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Abstract

We have conducted a study investigating the use of automated
tutors for educating players in the context of serious gam-
ing (i.e., game designed as a professional training tool). His-
torically, researchers and practitioners have developed auto-
mated tutors through a process of manually codifying domain
knowledge and translating that into a human-interpretable
format. This process is laborious and leaves much to be de-
sired. Instead, we seek to apply novel machine learning tech-
niques to, first, learn a model from domain experts’ demon-
strations how to solve such problems, and, second, use this
model to teach novices how to think like experts. In this
work, we present a study comparing the performance of an
automated and a traditional, manually-constructed tutor. To
our knowledge, this is the first investigation using learning
from demonstration techniques to learn from experts and use
that knowledge to teach novices.

Introduction

An increase in the sheer number and complexity of mis-
sile threats to national security have prompted researchers in
the Department of Defense to develop innovative decision
support tools that promote better decision-making for the
warfighter. For the air and missile defense mission, initial
research in this area began with simple Red/Blue wargaming
exercises, where warfighters played against each other (i.e.,
red for offense and blue for defense) in order to solve chal-
lenging, unsolved tactical problems. Playing these games
not only allowed the warfighter to discover and learn new
tactics, techniques, and procedures, but also allowed the re-
searchers to solicit feedback from the warfighter in order to
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refine the development of their decision support tools. While
the data and feedback collected were invaluable, the training
and educational aspects were static and limited by the sam-
ple size and update rate.

Limitations in conveying and collecting information
across relevant sample sizes have motivated a data-driven,
game-based simulation approach. For example, industry and
academia alike are keenly interested in understanding player
types and behaviors in games to better tailor the game-
play experience (Drachen et al. 2012; Nygren et al. 2011;
Pirovano et al. 2012; Shaker, Yannakakis, and Togelius
2011; Thurau and Bauckhage 2010; van Lankveld et al.
2011). A key component of understanding player behavior
is performance prediction. Performance prediction allows
the educator to efficiently focus attention on those students
who are struggling and need help. Further, performance pre-
diction allows one to determine with less time spent on test-
ing whether a student is actually proficient in a domain and
ready to proceed to the next subject.

Still others within the field of education have thereby
sought to develop methods for understanding why stu-
dents, or players, drop out of educational programs (Clifton,
Mandzuk, and Roberts 1994; Deslandes et al. 1999; Graunke
and Woosley 2005; Mcinnis 2002). Students becoming
disengaged in learning exercises is a chronic problem that
greatly hampers the ability of educators to give students the
tools they need to succeed (Clifton, Mandzuk, and Roberts
1994; Deslandes et al. 1999; Graunke and Woosley 2005;
Mcinnis 2002). Researchers in artificial intelligence and
machine learning have sought to develop methods for pre-
dicting student and player retention (Bauckhage et al. 2012;
Mahlmann et al. 2010), which is a strong first step in cor-
recting the problem of trainee dropout.

We have conducted a study investigating the use of au-
tomated tutors for educating players in the context of se-
rious gaming (i.e., game designed as a professional train-
ing tool). Within the context of automated tutors, many re-
searchers have sought methods to improve education (Al-
bert and Thomas 2000; Kumar 2005; McLaren et al. 2004;
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Figure 1: This figure depicts the problem of ASMD.

Mostow et al. 2003; Rahman, Sanghvi, and El-Moughny
2009; Remolina et al. 2009; that Listens 1997). Kumar pro-
poses an automated tutor that can generate problems and an-
swers to those problems; however, this tutor is manually pro-
grammed by an expert (Kumar 2005). Rahman et al. man-
ually develop an automated tutor for learning Braille (Rah-
man, Sanghvi, and El-Moughny 2009). These techniques
have in common that the tutor designer must solicit man-
ually codify domain experts’ knowledge within the tutor’s
software.

