intuitively,
the higher averaged expected utility an algorithm gets, the
better the solution quality of the algorithm is. Figure 2(a)
shows that all of our algorithms, ORANI, ORANI-AttG,
ORANI-G defeat the baseline algorithms in obtaining a sig-
nificant higher utility for the defender. Figure 2(a) also
shows that ORANI-AttG and ORANI-G obtain a lower de-
fender’s utility compared to ORANI as expected. Neverthe-
less, we show later that the greedy heuristics help in reduc-
ing the solving time of double oracle.

In our second experiment (Figure 2(b)), we fix |V| = 20
and Kd = 20%× |V| while varying the number of attacker
resources, Ka. We aim at examining the solution quality
of our algorithms in terms of the defender’s expected utility
when Ka increases. In Figure 2(b), the y-axis is the ratio of
the attacker resources to the graph size. Figure 2(b) shows
that when Ka increases, the decrease in defender’s expected
utility obtained by ORANI is small. In addition, Figure 2(b)
shows the gap in the defender’ utility between ORANI and
ORANI-AttG is getting smaller when Ka increases. This
result implies that the attacker greedy heuristic can provide
a solution for the attacker oracle closer to the optimal one
w.r.t the increase in Ka. As a result, ORANI-AttG reaches
to a closer optimal defense strategy.

Based on this finding, we anticipate that the solution
quality of ORANI-AttG and ORANI-G can be enhanced
for any game instance by conservatively assuming a larger
Ka than the true Ka. Indeed, our third experimental re-
sult (Figure 2(c)) confirms our anticipation. In this exper-
iment, we set Ka = 20% × |V|. In addition to ORANI,
ORANI-AttG, ORANI-G, we evaluate the other two al-
gorithms, called ORANI-AttG-L and ORANI-G-L, which
find a defense strategy assuming a larger Ka = 40%× |V|.
In Figure 2(c), the x-axis is the number of nodes in the net-
work and the y-axis is the defender’s expected utility on av-

215

erage against the attacker’s best response with Ka = 20%×
|V|. Figure 2(c) clearly shows that both ORANI-AttG-L
and ORANI-G-L obtain a higher utility for the defender
compared to ORANI-AttG and ORANI-G respectively.

In our fourth experiment (Figure 2(d)), we examine the
convergence of the double oracle used in ORANI. The x-
axis is the number of iterations of adding new strategies for
both players until convergence. In addition, the y-axis is
the average of the defender’s expected utility at each iter-
ation w.r.t the defender oracle, the attacker oracle, and the
Maximin core. Figure 2(d) shows that ORANI converges
quickly after approximately 19 iterations. This result shows
there is only a small set of pure strategies of players involved
in the game equilibrium even though there is an exponential
number of strategies in total. In addition, ORANI can find
this set of pure strategies after a small number of iterations.

Figure 3: Runtime performance

Lastly, in our fifth
experiment (Fig-
ure 3), we investigate
the runtime perfor-
mance. In Figure 3,
the x-axis is the
number of nodes in
the graphs and the
y-axis is the runtime
on average in hun-
dred seconds. As
expected, ORANI’s
runtime grows exponentially when the number of nodes
increases. By using the greedy heuristics, ORANI-AttG
and ORANI-G run faster compared to ORANI.

Real-world Network Topology

Our second set of experiments is conducted on real-world
network topologies from the Rocket-fuel dataset (Rocketfuel
2002). Overall, the dataset provides router-level topologies
of 10 different ISP networks: Telstra, Sprintlink, Ebone, Ve-
rio, Tiscali, Level3, Exodus, VSNL, Abovenet, and AT&T.
In this set of experiments, we mainly focus on evaluating the
solution quality of our algorithms compared with the three
baseline algorithms. For each of our experiments, we ran-
domly sample 50 24-node sub-graphs from every network
topology using random walk. In addition, we assume that all
external routers located outside the ISP can potentially route
traffic to the attacker’s server. Each data point in our ex-
perimental results is averaged over 50 different graph sam-
ples. The defender’s averaged expected utility obtained by
the evaluated algorithms is shown in Table 1.

