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Abstract

Skin lesion identification is a key step toward dermatological
diagnosis. When describing a skin lesion, it is very important
to note its body site distribution as many skin diseases com-
monly affect particular parts of the body. To exploit the corre-
lation between skin lesions and their body site distributions,
in this study, we investigate the possibility of improving skin
lesion classification using the additional context information
provided by body location. Specifically, we build a deep
multi-task learning (MTL) framework to jointly optimize skin
lesion classification and body location classification (the lat-
ter is used as an inductive bias). Our MTL framework uses
the state-of-the-art ImageNet pretrained model with special-
ized loss functions for the two related tasks. Our experiments
show that the proposed MTL based method performs more
robustly than its standalone (single-task) counterpart.

Introduction

Visual aspects of skin diseases, especially skin lesions, play
a key role in dermatological diagnosis. A successful identifi-
cation of the skin lesion allows skin disorders to be placed in
certain diagnostic categories where specific diagnosis can be
established (Cecil, Goldman, and Schafer 2012). However,
categorization of skin lesions is a challenging process. It
usually involves identifying the specific morphology, distri-
bution, color, shape and arrangement of lesions. When these
components are analyzed separately, the differentiation of
skin lesions can be quite complex and requires a great deal
of experience and expertise (Lawrence and Cox 2002).

Besides the high requirement of expertise, the categoriza-
tion of skin lesions by human is essentially subjective and
not always reproducible. To achieve a more objective and
reliable lesion recognition and ease the process of derma-
tological diagnosis, a computer-aided skin lesion classifica-
tion system should be considered. Traditional approaches to
computer-aided skin lesion/disease classification usually fo-
cus on certain types of skin diseases, such as melanoma and
basal cell carcinoma, where the visual aspects of skin lesions
are more regular and predictable. In those cases, human-
engineered feature extraction algorithms can be easily devel-
oped. However, when we extend the lesion types to a broader
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range where all the possible combinations of lesional char-
acteristics need to be considered, human-engineered feature
extraction becomes infeasible and the traditional approaches
fail.

Deep convolutional neural networks (CNNs) have shown
to be very successful in recent years. Specifically, the vision
challenges from ILSVRC (Russakovsky et al. 2015) and MS
COCO (Lin et al. 2014) show that contemporary CNN ar-
chitectures are able to surpass human in many vision tasks.
One thing behind the success of CNN is its ability to do fea-
ture engineering automatically from a large-scale dataset. It
has been reported by many studies (Razavian et al. 2014;
Donahue et al. 2014; Zeiler and Fergus 2014) that features
extracted by contemporary CNNs yield consistent superior
results compared to the highly tuned non-CNN counterparts
in many tasks. Therefore, in this study, we propose to de-
velop a skin lesion classification model based on the state-
of-the-art CNN architectures.

However, instead of treating the skin lesion classifica-
tion as a standalone problem and training a CNN model
using skin lesion labels only, we further propose to jointly
optimize the skin lesion classification with a related auxil-
iary task, body location classification. The motivation be-
hind this design is to make use of the body site predilec-
tion of skin diseases (Cox and Coulson 2004) as it has long
been recognized by dermatologists that many skin diseases
and their corresponding skin lesions are correlated with their
body site manifestation. For example, a skin lesion caused
by sun exposure is only present in sun-exposed areas of the
body (face, neck, hands, arms) (Cecil, Goldman, and Schafer
2012). Therefore, a CNN architecture that can exploit the
domain-specific information contained in the body locations
should be intuitively helpful in improving the performance
of our skin lesion classification model.

In this study, we present a multi-task learning framework
for universal skin lesion (all lesion types) classification using
deep convolutional neural networks. In order to learn a wide
variety of visual aspect of skin lesions, we first collect 21657
images from DermQuest (www.dermquest.com), a public
skin disease atlas contributed by dermatologists around the
world. We then formulate our model into a dual-task based
learning problem with specialized loss functions for each
task. Next, to boost the performance, we fit our model into
the state-of-the-art deep residual network (ResNet) (He et
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al. 2015) which is the winning entry of ILSVRC 2015 (Rus-
sakovsky et al. 2015) and MS COCO 2015 (Lin et al. 2014).
Contribution: To our best knowledge, this is the first at-
tempt to target the universal skin lesion classification prob-
lem systematically using a deep multi-task learning frame-
work. We show that the jointly learned representations from
body locations indeed facilitate the learning for skin lesion
classification. Using the state-of-the-art CNN architecture
and combining the results from different models we can
achieve as high as a 0.80 mean average precision (mAP) in
classifying skin lesions.