However, we know from prior work, that while domain
experts are readily able to provide you with the important
features of their problem, they are less able to tell you how
they use those features to solve their problem. Thus, it is im-
perative we can learn from demonstration. One of the few
works we are aware of that uses a learning from demonstra-
tion paradigms is that by McLaren et al., (McLaren et al.
2004). In their work, McLaren et al. propose a technique in
which student interaction log data is used to create a skele-
ton model of a tutor for how to use a software tool. With this
skeleton, users can improve the model with their own data or
data of other users in a semi-autonomous fashion. However,
this algorithm is only semi-autonomous, requiring an expert
to manually parse data, incorporate new modules, and adjust
the models representation.

We have developed an an automated tutor, Claire, which
can fully autonomously learn an accurate model of how ex-
perts solve resource allocation problems and can use that
knowledge to teach novices to do the same. Claire relies on
a state-of-the-art technique in learning from demonstration,
which we call apprenticeship scheduling (Gombolay et al.
2016). While this technique is useful for autonomous con-
trol, there will always be domains in which a human must
be ultimately responsible for acting. These humans must be
educated to make those decisions. Thus, extracting domain
expert knowledge to teach novices to be proficient is criti-
cal. In this work, we present a study comparing the perfor-
mance of an automated and manually-constructed tutor. To
our knowledge, this is the first investigation using learning
from demonstration techniques to learn from experts and use
that knowledge to teach novices.

Problem Domain

For out investigation, we study the problem of anti-ship mis-
sile defense (ASMD), which is a complex variant of the
weapon-to-target assignment problem (Lee, Su, and Lee
2003). As depicted in Figure 1, the problem of ASMD
entails defending one’s ship from a raid of enemy, anti-
ship missiles through the use of hard- and soft-kill weapons.
Hard-kill weapons (e.g., missile interceptors) disable enemy
missiles with kinetic or chemical energy. On the other hand,
soft-kill weapons (e.g., decoys and countermeasures) fall
under the class of electronic warfare, in which the aim is
to seduce, distract, or confuse enemy missiles. These soft-
kill weapons mimic certain characteristics of naval vessels
in order to cause the enemy missile to divert its attack away
from those vessels. Because of the relatively high cost and
limited availability of hard-kill weapons, the navy is partic-
ularly interested in the development of tactics for the use of
soft-kill weapons.

The development of tactics for ASMD is extremely chal-
lenging. Operators may face situations where a single mis-
sile can only be defeated by the use of multiple, differing
decoys. Alternatively, a single decoy may be able to defeat
multiple enemy missiles. When faced with multiple missiles
at the same time (i.e., a raid), countermeasures must be de-
ployed to defeat all of those missiles, each of which may be
using differing targeting characteristics. Further, the deploy-
ment of a single decoy could cause “fratricide,” a condition
in which the decoy may save one’s own ship but now cause
another ship to fall into harms way. AMSD falls into the
hardest class of scheduling problems defined in the Korsah
et al. taxonomy (Korsah, Stentz, and Dias 2013).

Investigative Platform

We have developed a game-based simulation, called Strike
Group Defender (SGD), to emulate ASMD exercises. SGD,
shown in Figure 2, provides users across a variety of loca-
tions and platforms with both single- and multi-player train-
ing experiences in the context of relevant naval scenarios.
SGD collects participant actions and game events in order
to analyze and refine the educational experience of the users
either post hoc or in real time. The data-based collection ca-
pability of SGD has opened the way for the development of
machine learning approaches that can analyze and improve
the user educational experience.

In SGD, users must learn and employ the techniques and
tactics relevant to the defense of naval assets against anti-
ship missiles (hereafter referred to as ASMD). The game
focuses on the proper use of naval electronic warfare – the
use of signals instead of missiles for ship defense, otherwise
known as soft-kill weapons (i.e., decoys) – but also includes
hard-kill weapons (i.e., interceptor missiles) and informa-
tion, surveillance, and reconnaissance (ISR) elements.

SGD is comprised of two level types: training and test.
There is one training level for each enemy missile type to
afford players an simple scenario to develop techniques to
combat each of those missiles. There is also an introductory
tutorial level and an tutorial exam. The tutorial levels are
as follows: “Basics Tutorial”, “Hungry Missile Tutorial”,
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Figure 2: SGD enables development of automated teaching
tools for ASMD.