Table 1 shows that all of our algorithms obtain a sig-
nificantly higher expected utility for the defender than the
three baseline algorithms. Moreover, our greedy-based algo-
rithms: ORANI-AttG and ORANI-G are shown to consis-
tently perform well on all the ISP network topologies com-
pared to the optimal one: ORANI. For example, the de-
fender’s utility obtained by ORANI-G is only ≈ 7% lower
than ORANI on average over the 10 network topologies.

Dataset ORANI ORANI
-AttG

ORANI
-G CWP ECWP Uniform

Telstra -0.59 -0.66 -0.68 -1.08 -1.10 -1.08
Sprintlink -0.55 -0.55 -0.58 -1.06 -1.06 -1.09
Ebone -0.71 -0.75 -0.77 -0.96 -0.97 -0.89
Verio -0.48 -0.49 -0.51 -0.92 -0.93 -0.95

Tiscali -0.75 -0.79 -0.80 -1.10 -1.10 -1.05
Level3 -0.75 -0.76 -0.82 -1.01 -1.01 -0.94
Exodus -0.83 -0.85 -0.88 -1.06 -1.07 -0.99
VSNL -0.86 -0.88 -0.90 -1.11 -1.11 -1.02

Abovenet -0.82 -0.85 -0.89 -1.14 -1.14 -1.06
AT&T -0.40 -0.41 -0.42 -0.96 -0.94 -0.97

Table 1: Evaluations on real-world network topologies

Conclusion

Many computer networks have been suffered from botnet
data exfiltration attacks, leading to a significant research em-
phasis on botnet defense. In this work, we introduce a new
Stackelberg game model for the botnet defense problem,
taking into account the strategic response of cyber criminals
to deployed defenses. Given our game model, we propose
a new double oracle based algorithm, ORANI, to compute
an optimal defense strategy to allocate limited detection re-
sources on computers in a network to deter botnet traffic ex-
filtration. We also provide new greedy heuristics to approxi-
mately solve the defender and the attacker best-response or-
acles of ORANI. We conduct extensive experiments based
on both random scale-free graphs and 10 real-world ISP net-
work topologies, demonstrating the significant advances of
our game theoretic solution compared to existing work.

Acknowledgements: This work was supported in part by MURI
grant W911NF-13-1-0421 from the US Army Research Office.

References

Bacher, P.; Holz, T.; Kotter, M.; and Wicherski, G. 2005.
Know your enemy: Tracking botnets. Technical report.
Basilico, N.; Gatti, N.; and Amigoni, F. 2009. Leader-
follower strategies for robotic patrolling in environments
with arbitrary topologies. In AAMAS, 57–64.
Bensoussan, A.; Kantarcioglu, M.; and Hoe, S. C. 2010. A
game-theoretical approach for finding optimal strategies in
a botnet defense model. In GameSec, 135–148. Springer.
Choi, H.; Lee, H.; Lee, H.; and Kim, H. 2007. Botnet
detection by monitoring group activities in dns traffic. In
CIT, 715–720. IEEE.
Cooke, E.; Jahanian, F.; and McPherson, D. 2005. The
zombie roundup: Understanding, detecting, and disrupting
botnets. SRUTI 5:6–6.
Demarest, J. 2014. Taking down botnets. Statement before
the Senate Judiciary Committee, Subcommittee on Crime
and Terrorism.
Faloutsos, M.; Faloutsos, P.; and Faloutsos, C. 1999. On
power-law relationships of the internet topology. In ACM
SIGCOMM CCR, volume 29, 251–262. ACM.
Fang, F.; Nguyen, T. H.; Pickles, R.; Lam, W. Y.; Clements,
G. R.; An, B.; Singh, A.; Tambe, M.; and Lemieux, A. 2016.