Related Work

Most of the existing works (Arroyo and Zapirain 2014;
Xie et al. 2014; Fabbrocini et al. 2014) only focus on one
or a few skin disease and solve the problem using conven-
tional machine learning approach, i.e., extracting manually
engineered features from segmented lesion patches and clas-
sifying with a linear classifier such as SVM. While in our
study, we target a more challenging problem where all skin
diseases are considered.

Many CNN related approaches have been proposed to
solve dermatology problems in recent years. Some works
(Cruz-Roa et al. 2014; Wang et al. 2014; Arevalo et al. 2015)
used CNNs as an unsupervised feature extractor and detect
mitosis, an indicator of cancer, from histopathology images.
(Esteva, Kuprel, and Thrun 2015) presented a CNN architec-
ture for diagnosis-targeted skin disease classification. They
trained their model with a contemporary CNN architecture
using a large-scale dataset (23000 images). Similar to our
study, they also tried to classify skin diseases in a broader
range. What sets us apart from their work is instead of train-
ing with diagnosis labels and making diagnostic decision
directly, our work classifies skin diseases by their lesional
characteristics. According to a recent study (Liao, Li, and
Luo 2016), skin lesion is proven to be a more appropri-
ate subject for skin disease classification as many diagnoses
can not be distinguished visually. Recently, (Kawahara, Ben-
Taieb, and Hamarneh 2016) also proposed a CNN based
model to classify skin lesions for non-dermoscopic images.
However, they only managed to build their model on a prior
art CNN architecture with a relatively small dataset (1300
images).

Multi-task learning (MTL) (Caruana 1997) is an approach
to learning a main task together with other related tasks
in parallel with the goal of a better generalization perfor-
mance. Learning multiple tasks jointly has been proven to
be very effective in many computer vision problems, such as
attribute classification (Hand and Chellappa 2016), face de-
tection (Ranjan, Patel, and Chellappa 2016), face alignment
(Zhang et al. 2016) and object detection (Ren et al. 2015).
However, we find no multi-task learning based algorithm has
been developed for dermatology related problems.

Dataset

All the dermatology images used in this study are collected
from DermQuest. We choose DermQuest against other der-
matology atlantes is because it has the most detailed annota-
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Figure 1: The correlation matrix between skin lesion and
body location. Each row denotes a skin lesion and each col-
umn denotes a body location. A cell at (i, j) denotes the pro-
portion of the images with both label i and label j among all
the i images (best viewed in color).

tions and descriptions for each of the dermatology image and
it is the only public dermatology atlas that contains both skin
lesion and body location labels. Most of the dermatology im-
ages from DermQuest are contributed by individual derma-
tologists. When contributing an image, they are required to
input the descriptions (diagnosis, primary lesions, body lo-
cation, pathophysiology, etc.) by their own. As the terminol-
ogy used by dermatologists are not unified, they may use dif-
ferent terms and morphologies when describing a dermatol-
ogy image which results in an inconsistency of DermQuest
images.

Due to the inconsistency, there are 180 lesion types in to-
tal in the DermQuest atlas , which is larger than any of the
existing lesion morphology. Therefore, with the help of a
dermatologist, we refined the list of lesion types to make
sure they reasonably and consistently represent the lesional
characteristics of the images in DermQuest. We refine and
merge lesions based on the lesion morphology described in
(Cox and Coulson 2004) with some modifications: 1) We re-
moved those infrequent lesion types (less than 10 images) as
they do not have enough images for our model to learn some
meaningful features. 2) For some popular (greater than 1000
images) sublesion types, such as hyperpigmented papule le-
sion under the papule family, we do not merge them as there
are enough images in the dataset so that our model can dis-
tinguish them from other sublesions under the same family.
3) Some of the lesion types have common visual character-
istics, such atrophy, erosion and ulcer, we also merge them
together. After the refinement, we finally come up with a
lesion morphology list with 25 lesions types for the Der-
mQuest images. Note that there might be multiple lesion la-
bels associated with an image as a skin disease usually man-
ifests different lesional characteristics at a time.
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Figure 2: The network structure of the proposed method. “Conv” denotes the convolutional layer, “Pool” denotes the pooling
layer and “FC” denotes the fully connected layer. The three dark blocks are the data layers for images, skin lesions, and body
locations, respectively. The net architecture inside the dotted area is identical to the ResNet-50 network.