”Moth Missile Tutorial”, “Catfish Missile Tutorial”, “Long-
shot Missile Tutorial”, “Weasel Missile Tutorial”, “Muffled
Missile Tutorial”, “Headhunter Missile Tutorial”, “Cerberus
Missile Tutorial”, and the “Tutorial Exam”.

There are also three test levels: “Daily Performance
Evaluation”, “Operation Neptune”, and “Final Countdown”.
Daily Performance Evaluation is a level where threat types
are randomized, and threat bearings are spread across a
range of angles such that it appears one’s own ship is sur-
rounded. The Daily Performance Evaluation provides a ran-
domized threat scenario each time the user plays that level.
Operation Neptune and Final Countdown are difficult, but
deterministic, levels.

In each level, players assign and deploy soft-kill weapons
(e.g., flare, chaff, etc.) to deceive or distract enemy mis-
siles away from valuable ships. The proper coordination of
soft-kill decoys with hard-kill interceptor missiles and ISR
limitations ensures the long-term survivability of the ships in
the strike group against a formidable raid of heterogeneous
anti-ship cruise missiles.

Data Set

To train Claire’s apprenticeship scheduling algorithm, we
needed to collect a data set of human domain experts solv-
ing representative ASMD problems. To collect this data, we
conducted a “March Madness” Tournament in which do-
main experts would compete in a bracket-based competi-
tion. Games were scored as follows: 10,000 points were
received each time a threat was neutralized and 2 points for
each second each threat spent homing in on a decoy. 5,000
points were subtracted for each threat impact and 1 points
for each second each threat spent homing in on one’s own
ship. Lastly, 25-1,000 points were subtracted for each de-
ploy of a decoy, depending on the type.

We focused on the Daily Performance Evaluation because
it is randomized and is more well-suited to test the ability
of a player to generalize learning as opposed to repeatedly
playing a deterministic level or playing drastically different,
deterministic levels. The collected data set consisted of 311

games played from 35 human players across 45 threat con-
figurations or “scenarios” in this level. We sub-selected six-
teen threat configurations such that each configuration had
at least one human demonstration that mitigated all enemy
missiles. For these sixteen threat configurations, there were
162 total games played by 27 unique human demonstrators.
We then used the best human demonstration from each of
the sixteen threat configurations to train the apprenticeship
scheduling algorithm, which we will now describe.

Apprenticeship Scheduling

In this section, we review the apprenticeship scheduling al-
gorithm developed by (Gombolay et al. 2016). This ap-
proach works by learning from demonstrations of human
domain experts how to solve scheduling problems, such as
ASMD. The approach has been shown suitable for learning
high-quality policies from ASMD experts (Gombolay et al.
2016).

Consider an ASMD problem containing a set of enemy
missiles μ ∈ M , decoys a ∈ A, locations to deploy those
decoys x ∈ X , as well as a set of actions taken at each mo-
ment in time τi = 〈μ, a, x, t〉. A trajectory given by a human
domain expert demonstrator then provides a time-sequence
of ordered actions. For each action the expert takes, we can
compute the set of alternative actions τj the expert could
have taken.

Each action, scheduled and unscheduled, has an associ-
ated real-valued feature vector, γτi . Features of this vector
may include the time the decoy will evaporate, its bearing,
etc. Further, there is a common feature vector, ξt, which cap-
tures features that are not well described by pairwise com-
parisons, such as the total number of decoys remaining.

priorityθm〈τi,τj〉 :=
[
ξτ , γτi − γτj

]
, ym

〈τi,τj〉 = 1,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (1)
priorityθm〈τj ,τi〉 := [ξτ , γτx − γτi ] , y

m

〈τj ,τi〉 = 0,

∀τx ∈ τ\τi, ∀Om ∈ O|τi scheduled in Om (2)