216

Deploying PAWS: Field optimization of the protection assis-
tant for wildlife security. In IAAI.
Feily, M.; Shahrestani, A.; and Ramadass, S. 2009. A survey
of botnet and botnet detection. In SECURWARE, 268–273.
IEEE.
Gu, G.; Porras, P. A.; Yegneswaran, V.; Fong, M. W.; and
Lee, W. 2007. Bothunter: Detecting malware infection
through ids-driven dialog correlation. In Usenix Security,
volume 7, 1–16.
Gu, G.; Perdisci, R.; Zhang, J.; Lee, W.; et al. 2008. Bot-
miner: Clustering analysis of network traffic for protocol-
and structure-independent botnet detection. In USENIX Se-
curity Symposium, volume 5, 139–154.
Gu, G.; Zhang, J.; and Lee, W. 2008. Botsniffer: Detecting
botnet command and control channels in network traffic.
Holz, T.; Engelberth, M.; and Freiling, F. 2009. Learning
more about the underground economy: A case-study of key-
loggers and dropzones. In ESORICS, 1–18. Springer.
Jain, M.; Korzhyk, D.; Vaněk, O.; Conitzer, V.; Pěchouček,
M.; and Tambe, M. 2011. A double oracle algorithm for
zero-sum security games on graphs. In AAMAS, 327–334.
Kolokoltsov, V., and Bensoussan, A. 2015. Mean-field-game
model for botnet defense in cyber-security. arXiv preprint
arXiv:1511.06642.
Letchford, J., and Vorobeychik, Y. 2011. Computing ran-
domized security strategies in networked domains. Applied
Adversarial Reasoning and Risk Modeling 11:06.
Mc Carthy, S. M.; Sinha, A.; Tambe, M.; and Manadhata, P.
2016. Data exfiltration detection and prevention: Virtually
distributed POMDPs for practically safer networks. In Sev-
enth Conference on Decision and Game Theory for Security.
McMahan, H. B.; Gordon, G. J.; and Blum, A. 2003. Plan-
ning in the presence of cost functions controlled by an ad-
versary. In ICML, 536–543.
Naveh, B., and Contributors. 2009. JGraphT – a free java
graph library.
Peng, T.; Leckie, C.; and Ramamohanarao, K. 2007. Sur-
vey of network-based defense mechanisms countering the
dos and ddos problems. ACM Computing Surveys (CSUR)
39(1):3.
Rocketfuel. 2002. Rocketfuel: an ISP topology mapping
engine.
Shieh, E.; An, B.; Yang, R.; Tambe, M.; Baldwin, C.; Di-
Renzo, J.; Maule, B.; and Meyer, G. 2012. PROTECT: A
deployed game theoretic system to protect the ports of the
United States. In AAMAS.
Soper, B., and Musacchio, J. 2014. A botnet detection game.
In Allerton, 294–303. IEEE.
Soper, B. C. 2015. Non-zero-sum, adversarial detection
games in network security.
Stone-Gross, B.; Cova, M.; Cavallaro, L.; Gilbert, B.; Szyd-
lowski, M.; Kemmerer, R.; Kruegel, C.; and Vigna, G. 2009.
Your botnet is my botnet: Analysis of a botnet takeover. In
ACM CCS, 635–647.

Strayer, W. T.; Lapsely, D.; Walsh, R.; and Livadas, C. 2008.
Botnet detection based on network behavior. In Botnet De-
tection. Springer. 1–24.
Tambe, M., ed. 2011. Security and Game Theory: Algo-
rithms, Deployed Systems, Lessons Learned. Cambridge
University Press.
Vaněk, O.; Yin, Z.; Jain, M.; Bošanskỳ, B.; Tambe, M.; and
Pěchouček, M. 2012. Game-theoretic resource allocation
for malicious packet detection in computer networks. In AA-
MAS, 905–912.
Venkatesan, S.; Albanese, M.; and Jajodia, S. 2015. Disrupt-
ing stealthy botnets through strategic placement of detectors.
In IEEE CNS, 95–103.
Venkatesan, S.; Albanese, M.; Cybenko, G.; and Jajodia,
S. 2016. A moving target defense approach to disrupting
stealthy botnets. In ACM.
Yin, Z.; Korzhyk, D.; Kiekintveld, C.; Conitzer, V.; and
Tambe, M. 2010. Stackelberg vs. nash in security games:
Interchangeability, equivalence, and uniqueness. In AAMAS,
1139–1146.

217