For the body location labels, the terminology used is more
consistent. We do not modify too much except we removed
those infrequent labels as we did for the lesions. We also
merged some body locations that are too specific to not be
mixed with its nearby regions in an image. For example, an
image labeled with nails usually contains parts of the fingers.
Thus, it is actually hard to tell whether it should be labeled
with nails or fingers. Hence, we directly merge them into the
“hands” category. There are 23 body locations in the final
list.

We also investigate the correlation between skin lesions
and body locations among images in DermQuest. The cor-
relation map is shown in Figure 1. Here, each row denotes
a skin lesion and each column denotes a body location. Let
Ni denote the total number of images in our dataset that has
lesion i and Mj denote the total number of images that has
body location j. Then, the cell at (i, j) can be computed by

Rij =
Ni ∩Mj

Ni
(1)

Thus, if a skin lesion frequently appears on certain body
location, we will see a high very value of Rij . On the
other hand, if a skin lesion has no specific predilection of
body locations, then it will appear randomly at different
body locations. Notice that we have 23 body location types.
Thus, the randomness means cells in the corresponding row
should have values close to 1/23, i.e., dark blue in the color
bar. For example, the cells in row “erythema/erythroderm”
are almost in blue, which means “erythema/erythroderm”
has little body location predilection. This is consistent with
our knowledge that “erythema/erythroderm” is a very com-
monly seen lesion that can exists anywhere in the body. We
can also see that “alopecia” is highly correlated with “scalp”.
It makes sense as “alopecia” is a lesion that related with hair
loss.

Methodology

Deep Multi-task Learning

To jointly optimize the main (skin lesion classification) and
auxiliary (body location classification) tasks, we formulate

our problem as follows. Let (Xi,ui, vi), i ∈ {1, . . . N} de-
notes the ith data in the training set, where Xi is the ith
image and ui and vi ∈ {1, . . . , Q} are the ith labels for the
skin lesion and body location, respectively. As multiple le-
sion types may be associated with a dermatology image, the
lesion label ui = [ui

1, u
i
2, . . . , u

i
P ] is a binary vector with

ui
j =

{
1, if the jth lesion is associated with Xi,
0, otherwise.

(2)

Here, P and Q denotes the number of skin lesions and body
locations in our dataset. Our goal is to minimize the objec-
tive function

L(W) =
1

N

N∑
i=1

�les(Xi,ui;W)+

1

N

N∑
i=1

�loc(Xi, vi;W) + Φ(W) (3)

in which W is the parameters of CNN, Φ(·) is a regular-
ization term, �les(·) is the loss function for skin lesions and
�loc(·) is the loss function for body locations.

Since there might be multiple lesions associated with an
input image, we use a sigmoid cross-entropy function for
the skin lesion loss so that each lesion can be optimized in-
dependently. Let sj(Xi;W), j ∈ {1, . . . , P} denotes the
jth output of the last fully-connected (FC) layer for the skin
lesions. Then the jth activation of the sigmoid layer can be
written as

aj(Xi;W) =
1

1 + e−sj(Xi;W)
. (4)

and the corresponding cross-entropy loss is

�les(Xi,ui;W) =−
P∑

j=1

ui
j log aj(Xi;W)+

(1− ui
j) log (1− aj(Xi;W)). (5)

For the body locations, it is a many-one classification prob-
lem. Thus, we use a softmax loss function so that only
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one label will be optimized each time. Let tj(Xi;W), j ∈
{1, . . . , Q} denotes the jth output of the last FC layer for the
body locations. Then the jth activation of the softmax layer
can be written as

bj(Xi;W) =
etj(Xi;W)∑
k e

tk(Xi;W)
(6)

and the corresponding softmax loss is

�loc(Xi, vi;W) = − log(bvi(Xi;W)) (7)

Finally, for the regularization term, we use the L2 norm

Φ(W) = γ‖W‖2 (8)

where the regularization parameter γ controls the trade off
between the regularization term and the loss functions.

Implementation

The architecture of the proposed method is given in Figure
2. We build our CNN architecture on top of ResNet-50 (50
layers). Though it is possible to use a deeper ResNet to get
a marginal performance gain, ResNet-50 is considered suf-
ficient for this proof-of-concept study. To facilitate our goal
in MTL, three data layers are used. One data layer is for the
images and the other two data layers are for the lesion la-
bels and body location labels, respectively. We then remove
the finally FC layer in the original ResNet and add two sib-
ling FC layers, one for the skin lesions and the other for
the body locations. After the FC layers, we add a sigmoid
cross entropy loss layer for the skin lesion classification and
a softmax layer for the body location classification.