These vectors serve to create the training data, as shown
in Equations 1-2. For each observation (i.e., a specific time
point within a schedule), the apprentice scheduler creates a
set of positive and negative examples. To create these ex-
amples, the apprentice scheduler subtracts the feature vector
of the action not taken γτj from the feature vector describ-
ing the action taken, γτi . To this difference, the algorithm
concatenates the common feature vector vector, ξτ . This
concatenated vector then serves as a positive example. To
create the corresponding negative example, the subtraction
operation is reversed: The apprentice scheduler subtracts the
feature vector of the action taken γτi from the feature vector
describing the action not taken, γτj

With these examples, the apprentice scheduler trains a
classifier fpriority(τi, τj) to predict whether action τi or τj
is better. The function returns a probability in [0, 1]. To
predict which is the best overall action at a given moment
in time, the apprentice scheduler evaluates Equation 3. The
equation requires computing |τ |2 comparisons. We apply a
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decision tree classifier to learn fpriority(τi, τj). In turn, the
computational complexity of Equation 3 is O(|τ |2d), where
d is the depth of the tree.

τ∗
i = argmax

τi∈τ

∑

τx∈τ

fpriority(τi, τx) (3)

Claire: An Autonomous Tutor

We pose the challenge of developing an autonomous tutor
that has the ability to receive questions from human students
and autonomously generate answers to those questions in
the context of serious games. In our approach, we develop
an AI tutor by first, employing apprenticeship scheduling to
learn from human domain expert example how to perform
the intended task and, second, using the trained apprentice-
ship scheduler to tutor human students. We call our tutor
“Clair,”1.

Students interact with Claire via a human-computer inter-
face we developed to facilitate the tutoring session (Figure
3). A player might want assistance from Claire if, for ex-
ample, he or she was unable to defeat a certain combination
of enemy missiles. The player would construct a representa-
tive scenario specifying the number of enemy missiles, their
types, and their bearings. In turn, Clair would use its ap-
prenticeship scheduler to predict how a human expert would
respond to those enemy missiles. Specifically, Claire would
place a set of soft kill weapons of the type and bearing pre-
dicted by the apprenticeship scheduler.

To give Claire the ability to respond to the students’ raid
scenarios, we trained Clair on data from our March Mad-
ness tournament, which contains examples of human do-
main experts responding to representative ASMD raid sce-
narios. Specifically, we trained our model on a set of the
best demonstrations of users playing the “Daily Performance
Evaluation” level, which best captures the skills required for
a robust policy. Robustness is important because we want
Claire’s recommendations to be applicable to a wide range
of students’ queries.

Human Benchmark

To validate the efficacy of our approach, we developed a sec-
ond tutor, the “Human Tutor”, based upon hard-coded re-
sponses by a human domain expert (i.e., one of the game’s
designers). Codifying rules for a raid of k missiles with
nt missile types from nb bearings requires considering
O(

(
ntnb

k

)
) scenarios, which grows to be intractable for a hu-

man demonstrator with even one or two missiles. Instead,
we asked the human domain expert to develop a set of one-
to-one rules (e.g., “deploy a flare ten degrees starboard if you
see a moth missile”). These rules provide effective strate-
gies for mitigating one threat with one decoy, but they do
not scale well to handling multiple missiles with multiple
decoys. The interaction effects between the missiles and de-
coys can cause these myopic rules to become quite subopti-
mal as more missiles and decoys are added to the environ-
ment.

1Claire’s name is inspired by the word “clairvoyant.”

(a) This figure depicts the welcome screen with instructions
for participants.

(b) This figure depicts an example in which the participant
asked Clair how to respond to two threats: a hungry mis-
sile and moth missile, at bearings 90◦ and 225◦, respectively.
Clair responded by deploying an IR flare at bearing −45◦,
which mitigates the moth missile, and chaff at 135◦, which
mitigates the hungry missile. Clair’s response is a generaliza-
tion of knowledge it learned from training the apprenticeship
scheduling algorithm on data of human experts’ demonstra-
tions.