We use the Caffe deep learning framework (Jia et al.
2014) for all of our experiments and run the programs with
a GeForce GTX 1070 GPU. As transfer learning has shown
to be more effective in image classification problems (Raza-
vian et al. 2014), instead of training from scratch, we initial-
ize our network from the ImageNet (Deng et al. 2009) pre-
trained ResNet-50 model 1. As a dermatology image may be
taken from different distances, the scale of certain skin le-
sions may vary. Thus, following the practice in (Simonyan
and Zisserman 2014), we scale each image with its shorter
side length randomly selected from [256, 480]. This process
is called scale jittering. Then we follow the ImageNet prac-
tice in which a 224 x 224 crop is randomly sampled from the
mean subtracted images or their horizontal flips. In the test-
ing phase, we perform the standard 10-crops testing using
the strategy from (Krizhevsky, Sutskever, and Hinton 2012).

For the hyper-parameters, we use SGD with a mini-batch
size of 20 and set the momentum to 0.9 and the weight decay
(the regularization parameter) to 0.0001. The initial learning
rate is 0.001 and is reduced by 0.1 when error plateaus. It is
worth mentioning that the two newly added FC layers have
bigger learning rate multipliers (10 for the weights and 20
for the bias) so that their effective learning rate is actually
0.01. We use higher learning rate for these two layers is be-
cause their weights are randomly initialized. The model is

1We also trained the network from scratch but no performance
gain was observed.

trained for up to 12× 104 iterations. Note that this is a rela-
tively large number for fine-tuning. This is because the scale
jittering greatly augmented our dataset and it takes longer
time for the training to converge. During the training, we do
not see any over-fitting from the validation set.

Experimental Results

In this section, we investigate the performance of the pro-
posed method on both the skin lesion classification and body
location classification tasks. In all of our experiments, we
use data collected from DermQuest. In total, there are 21657
images that contain both the skin lesion and body location
labels. To avoid overfitting, 5-folds cross-validation is used
for each experiment.

Performance of Skin Lesion Classification

For skin lesion classification, since it is a multi-label classi-
fication problem, we use mean average precision (mAP) as
the evaluation metrics following the practice in VOC (Ev-
eringham et al. 2010) and ILSVRC. In this study, we use
two different mAPs: 1) class-wised mAP, where we treat the
sorted evaluations of all images on certain class as a rank-
ing and compute the mAP over the classes. 2) image-wised
mAP, where we treat the sorted evaluations of all classes on
certain image as a ranking and compute the mAP over the
images. Formally put, the two metrics can be computed us-
ing the following formulas:

mAP-class =
1

P

P∑
i=1

N∑
j=1

pi(j)Δri(j), (9)

mAP-image =
1

N

N∑
i=1

P∑
j=1

qi(j)Δsi(j), (10)

Here, N is the total number of images, P is the total number
of classes, pi(j) is the precision of the ranking for class i
at cut-off j and Δri(j) is the difference of the recall (of the
ranking for class i) from cut-off j− 1 to j. qi(j) and Δsi(j)
can be defined similarly to pi(j) and Δri(j).

We compare our proposed method with two standalone
architectures (single task) based on AlexNet and ResNet-50,
respectively. For the hyper-parameters of AlexNet, we use
the settings from (Krizhevsky, Sutskever, and Hinton 2012),
i.e., batch size = 256, momentum = 0.9 and weight decay
= 0.0005. For the standalone ResNet-50, we use the same
hyper-parameter settings as our proposed method. Both the
two architectures are fine-tuned from ImageNet pretrained
models with learning rate set to 0.01.

The classification results are shown in Table 1. Here,
“AlexNet” and “ReNet” are the two standalone architec-
tures, “MTL” is our proposed method, and “Ensemble” con-
tains the ensemble results of “ResNet” and “MTL”. First,
we can see “ResNet” outperforms “AlexNet” by a big leap
which shows that the use of the state-of-the-art CNN ar-
chitecture helps a lot in boosting the performance. Then,
we also observe a decent performance improvement against
“ResNet” when using our proposed method. It means the
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Lesion Type Average Precision
AlexNet ResNet MTL Ensemble