Figure 3: Figures 3a-3b depict the tutoring interface used
for players in both the human tutor and computer tutor (i.e.,
Claire) condition. We note that participants in the human
tutor condition would only be able to specify one missile
threat because of the lack of scalability of the manually cod-
ified knowledge.

We embedded these rules in the same interface used by
Claire (Figure 3), where users could similarly input an en-
emy raid and receive a recommendation based on the hu-
man experts’ rules. In turn, the human tutor would respond
with the relevant soft kill deployment and ship-turn move-
ment using the codified rules. The Human Tutor interface
was graphically identical to Clair with one exception: users
could prescribe raids with up to only one missile. As we
mentioned previously, enumerating a rule-set for n missiles
was too time-consuming; even codifying rules for 2 missiles
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with 5 missile types and 8 possible bearings would require
considering 780 scenarios. While this difference introduces
a possible experimental confound, we argue that the differ-
ence is inherent to comparing the efficacy of human and AI
tutoring systems. Thus, this pilot study is a helpful first step
in understanding the benefits of AI tutors for serious gaming.

Empirical Validation

We conducted a human-subject experiment, where users
would have access to our computer and human tutors to aug-
ment their gameplay experience. Players were divided into
two groups: one group would have access to the computer
tutor (i.e., Claire), and one would have access to the human
tutor. We asked players to explore their respective tutors
for at least five minutes. Further, players were required to
play SGD for at least 30 minutes. We hypothesize that our
apprenticeship-scheduler-based computer tutor would pro-
vide players with more helpful instruction.

We report the result of statistical testing of our hypothe-
sis. For the Daily Performance Evaluation (Figure 4), the
level used as the basis for training our computer tutor, play-
ers using the computer tutor performed better (n = 14, M =
56, 204, SD = ± 29, 408) than players in human-tutor con-
dition (n = 17, M = 41, 639, SD = ± 22, 870), p = 0.132.
We perform the same analysis on the players overall tourna-
ment score (Figure 5), and found that players with the com-
puter tutor performed better (n = 10, M = 231, 280, SD = ±
99, 729) than players in human-tutor condition (n = 11, M =
228, 811, SD = ± 81, 938), p = 0.95.

While the p-value is not statistically significant at the
α = 0.05 level, there is a strong indication for the Daily
Performance Evaluation (p = 0.132) that our computer tu-
tor offers players more benefit than the human tutor. As
such, we propose conducting a second data collection phase
to ascertain definitive results. Further, we hypothesize that
training on a further variety of levels could yield improved
benefit for results other than the Daily Performance Eval-
uation. Conducting a power analysis for two independent
samples where we estimate the common standard deviation
to be 26, 609 by pooling the variance, the mean performance
for the computer tutor is 56,204, and the mean performance
for the human tutor is 41, 639, we find we need 42 people
per condition to have an 80% power for finding a statisti-
cally significant difference at the α = 0.05 confidence level
for the Daily Performance Evaluation. In future work, we
propose collecting more data to establish statistical signifi-
cance.

Conclusion and Future Work

We propose a computer-based tutoring system that learns a
model for teaching pupils based on data of expert demon-
strators. Our system, Clair, employs a state-of-the-art tech-
nique in apprenticeship scheduling that learns how to solve
resource allocation problems from expert demonstration.
Clair then uses this knowledge to serve as an autonomous
tutor who can help solve a student’s problem when that stu-
dent becomes stuck. We conduct an initial pilot study ex-
amining the effectiveness of our technique. We found that

Figure 4: This figure depicts a histogram of scores players
assigned to the human tutor and computer tutor conditions
achieved the first time they played the Daily Performance
Evaluation level.

Figure 5: This figure depicts a histogram of tournament
score for players assigned to the human tutor and computer
tutor conditions. The tournament score is the sum of the
average Daily Performance Evaluation score, the maximum
Operation Neptune score, and the Final Countdown score.

while students prefer a traditional human tutor, their perfor-
mance improved more when using Clair. In future work, we
will conduct a more robust study to isolate the causal link in
performance change and better understand the apparent con-
tradiction between students’ perception and reality of Clair’s
benefits.
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