alopecia 0.763 0.845 0.843 0.855

comedones 0.687 0.817 0.861 0.858
crust 0.677 0.783 0.794 0.807

cyst 0.461 0.625 0.698 0.702

edema 0.633 0.707 0.751 0.758

erosion/ulcer/atrophy 0.774 0.850 0.867 0.873

erythema/erythroderm 0.742 0.820 0.844 0.843
eryth.-squam. plaque 0.496 0.658 0.683 0.690

erythematous papule 0.767 0.846 0.857 0.861

erythematous plaque 0.538 0.670 0.704 0.708

excoriation 0.467 0.605 0.635 0.651

hyperkeratosis 0.643 0.772 0.796 0.802

hyperpig. papule 0.589 0.690 0.738 0.730
hyperpig. plaque 0.473 0.637 0.675 0.675

macule 0.619 0.742 0.780 0.777
nodule 0.704 0.793 0.813 0.820

oozing 0.497 0.595 0.674 0.663
other papule 0.344 0.559 0.600 0.603

pearly papule 0.716 0.849 0.875 0.879

other plaque 0.331 0.553 0.549 0.562

scar 0.521 0.690 0.728 0.726
squames/scales 0.591 0.704 0.748 0.746
telangiectasis 0.655 0.821 0.837 0.848

tumour 0.598 0.728 0.768 0.770

vesicular/pustular 0.664 0.792 0.814 0.823

mAP-class 0.598 0.726 0.757 0.761

mAP-image 0.704 0.778 0.792 0.798

Table 1: Skin lesion classification results. “AlexNet” and
“ResNet” are trained using skin lesion labels only. “MTL” is
the proposed method. An ensemble of “ResNet” and “MTL”
is given under “Ensemble”.

joint optimization with body location classification can re-
ally benefit the learning of the lesional characteristics. Fi-
nally, we find that the highest mAP can be achieved with an
ensemble of “ResNet” and “MTL”, i.e., choosing the best
evaluation scores of the two models for each image.

We further analyze the performance difference of each
class between “ResNet” and “MTL”. We find that, in gen-
eral, if a skin lesion has a strong correlation with a body
location, it will also have a better performance gain when
using “MTL”. Typical examples are “comedone”, “edema”,
“hyperpigmented papule”, “oozing”, and “tumor”. They all
have a strong correlation with certain body locations and
we see they also have at least a 4% improvement when us-
ing “MTL”. However, there are some exceptions. For exam-
ple, we do not see any improvement from “alopecia” even
though it has a very strong correlation with “scalp”. One
possible reason is that the strong correlation between “alope-
cia” and “scalp” makes “scalp” bias too much to “alopecia”
such that some variations won’t be learned. We will further
verify this hypothesis in the later discussion.

Performance of Body Location Classification

We also compare the performance of our method with its
standalone counterpart in classifying body locations. To this
end, we fine-tune another ResNet-50 model with body lo-

cation labels only. For the evaluation metrics, the standard
top-1 and top-3 accuracies are used as body location clas-
sification is a multi-class classification problem. The evalu-
ation results are given in Figure 3. We can also see a per-
formance improvement from “ResNet” to “MTL”. This is
somewhat counter-intuitive as the classification of a body lo-
cation should have nothing to do with the skin lesions. How-
ever, as we restrict the images to be dermatological images,
a slight performance gain is reasonable.

Top-1 Top-3
0

20

40

60

80

100

A
c
c
u

ra
c
y

78.85%

95.34%

79.84%

95.73%
ResNet

MTL

Figure 3: Body location classification results. “ResNet” is
trained using body location only and “MTL” is the proposed
multi-task learning method.

Conclusions

We have developed a deep multi-task learning framework
for universal skin lesion classification. The proposed method
learns skin lesion classification and body location classifi-
cation in parallel based on the state-of-the-art CNN archi-
tecture. To be able to learn a wide variety of lesional char-
acteristics and classify all kinds of lesion types, we have
also collected and built a large-scale skin lesion dataset us-
ing images from DermQuest. The experimental results have
shown that 1) Training using the state-of-the art CNN ar-
chitecture on a large scale of skin lesion dataset leads to a
universal skin lesion classification system with good perfor-
mance. 2) It is indeed beneficial to use the body location
classification as an auxiliary task and train a deep multi-task
learning based model to achieve improved skin lesion clas-
sification. 3) An ensemble of the proposed method and its
standalone counterpart can achieve an image-wise mAP as
high as 0.80. 4) The performance of body location classifi-
cation is also improved under the deep multi-task learning
framework. Our future work includes integrating the image
analysis with other patient information to build an overall
high-performance diagnosis system for diseases with skin
lesion symptoms.
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